PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Vitamin B12–dependent taurine synthesis regulates growth and bone mass 
The Journal of Clinical Investigation  2014;124(7):2988-3002.
Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated physiological and metabolomic analysis, we determined that B12 deficiency in the offspring decreases liver taurine production and associates with abrogation of a growth hormone/insulin-like growth factor 1 (GH/IGF1) axis. Taurine increased GH-dependent IGF1 synthesis in the liver, which subsequently enhanced osteoblast function, and in B12-deficient offspring, oral administration of taurine rescued their growth retardation and osteoporosis phenotypes. These results identify B12 as an essential vitamin that positively regulates postweaning growth and bone formation through taurine synthesis and suggests potential therapies to increase bone mass.
doi:10.1172/JCI72606
PMCID: PMC4071367  PMID: 24911144
2.  Deletion of the metabolic transcriptional coactivator PGC1β induces cardiac arrhythmia 
Cardiovascular Research  2011;92(1):29-38.
Aims
Peroxisome proliferator-activated receptor-γ coactivators PGC1α and PGC1β modulate mitochondrial biogenesis and energy homeostasis. The function of these transcriptional coactivators is impaired in obesity, insulin resistance, and type 2 diabetes. We searched for transcriptomic, lipidomic, and electrophysiological alterations in PGC1β−/− hearts potentially associated with increased arrhythmic risk in metabolic diseases.
Methods and results
Microarray analysis in mouse PGC1β−/− hearts confirmed down-regulation of genes related to oxidative phosphorylation and the electron transport chain and up-regulation of hypertrophy- and hypoxia-related genes. Lipidomic analysis showed increased levels of the pro-arrhythmic and pro-inflammatory lipid, lysophosphatidylcholine. PGC1β−/− mouse electrocardiograms showed irregular heartbeats and an increased incidence of polymorphic ventricular tachycardia following isoprenaline infusion. Langendorff-perfused PGC1β−/− hearts showed action potential alternans, early after-depolarizations, and ventricular tachycardia. PGC1β−/− ventricular myocytes showed oscillatory resting potentials, action potentials with early and delayed after-depolarizations, and burst firing during sustained current injection. They showed abnormal diastolic Ca2+ transients, whose amplitude and frequency were increased by isoprenaline, and Ca2+ currents with negatively shifted inactivation characteristics, with increased window currents despite unaltered levels of CACNA1C RNA transcripts. Inwardly and outward rectifying K+ currents were all increased. Quantitiative RT-PCR demonstrated increased SCN5A, KCNA5, RYR2, and Ca2+-calmodulin dependent protein kinase II expression.
Conclusion
PGC1β−/− hearts showed a lysophospholipid-induced cardiac lipotoxicity and impaired bioenergetics accompanied by an ion channel remodelling and altered Ca2+ homeostasis, converging to produce a ventricular arrhythmic phenotype particularly during adrenergic stress. This could contribute to the increased cardiac mortality associated with both metabolic and cardiac disease attributable to lysophospholipid accumulation.
doi:10.1093/cvr/cvr155
PMCID: PMC3172981  PMID: 21632884
Mitochondria; Cardiac arrhythmia; Peroxisome proliferator-activated receptor-γ coactivator 1β; Metabolic disease; Lysophosphatidylcholine
3.  Peroxisome Proliferator-Activated Receptor γ-Dependent Regulation of Lipolytic Nodes and Metabolic Flexibility 
Molecular and Cellular Biology  2012;32(8):1555-1565.
Optimal lipid storage and mobilization are essential for efficient adipose tissue. Nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) regulates adipocyte differentiation and lipid deposition, but its role in lipolysis and dysregulation in obesity is not well defined. This investigation aimed to understand the molecular impact of dysfunctional PPARγ on the lipolytic axis and to explore whether these defects are also confirmed in common forms of human obesity. For this purpose, we used the P465L PPARγ mouse as a model of dysfunctional PPARγ that recapitulates the human pparγ mutation (P467L). We demonstrated that defective PPARγ impairs catecholamine-induced lipolysis. This abnormal lipolytic response is exacerbated by a state of positive energy balance in leptin-deficient ob/ob mice. We identified the protein kinase A (PKA) network as a PPARγ-dependent regulatory node of the lipolytic response. Specifically, defective PPARγ is associated with decreased basal expression of prkaca (PKAcatα) and d-akap1, the lipase genes Pnplaz (ATGL) and Lipe (HSL), and lipid droplet protein genes fsp27 and adrp in vivo and in vitro. Our data indicate that PPARγ is required for activation of the lipolytic regulatory network, dysregulation of which is an important feature of obesity-induced insulin resistance in humans.
doi:10.1128/MCB.06154-11
PMCID: PMC3318581  PMID: 22310664
4.  Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model 
Disease Models & Mechanisms  2012;5(5):636-648.
SUMMARY
Individuals with metabolic syndrome are at high risk of developing chronic kidney disease (CKD) through unclear pathogenic mechanisms. Obesity and diabetes are known to induce glucolipotoxic effects in metabolically relevant organs. However, the pathogenic role of glucolipotoxicity in the aetiology of diabetic nephropathy is debated. We generated a murine model, the POKO mouse, obtained by crossing the peroxisome proliferator-activated receptor gamma 2 (PPARγ2) knockout (KO) mouse into a genetically obese ob/ob background. We have previously shown that the POKO mice showed: hyperphagia, insulin resistance, hyperglycaemia and dyslipidaemia as early as 4 weeks of age, and developed a complete loss of normal β-cell function by 16 weeks of age. Metabolic phenotyping of the POKO model has led to investigation of the structural and functional changes in the kidney and changes in blood pressure in these mice. Here we demonstrate that the POKO mouse is a model of renal disease that is accelerated by high levels of glucose and lipid accumulation. Similar to ob/ob mice, at 4 weeks of age these animals exhibited an increased urinary albumin:creatinine ratio and significantly increased blood pressure, but in contrast showed a significant increase in the renal hypertrophy index and an associated increase in p27Kip1 expression compared with their obese littermates. Moreover, at 4 weeks of age POKO mice showed insulin resistance, an alteration of lipid metabolism and glomeruli damage associated with increased transforming growth factor beta (TGFβ) and parathyroid hormone-related protein (PTHrP) expression. At this age, levels of proinflammatory molecules, such as monocyte chemoattractant protein-1 (MCP-1), and fibrotic factors were also increased at the glomerular level compared with levels in ob/ob mice. At 12 weeks of age, renal damage was fully established. These data suggest an accelerated lesion through glucolipotoxic effects in the renal pathogenesis in POKO mice.
doi:10.1242/dmm.009266
PMCID: PMC3424461  PMID: 22773754
5.  Lipocalin Prostaglandin D Synthase and PPARγ2 Coordinate to Regulate Carbohydrate and Lipid Metabolism In Vivo 
PLoS ONE  2012;7(7):e39512.
Mice lacking Peroxisome Proliferator-Activated Receptor γ2 (PPARγ2) have unexpectedly normal glucose tolerance and mild insulin resistance. Mice lacking PPARγ2 were found to have elevated levels of Lipocalin prostaglandin D synthase (L-PGDS) expression in BAT and subcutaneous white adipose tissue (WAT). To determine if induction of L-PGDS was compensating for a lack of PPARγ2, we crossed L-PGDS KO mice to PPARγ2 KO mice to generate Double Knock Out mice (DKO). Using DKO mice we demonstrated a requirement of L-PGDS for maintenance of subcutaneous WAT (scWAT) function. In scWAT, DKO mice had reduced expression of thermogenic genes, the de novo lipogenic program and the lipases ATGL and HSL. Despite the reduction in markers of lipolysis in scWAT, DKO mice had a normal metabolic rate and elevated serum FFA levels compared to L-PGDS KO alone. Analysis of intra-abdominal white adipose tissue (epididymal WAT) showed elevated expression of mRNA and protein markers of lipolysis in DKO mice, suggesting that DKO mice may become more reliant on intra-abdominal WAT to supply lipid for oxidation. This switch in depot utilisation from subcutaneous to epididymal white adipose tissue was associated with a worsening of whole organism metabolic function, with DKO mice being glucose intolerant, and having elevated serum triglyceride levels compared to any other genotype. Overall, L-PGDS and PPARγ2 coordinate to regulate carbohydrate and lipid metabolism.
doi:10.1371/journal.pone.0039512
PMCID: PMC3390315  PMID: 22792179
6.  Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity 
Diabetes  2011;60(7):1861-1871.
OBJECTIVE
Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose, and energy metabolism, which become dysregulated in obesity. However, the role of FXR in obesity and associated complications, such as dyslipidemia and insulin resistance, has not been directly assessed.
RESEARCH DESIGN AND METHODS
Here, we evaluate the consequences of FXR deficiency on body weight development, lipid metabolism, and insulin resistance in murine models of genetic and diet-induced obesity.
RESULTS
FXR deficiency attenuated body weight gain and reduced adipose tissue mass in both models. Surprisingly, glucose homeostasis improved as a result of an enhanced glucose clearance and adipose tissue insulin sensitivity. In contrast, hepatic insulin sensitivity did not change, and liver steatosis aggravated as a result of the repression of β-oxidation genes. In agreement, liver-specific FXR deficiency did not protect from diet-induced obesity and insulin resistance, indicating a role for nonhepatic FXR in the control of glucose homeostasis in obesity. Decreasing elevated plasma BA concentrations in obese FXR-deficient mice by administration of the BA sequestrant colesevelam improved glucose homeostasis in a FXR-dependent manner, indicating that the observed improvements by FXR deficiency are not a result of indirect effects of altered BA metabolism.
CONCLUSIONS
Overall, FXR deficiency in obesity beneficially affects body weight development and glucose homeostasis.
doi:10.2337/db11-0030
PMCID: PMC3121443  PMID: 21593203
7.  Farnesoid x receptor deficiency improves glucose homeostasis in mouse models of obesity 
Diabetes  2011;60(7):1861-1871.
Objective
Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose and energy metabolism which become dysregulated in obesity. However, the role of FXR in obesity and associated complications, such as dyslipidemia and insulin resistance, has not been directly assessed.
Research Design and Methods
Here, we evaluate the consequences of FXR-deficiency on body weight development, lipid metabolism and insulin resistance in murine models of genetic and diet-induced obesity.
Results
FXR-deficiency attenuated body weight gain and reduced adipose tissue mass in both models. Surprisingly, glucose homeostasis improved due to an enhanced glucose clearance and adipose tissue insulin sensitivity. In contrast, hepatic insulin sensitivity did not change, and liver steatosis aggravated due to the repression of β-oxidation genes. In agreement, liver-specific FXR-deficiency did not protect from diet-induced obesity and insulin resistance indicating a role for non-hepatic FXR in the control of glucose homeostasis in obesity. Decreasing elevated plasma BA concentrations in obese FXR-deficient mice by administration of the BA sequestrant colesevelam improved glucose homeostasis in a FXR-dependent manner indicating that the observed improvements by FXR-deficiency are not due to indirect effects of altered BA metabolism.
Conclusions
Overall, FXR-deficiency in obesity beneficially affects body weight development and glucose homeostasis.
doi:10.2337/db11-0030
PMCID: PMC3121443  PMID: 21593203
FXR; bile acids; obesity; glucose homeostasis; insulin resistance; energy metabolism; triglyceride metabolism; bile acid sequestrants
8.  Differential Lipid Partitioning Between Adipocytes and Tissue Macrophages Modulates Macrophage Lipotoxicity and M2/M1 Polarization in Obese Mice 
Diabetes  2011;60(3):797-809.
OBJECTIVE
Obesity-associated insulin resistance is characterized by a state of chronic, low-grade inflammation that is associated with the accumulation of M1 proinflammatory macrophages in adipose tissue. Although different evidence explains the mechanisms linking the expansion of adipose tissue and adipose tissue macrophage (ATM) polarization, in the current study we investigated the concept of lipid-induced toxicity as the pathogenic link that could explain the trigger of this response.
RESEARCH DESIGN AND METHODS
We addressed this question using isolated ATMs and adipocytes from genetic and diet-induced murine models of obesity. Through transcriptomic and lipidomic analysis, we created a model integrating transcript and lipid species networks simultaneously occurring in adipocytes and ATMs and their reversibility by thiazolidinedione treatment.
RESULTS
We show that polarization of ATMs is associated with lipid accumulation and the consequent formation of foam cell–like cells in adipose tissue. Our study reveals that early stages of adipose tissue expansion are characterized by M2-polarized ATMs and that progressive lipid accumulation within ATMs heralds the M1 polarization, a macrophage phenotype associated with severe obesity and insulin resistance. Furthermore, rosiglitazone treatment, which promotes redistribution of lipids toward adipocytes and extends the M2 ATM polarization state, prevents the lipid alterations associated with M1 ATM polarization.
CONCLUSIONS
Our data indicate that the M1 ATM polarization in obesity might be a macrophage-specific manifestation of a more general lipotoxic pathogenic mechanism. This indicates that strategies to optimize fat deposition and repartitioning toward adipocytes might improve insulin sensitivity by preventing ATM lipotoxicity and M1 polarization.
doi:10.2337/db10-0705
PMCID: PMC3046840  PMID: 21266330
9.  Association of Lipidome Remodeling in the Adipocyte Membrane with Acquired Obesity in Humans 
PLoS Biology  2011;9(6):e1000623.
The authors describe a new approach to studying cellular lipid profiles and propose a compensatory mechanism that may help maintain the normal membrane function of adipocytes in the context of obesity.
Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved states of obesity by investigating a separated set of individuals considered to be morbidly obese. Despite lower dietary polyunsaturated fatty acid intake, the obese twin individuals had increased proportions of palmitoleic and arachidonic acids in their adipose tissue, including increased levels of ethanolamine plasmalogens containing arachidonic acid. Information gathered from these experimental groups was used for molecular dynamics simulations of lipid bilayers combined with dependency network analysis of combined clinical, lipidomics, and gene expression data. The simulations suggested that the observed lipid remodeling maintains the biophysical properties of lipid membranes, at the price, however, of increasing their vulnerability to inflammation. Conversely, in morbidly obese subjects, the proportion of plasmalogens containing arachidonic acid in the adipose tissue was markedly decreased. We also show by in vitro Elovl6 knockdown that the lipid network regulating the observed remodeling may be amenable to genetic modulation. Together, our novel approach suggests a physiological mechanism by which adaptation of adipocyte membranes to adipose tissue expansion associates with positive energy balance, potentially leading to higher vulnerability to inflammation in acquired obesity. Further studies will be needed to determine the cause of this effect.
Author Summary
Obesity is characterized by excess body fat, which is predominantly stored in the adipose tissue. When adipose tissue expands too much it stops storing lipid appropriately. The excess lipid accumulates in organs such as muscle, liver, and pancreas, causing metabolic disease. In this study, we aim to identify factors that cause adipose tissue to malfunction when it reaches its limit of expansion. We performed lipidomic analyses of human adipose tissue in twin pairs discordant for obesity—that is, one of the twins was lean and one was obese—but still metabolically healthy. We identified multiple changes in membrane phospholipids. Using computer modeling, we show that “lean” and “obese” membrane lipid compositions have the same physical properties despite their different compositions. We hypothesize that this represents allostasis—changes in lipid membrane composition in obesity occur to protect the physical properties of the membranes. However, protective changes cannot occur without a cost, and accordingly we demonstrate that switching to the “obese” lipid composition is associated with higher levels of adipose tissue inflammation. In a separate group of metabolically unhealthy obese individuals we investigated how the processes that regulate the “lean” and “obese” lipid profiles are changed. To determine how these lipid membrane changes are regulated we constructed an in silico network model that identified key control points and potential molecular players. We validated this network by performing genetic manipulations in cell models. Therapeutic targeting of this network may open new opportunities for the prevention or treatment of obesity-related metabolic complications.
doi:10.1371/journal.pbio.1000623
PMCID: PMC3110175  PMID: 21666801
10.  Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance 
Nature medicine  2010;16(9):1001-1008.
Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here, we demonstrate that either whole body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly inhibition of thyroid hormone receptors (TRs) in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation as genetic ablation of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid-hormone-induced modulation of AMPK activity and lipid metabolism in the hypothalamus is an important regulator of energy homeostasis.
doi:10.1038/nm.2207
PMCID: PMC2935934  PMID: 20802499

Results 1-10 (10)