Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Bacterial bile salt hydrolase in host metabolism: Potential for influencing gastrointestinal microbe-host crosstalk 
Gut Microbes  2014;5(5):669-674.
Controlled, reductionist approaches are required in order to obtain a more complete understanding of the functional capabilities of the gut microbiota. We recently identified microbial bile salt hydrolase (BSH) activity as a gut microbial activity that has the capacity to profoundly alter both local (gastrointestinal) and systemic (hepatic) host functions. Using both germ free and conventionally-raised mouse models we demonstrated that gastrointestinal expression of BSH results in local bile acid deconjugation with concomitant alterations in lipid and cholesterol metabolism, signaling functions and weight gain. Key mediators of cholesterol homeostasis (Abcg5/8), gut homeostasis (RegIIIγ) and circadian rhythm (Dbp) were influenced by elevated BSH in our study. In this addendum we discuss the implications of this work for the rational development of probiotics with the potential to modulate host weight gain.
PMCID: PMC4615832  PMID: 25483337
bile; circadian rhythm; Lactobacillus; obesity; probiotic
2.  Two-tiered biological containment strategy for Lactococcus lactis-based vaccine or immunotherapy vectors 
The concept of biological containment was developed as a strategy to prevent environmental dissemination of engineered live vaccine or drug delivery vehicles. A mutation in the gene encoding thymidylate synthase (thyA), a key enzyme in the pyrimidine biosynthetic pathway, has previously been shown to limit growth of L. lactis vectors under restrictive conditions. We hypothesized that further mutations in the pyrimidine biosynthetic pathway might enhance the stability and safety of live L. lactis vectors. We show that a double mutation in the genes encoding ThyA and CTP synthase (PyrG) in L. lactis confers double auxotrophy for both thymidine and cytidine. However, the combination of two mutations failed to enhance the biological containment phenotype of the engineered strain. In the absence of thymine/thymidine, the thyA mutant exhibited a strong bactericidal phenotype. However, creation of the double mutant caused the loss of this phenotype, though survival in the mouse GI tract was enhanced. The implications for biological containment of live L. lactis based delivery vectors are discussed.
PMCID: PMC4185911  PMID: 24196273
biological containment; vaccine; Lactococcus lactis; thyA; pyrG
3.  Efficacy of a Lactococcus lactis ΔpyrG vaccine delivery platform expressing chromosomally integrated hly from Listeria monocytogenes 
Bioengineered Bugs  2010;1(1):66-74.
Listeria monocytogenes is a significant food-borne pathogen and the causative agent of listeriosis, a disease which manifests as meningitis in immunocompromised adults or infection of the fetus and miscarriage in pregnant women. We have previously used Lactococcus lactis, a GRAS (Generally Regarded As Safe) organism, as a vaccine vector against listeriosis by engineering plasmid-mediated expression of the immunodominant antigen from L. monocytogenes, listeriolysin O (LLO). However, the environmental release of an engineered vaccine vector carrying a replicating plasmid during clinical usage may raise safety concerns. Here we describe the integration of the LLO gene (hly) into the L. lactis chromosome through homologous double crossover to allow stable expression, in order to avoid the use of antibiotic selection markers and to eliminate the requirement for a plasmid-based system. The approach was designed to simultaneously eliminate the pyrG gene encoding the CTP synthase which is responsible for converting UTP to CTP in a unique step in the de novo pyrimidine synthesis in L. lactis. This gene was targeted in order to restrict bacterial replication outside of the host (biological containment). The resulting cytidine auxotroph was able to secrete LLO constitutively and could elicit LLO91–99-specific CD8+ T lymphocytes in the murine infection model. Moreover, protection against lethal challenge with L. monocytogenes was accomplished after intraperitoneal (IP) vaccination with the constructed strain. The implications for the use of cytidine auxotropy in biological containment are discussed.
PMCID: PMC3035148  PMID: 21327128
Lactococcus lactis; biological containment; listeriolysin O; pyrG; hly; vaccine
4.  The use of Listeria monocytogenes as a DNA delivery vector for cancer gene therapy 
Bioengineered Bugs  2010;1(4):284-287.
Listeria monocytogenes is an intracellular pathogen that lyses the phagosomal vacuole of infected cells, proliferates in the host cell cytoplasm and can actively enter adjacent cells. The pathogen is therefore well suited to exploitation as a vector for the delivery of DNA to target cells as the lifecycle favors cellular targeting with vector amplification and the potential for cell-to-cell spread. We have recently demonstrated DNA transfer by L. monocytogenes in growing tumors in murine models. Our approach exploited an ampicillin sensitive stain of L. monocytogenes which can be lysed through systemic administration of ampicillin to facilitate release of plasmid DNA for expression by infected mammalian cells. Here, we discuss the implications of this technology and the potential for future improvements of the system.
PMCID: PMC3026469  PMID: 21327062
bactofection; Listeria monocytogenes; salmonella; tumor; tumor; cancer; gene delivery; luminescence; therapy
5.  Directed evolution and targeted mutagenesis to murinize listeria monocytogenes internalin A for enhanced infectivity in the murine oral infection model 
BMC Microbiology  2010;10:318.
Internalin A (InlA) is a critical virulence factor which mediates the initiation of Listeria monocytogenes infection by the oral route in permissive hosts. The interaction of InlA with the host cell ligand E-cadherin efficiently stimulates L. monocytogenes entry into human enterocytes, but has only a limited interaction with murine cells.
We have created a surface display library of randomly mutated InlA in a non-invasive heterologous host Lactococcus lactis in order to create and screen novel variants of this invasion factor. After sequential passage through a murine cell line (CT-26), multiple clones with enhanced invasion characteristics were identified. Competitive index experiments were conducted in mice using selected mutations introduced into L. monocytogenes EGD-e background. A novel single amino acid change was identified which enhanced virulence by the oral route in the murine model and will form the basis of further engineering approaches. As a control a previously described EGD-InlAm murinized strain was also re-created as part of this study with minor modifications and designated EGD-e InlAm*. The strain was created using a procedure that minimizes the likelihood of secondary mutations and incorporates Listeria-optimized codons encoding the altered amino acids. L. monocytogenes EGD-e InlAm* yielded consistently higher level murine infections by the oral route when compared to EGD-e, but did not display the two-fold increased invasion into a human cell line that was previously described for the EGD-InlAm strain.
We have used both site-directed mutagenesis and directed evolution to create variants of InlA which may inform future structure-function analyses of this protein. During the course of the study we engineered a murinized strain of L. monocytogenes EGD-e which shows reproducibly higher infectivity in the intragastric murine infection model than the wild type, but does not display enhanced entry into human cells as previously observed. This murinized L. monocytogenes strain will provide a useful tool for the analysis of the gastrointestinal phase of listeriosis.
PMCID: PMC3016325  PMID: 21144051
6.  The truncated phage lysin CHAPk eliminates Staphylococcus aureus in the nares of mice 
Bioengineered Bugs  2010;1(6):404-407.
The endolysin LysK derived from staphylococcal phage K has previously been shown to have two enzymatic domains, one of which is an N-acetylmuramoyl-L-alanine amidase and the other a cysteine/histidine-dependant amidohydrolase/peptidase designated CHAPk. The latter, when cloned as a single-domain truncated enzyme, is conveniently overexpressed in a highly-soluble form. This enzyme was shown to be highly active in vitro against live cell suspensions of S. aureus. In the current study, the IVIS imaging system was used to demonstrate the effective elimination of a lux labeled S. aureus from the nares of BALB/c mice.
PMCID: PMC3056090  PMID: 21468207
Staphylococcus; decolonization; lysin; bacteriophage; nasal
7.  Enhancing bile tolerance improves survival and persistence of Bifidobacterium and Lactococcus in the murine gastrointestinal tract 
BMC Microbiology  2008;8:176.
The majority of commensal gastrointestinal bacteria used as probiotics are highly adapted to the specialised environment of the large bowel. However, unlike pathogenic bacteria; they are often inadequately equipped to endure the physicochemical stresses of gastrointestinal (GI) delivery in the host. Herein we outline a patho-biotechnology strategy to improve gastric delivery and host adaptation of a probiotic strain Bifidobacterium breve UCC2003 and the generally regarded as safe (GRAS) organism Lactococcus lactis NZ9000.
In vitro bile tolerance of both strains was significantly enhanced (P < 0.001), following heterologous expression of the Listeria monocytogenes bile resistance mechanism BilE. Strains harbouring bilE were also recovered at significantly higher levels (P < 0.001), than control strains from the faeces and intestines of mice (n = 5), following oral inoculation. Furthermore, a B. breve strain expressing bilE demonstrated increased efficacy relative to the wild-type strain in reducing oral L. monocytogenes infection in mice.
Collectively the data indicates that bile tolerance can be enhanced in Bifidobacterium and Lactococcus species through rational genetic manipulation and that this can significantly improve delivery to and colonisation of the GI tract.
PMCID: PMC2577680  PMID: 18844989
8.  Nisin inducible production of listeriolysin O in Lactococcus lactis NZ9000 
Listeria monocytogenes is a well-characterized food-borne pathogen that infects pregnant women and immunocompromised individuals. Listeriolysin O (LLO) is the major virulence factor of the pathogen and is often used as a diagnostic marker for detection of L. monocytogenes. In addition, LLO represents a potent antigen driving T cell-mediated immunity during infection. In the present work, Lactococcus lactis NZ9000 was used as an expression host to hyper-produce LLO under inducible conditions using the NICE (NIsin Controlled Expression) system. We created a modified pNZ8048 vector encoding a six-His-tagged LLO downstream of the strong inducible PnisA promoter.
The constructed vector (pNZPnisA:CYTO-LLO) was expressed in L. lactis NZ9000 and was best induced at mid-log phase with 0.2% v/v nisin for 4 h statically at 30°C. Purification of the His-tagged LLO was accomplished by Ni-NTA affinity chromatography and functionality was confirmed through haemolytic assays. Total LLO yield (measured as total protein content) was 4.43–5.9 mg per litre culture and the haemolytic activity was still detectable after 8 months of storage at 4°C.
The LLO production method described in this work provides an approach to efficient LLO production in the Gram-positive Lactococcus bacterium to yield a significant source of the protein for research and diagnostic applications. Expression of LLO in L. lactis has a number of benefits over E. coli which may facilitate both in vivo and in vitro applications of this system.
PMCID: PMC2515284  PMID: 18664263
9.  Development of multiple strain competitive index assays for Listeria monocytogenes using pIMC; a new site-specific integrative vector 
BMC Microbiology  2008;8:96.
The foodborne, gram-positive pathogen, Listeria monocytogenes, is capable of causing lethal infections in compromised individuals. In the post genomic era of L. monocytogenes research, techniques are required to identify and validate genes involved in the pathogenicity and environmental biology of the organism. The aim here was to develop a widely applicable method to tag L. monocytogenes strains, with a particular emphasis on the development of multiple strain competitive index assays.
We have constructed a new site-specific integrative vector, pIMC, based on pPL2, for the selection of L. monocytogenes from complex samples. The pIMC vector was further modified through the incorporation of IPTG inducible markers (antibiotic and phenotypic) to produce a suite of four vectors which allowed the discrimination of multiple strains from a single sample. We were able to perform murine infection studies with up to four EGDe isolates within a single mouse and showed that the tags did not impact upon growth rate or virulence. The system also allowed the identification of subtle differences in virulence between strains of L. monocytogenes commonly used in laboratory studies.
This study has developed a competitive index assay that can be broadly applied to all L. monocytogenes strains. Improved statistical robustness of the data was observed, resulting in fewer mice being required for virulence assays. The competitive index assays provide a powerful method to analyse the virulence or fitness of L. monocytogenes in complex biological samples.
PMCID: PMC2440758  PMID: 18554399

Results 1-9 (9)