Search tips
Search criteria

Results 1-25 (43)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  A Small Peptide with Potential Ability to Promote Wound Healing 
PLoS ONE  2014;9(3):e92082.
Wound-healing represents a major health burden, such as diabetes-induced skin ulcers and burning. Many works are being tried to find ideal clinical wound-healing biomaterials. Especially, small molecules with low cost and function to promote production of endogenous wound healing agents (i.e. transforming growth factor beta, TGF-β) are excellent candidates. In this study, a small peptide (tiger17, c[WCKPKPKPRCH-NH2]) containing only 11 amino acid residues was designed and proved to be a potent wound healer. It showed strong wound healing-promoting activity in a murine model of full thickness dermal wound. Tiger17 exerted significant effects on three stages of wound healing progresses including (1) the induction of macrophages recruitment to wound site at inflammatory reaction stage; (2) the promotion of the migration and proliferation both keratinocytes and fibroblasts, leading to reepithelialization and granulation tissue formation; and (3) tissue remodeling phase, by promoting the release of transforming TGF-β1 and interleukin 6 (IL-6) in murine macrophages and activating mitogen-activated protein kinases (MAPK) signaling pathways. Considering its easy production, store and transfer and function to promote production of endogenous wound healing agents (TGF-β), tiger17 might be an exciting biomaterial or template for the development of novel wound-healing agents.
PMCID: PMC3960170  PMID: 24647450
2.  Proteomic profiling of the phosphoproteins in the rat thalamus, hippocampus and frontal lobe after propofol anesthesia 
BMC Anesthesiology  2014;14:3.
Propofol is a safe and effective intravenous anesthetic that is widely used for the induction and maintenance of anesthesia during surgery. However, the mechanism by which propofol exerts its anesthetic effect remains unknown. The rapid onset of phosphorylation modifications coincides with that of propofol anesthesia.
Propofol-anesthetized rat models were built and phosphorylated proteins in the thalamus, hippocampus and frontal lobe were enriched the to analyze the changes in these phosphoproteins after propofol anesthesia.
Sixteen of these phosphoprotein spots were successfully identified using MALDI-TOF MS and a subsequent comparative sequence search in the Mascot database. Of these proteins, keratin 18 and the tubulin 2c chain are cytoskeletal proteins; keratin 18 and gelsolin are relevant to alcohol drowsiness. Based on Western blot analysis, we also confirmed that the phosphorylation of these proteins is directly induced by propofol, indicating that propofol anesthesia may be relevant to cytoskeletal proteins and alcohol drowsiness.
These identified propofol-induced phosphorylations of proteins provide meaningful contributions for further studying the anesthetic mechanism of propofol.
PMCID: PMC3922749  PMID: 24410762
2D-gel electrophoresis; Anesthesia; Phosphorylation; Propofol; Rats
3.  Up and down: stamen movements in Ruta graveolens (Rutaceae) enhance both outcrossing and delayed selfing 
Annals of Botany  2012;110(5):1017-1025.
Background and Aims
Stamen movements directly determine pollen fates and mating patterns by altering positions of female and male organs. However, the implications of such movements in terms of pollination are not well understood. Recently, complex patterns of stamen movements have been identified in Loasaceae, Parnassiaceae, Rutaceae and Tropaeolaceae. In this study the stamen movements in Ruta graveolens (Rutaceae) and their impact on pollination are determined.
Pollination effects of stamen movements were studied in Ruta graveolens, in which one-by-one uplifting and falling back is followed by simultaneous movement of all stamens in some flowers. Using 30 flowers, one stamen was manipulated either to be immobilized or to be allowed to move freely towards the centre of the flower but be prevented from falling back. Pollen loads on stigmas and ovule fertilization in flowers with or without simultaneous stamen movement were determined.
Pollen removal decreased dramatically (P < 0·001) when the stamen was stopped from uplifting because its anther was seldom contacted by pollinators. When a stamen stayed at the flower's centre, pollen removal of the next freely moved anther decreased significantly (P < 0·005) because of fewer touches by pollinators and quick leaving of pollinators that were discouraged by the empty anther. Simultaneous stamen movement occurred only in flowers with low pollen load on the stigma and the remaining pollen in anthers dropped onto stigma surfaces after stamens moved to the flower's centre.
In R. graveolens pollen removal is promoted through one-by-one movement of the stamen, which presents pollen in doses to pollinators by successive uplifting of the stamen and avoids interference of two consecutively dehisced anthers by falling back of the former stamen before the next one moves into the flower's centre. Simultaneous stamen movement at the end of anthesis probably reflects an adaptation for late-acting self-pollination.
PMCID: PMC3448434  PMID: 22875813
Dichogamy; experimental manipulation; pollen presentation; pollen removal; pollination; reproductive assurance; Ruta graveolens; stamen movement
4.  MnO Nanoparticle@Mesoporous Carbon Composites Grown on Conducting Substrates Featuring High-performance Lithium-ion Battery, Supercapacitor and Sensor 
Scientific Reports  2013;3:2693.
We demonstrate a facile, two-step coating/calcination approach to grow a uniform MnO nanoparticle@mesoporous carbon (MnO@C) composite on conducting substrates, by direct coating of the Mn-oleate precursor solution without any conducting/binding reagents, and subsequent thermal calcination. The monodispersed, sub-10 nm MnO nanoparticles offer high theoretical energy storage capacities and catalytic properties, and the mesoporous carbon coating allows for enhanced electrolyte transport and charge transfer towards/from MnO surface. In addition, the direct growth and attachment of the MnO@C nanocomposite in the supporting conductive substrates provide much reduced contact resistances and efficient charge transfer. These excellent features allow the use of MnO@C nanocomposites as lithium-ion battery and supercapacitor electrodes for energy storage, with high reversible capacity at large current densities, as well as excellent cycling and mechanical stabilities. Moreover, this MnO@C nanocomposite has also demonstrated a high sensitivity for H2O2 detection, and also exhibited attractive potential for the tumor cell analysis.
PMCID: PMC3776197  PMID: 24045767
5.  Target Inhibition Networks: Predicting Selective Combinations of Druggable Targets to Block Cancer Survival Pathways 
PLoS Computational Biology  2013;9(9):e1003226.
A recent trend in drug development is to identify drug combinations or multi-target agents that effectively modify multiple nodes of disease-associated networks. Such polypharmacological effects may reduce the risk of emerging drug resistance by means of attacking the disease networks through synergistic and synthetic lethal interactions. However, due to the exponentially increasing number of potential drug and target combinations, systematic approaches are needed for prioritizing the most potent multi-target alternatives on a global network level. We took a functional systems pharmacology approach toward the identification of selective target combinations for specific cancer cells by combining large-scale screening data on drug treatment efficacies and drug-target binding affinities. Our model-based prediction approach, named TIMMA, takes advantage of the polypharmacological effects of drugs and infers combinatorial drug efficacies through system-level target inhibition networks. Case studies in MCF-7 and MDA-MB-231 breast cancer and BxPC-3 pancreatic cancer cells demonstrated how the target inhibition modeling allows systematic exploration of functional interactions between drugs and their targets to maximally inhibit multiple survival pathways in a given cancer type. The TIMMA prediction results were experimentally validated by means of systematic siRNA-mediated silencing of the selected targets and their pairwise combinations, showing increased ability to identify not only such druggable kinase targets that are essential for cancer survival either individually or in combination, but also synergistic interactions indicative of non-additive drug efficacies. These system-level analyses were enabled by a novel model construction method utilizing maximization and minimization rules, as well as a model selection algorithm based on sequential forward floating search. Compared with an existing computational solution, TIMMA showed both enhanced prediction accuracies in cross validation as well as significant reduction in computation times. Such cost-effective computational-experimental design strategies have the potential to greatly speed-up the drug testing efforts by prioritizing those interventions and interactions warranting further study in individual cancer cases.
Author Summary
Selective inhibition of specific panels of multiple protein targets provides an unprecedented potential for improving therapeutic efficacy of anticancer agents. We introduce a computational systems pharmacology strategy, which uses the concept of target inhibition networks to predict effective multi-target combinations for treating specific cancer types. The strategy is based on integration of two complementary information sources, drug treatment efficacies and drug-target binding affinities, which are readily available in drug screening labs. Compared to the cancer sequencing efforts, which often result in a huge number of non-targetable genetic alterations, the target combinations from our strategy are druggable, by definition, hence enabling more straightforward translation toward clinically actionable treatment strategies. The model predictions were experimentally validated using siRNA-mediated target silencing screens in three case studies involving MDA-MB-231 and MCF-7 breast cancer and BxPC-3 pancreatic cancer cells. In more general terms, the cancer cell-specific target inhibition networks provided additional insights into the drugs' mechanisms of action, for instance, how the cancer cell survival pathways can be targeted by synergistic and synthetic lethal interactions through multi–target perturbations. These results demonstrate that the principles introduced here offer the possibilities to move toward more systematic prediction and evaluation of the most effective drug target combinations.
PMCID: PMC3772058  PMID: 24068907
6.  A Small Peptide with Therapeutic Potential for Inflammatory Acne Vulgaris 
PLoS ONE  2013;8(8):e72923.
A designed peptide named LZ1 with 15 amino acid residues containing strong antimicrobial activity against bacteria pathogens of acne vulgaris including Propionibacterium acnes, Staphylococcus epidermidis and S. aureus. Especially, it exerted strong anti-P. acnes ability. The minimal inhibitory concentration against three strains of P. acnes was only 0.6 µg/ml, which is 4 times lower than that of clindamycin. In experimental mice skin colonization model, LZ1 significantly reduced the number of P. acnes colonized on the ear, P. acnes-induced ear swelling, and inflammatory cell infiltration. It ameliorated inflammation induced by P. acnes by inhibiting the secretion of inflammatory factors including tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β. LZ1 showed little cytotoxicity on human keratinocyte and hemolytic activity on human blood red cells. Furthermore, LZ1 was very stable in human plasma. Combined with its potential bactericidal and anti-inflammatory properties, simple structure and high stability, LZ1 might be an ideal candidate for the treatment of acne.
PMCID: PMC3755965  PMID: 24013774
7.  3.5D dynamic PET image reconstruction incorporating kinetics-based clusters 
Physics in medicine and biology  2012;57(15):5035-5055.
Standard 3D dynamic PET imaging consists of independent image reconstructions of individual frames followed by application of appropriate kinetic model to the time activity curves (TACs) at the voxel or region-of-interest. The emerging field of 4D PET reconstruction, by contrast, seeks to move beyond this scheme and incorporate information from multiple frames within the image reconstruction task. Here we propose a novel reconstruction framework aiming to enhance quantitative accuracy of parametric images via introduction of priors based on voxel kinetics, as generated via clustering of preliminary reconstructed dynamic images to define clustered neighborhoods of voxels with similar kinetics. This is then followed by straightforward maximum a posterior (MAP) 3D PET reconstruction as applied to individual frames; and as such the method is labeled “3.5D” image reconstruction. The use of cluster-based priors has the advantage of further enhancing quantitative performance in dynamic PET imaging, because: (a) there are typically more voxels in clusters than in conventional local neighborhoods, and (b) neighboring voxels with distinct kinetics are less likely to be clustered together. Using realistic simulated 11C-raclopride dynamic PET data, the quantitative performance of the proposed method was investigated. Parametric distribution-volume (DV) and DV ratio (DVR) images were estimated from dynamic image reconstructions using (a) MLEM, and MAP reconstructions using (b) the quadratic prior (QP-MAP), (c) the Green prior (GP-MAP) and (d, e) two proposed cluster-based priors (CP-U-MAP and CP-W-MAP), followed by graphical modeling, and were qualitatively and quantitatively compared for 11 regions-of-interest (ROIs). Overall, the proposed dynamic PET reconstruction methodology resulted in substantial visual as well as quantitative accuracy improvements (in terms of noise vs. bias performance) for parametric DV and DVR images. The method was also tested on a 90 min 11C-raclopride patient study performed on the high-resolution research tomography. The proposed method was shown to outperform the conventional method in visual as well as quantitative accuracy improvements (in terms of noise vs. regional DVR value performance).
PMCID: PMC3445711  PMID: 22805318
8.  Direct 4D parametric imaging for linearized models of reversibly binding PET tracers using generalized AB-EM reconstruction 
Physics in medicine and biology  2012;57(3):733-755.
Due to high noise levels in the voxel kinetics, development of reliable parametric imaging algorithms remains as one of most active areas in dynamic brain PET imaging, which in the vast majority of cases involves receptor/transporter studies with reversibly binding tracers. As such, the focus of this work has been to develop a novel direct 4D parametric image reconstruction scheme for such tracers. Based on a relative equilibrium (RE) graphical analysis formulation (Zhou et al., 2009b), we developed a closed-form 4D EM algorithm to directly reconstruct distribution volume (DV) parametric images within a plasma input model, as well as DV ratio (DVR) images within a reference tissue model scheme (wherein an initial reconstruction was used to estimate the reference tissue time-activity-curves). A particular challenge with the direct 4D EM formulation is that the intercept parameters in graphical (linearized) analysis of reversible tracers (e.g. Logan or RE analysis) are commonly negative (unlike for irreversible tracers; e.g. using Patlak analysis). Subsequently, we focused our attention on the AB-EM algorithm, derived by Byrne (1998) to allow inclusion of prior information about the lower (A) and upper (B) bounds for image values. We then generalized this algorithm to the 4D EM framework thus allowing negative intercept parameters. Furthermore, our 4D AB-EM algorithm incorporated, and emphasized the use of spatially varying lower bounds to achieve enhanced performance. As validation, the means of parameters estimated from 55 human 11C-raclopride dynamic PET studies were used for extensive simulations using a mathematical brain phantom. Images were reconstructed using conventional indirect as well as proposed direct parametric imaging methods. Noise vs. bias quantitative measurements were performed in various regions of the brain. Direct 4D EM reconstruction resulted in notable qualitative and quantitative accuracy improvements (over 35% noise reduction, with matched bias, in both plasma and reference-tissue input models). Similar improvements were also observed in the coefficient of variation (COV) of the estimated DV and DVR values even for relatively low uptake cortical regions, suggesting the enhanced ability for robust parameter estimation. The method was also tested on a 90-minute 11C- raclopride patient study performed on the high resolution research tomograph (HRRT) wherein the proposed method was shown across a variety of regions to outperform the conventional method in the sense that for a given DVR value improved noise levels were observed.
PMCID: PMC3434225  PMID: 22252120
9.  Malakoplakia of the esophagus caused by human papillomavirus infection 
Malakoplakia is a rare granulomatous disease probably caused by infection and characterized histologically by Michaelis-Gutmann bodies. We report a more rarely seen case esophageal malakoplakia in a 54-year-old woman. She presented with coughing while eating and drinking. Gastroscopy showed yellow nodules in the esophagus, and endoscopic ultrasonography showed a space-occupying lesion in the substratum of the esophageal mucosa. All findings highly resembled esophageal cancer. Histopathological examination finally indentified this space-occupying lesion as malakoplakia and not cancer. Immunohistochemistry showed that she had human papillomavirus (HPV) infection in the esophagus, which indicates that infection was responsible for the malakoplakia. This is believed to be the first case of malakoplakia in the esophagus, and more importantly, we established that HPV infection was the initiator of esophageal malakoplakia.
PMCID: PMC3516212  PMID: 23236248
Malakoplakia; Esophagus; Michaelis-Gutmann bodies; Human papillomavirus infection
10.  Effects of Buyang Huanwu Decoction on Ventricular Remodeling and Differential Protein Profile in a Rat Model of Myocardial Infarction 
Buyang Huanwu decoction (BYHWD) is a well-known and canonical Chinese medicine formula from “Correction on Errors in Medical Classics” in Qing dynasty. Here, we show that BYHWD could alleviate the ventricular remodeling induced by left anterior descending (LAD) artery ligation in rats. BYHWD treatment (18 g/kg/day) decreased heart weight/body weight (HW/BW), left ventricle (LV) dimension at end diastole (LVDd) and increased LV ejection fraction (LVEF) and LV fractional shortening (LVFS) significantly compared to model group at the end of 12 weeks. The collagen volume of BYHWD group was more significantly decreased than that of model group. Proteomic analysis showed that atrial natriuretic factor (ANF) was downregulated; heat shock protein beta-6 (HSPB6) and peroxiredoxin-6 (PRDX6) were upregulated in BYHWD-treated group among successfully identified proteins. The apoptotic index (AI) was reduced by BYHWD accompanied by decreased expression of Bax and caspase 3 activity, increased Bcl-2/Bax ratio, and phosphorylation of HSPB6 compared to that of model group. Taken together, these results suggest that BYHWD can alleviate ventricular remodeling induced by LAD artery ligation. The antiremodeling effects of BYHWD are conferred by decreasing AI through affecting multiple targets including increased Bcl-2/Bax ratio and decreased caspase 3 activity that might be via upregulated PRDX6, phosphorylation of HSPB6 and subsequently reduction of ANF.
PMCID: PMC3459299  PMID: 23049607
11.  Increased apelin serum levels and expression in human chondrocytes in osteoarthritic patients 
International Orthopaedics  2010;35(9):1421-1426.
Apelin is a recently discovered hormone secreted by adipocytes. The aim of this study, therefore, was to evaluate the distribution of apelin in paired serum and synovial fluid (SF) of osteoarthritis (OA) patients, as compared to that in healthy controls, and to characterise the expression profile of apelin and its cognate receptor APJ in human chondrocytes. Apelin levels in serum and SF were analysed by enzyme-linked immunosorbent assay (ELISA). Expression of apelin and APJ in human chondrocytes was determined by real-time quantitative polymerase chain reaction (PCR). Apelin was found to be present in OA SF, and concentrations were positively correlated with the severity of OA. OA serum exhibited significantly elevated levels of apelin (2.18 ± 0.22 ng/ml) as compared to normal serum (1.31 ± 0.12 ng/ml) (p < 0.05), and serum apelin levels exceeded those in paired SF (p < 0.001). The apelin and APJ transcripts were identified in chondrocytes, and levels were significantly higher in OA cartilage than in healthy donors. These findings suggest that apelin may contribute to the onset and/or progression of OA, and may provide new insights into the pathophysiology of OA.
PMCID: PMC3167451  PMID: 20652246
12.  Correction: Research on the Stability of a Rabbit Dry Eye Model Induced by Topical Application of the Preservative Benzalkonium Chloride 
PLoS ONE  2012;7(7):10.1371/annotation/f2df1a21-1df3-4c2d-a99a-b054dfbc6443.
PMCID: PMC3393760
13.  Quantitative study of cardiac motion estimation and abnormality classification in emission computed tomography 
Medical engineering & physics  2011;33(5):563-572.
Quantitative description of cardiac motion is desirable to assist in detecting myocardial abnormalities from gated myocardial perfusion (GMP) emission computed tomography (ECT) images. While “optical flow” type of cardiac motion estimation (ME) techniques have been developed in the past, there has been no quantitative evaluation of their performance. Moreover, no investigation has been performed in terms of applying an ME technique to quantify cardiac motion abnormalities. Using the four-dimensional NCAT beating heart phantom with known built-in motion, the current work aimed at addressing the aforementioned two issues. A three-dimensional cardiac ME technique was developed to search for a motion vector field (MVF) that establishes voxel-by-voxel correspondence between two GMP ECT images. The weighted myocardial strain energy served as the constraint in the process to minimize the difference between one intensity image and the MVF warped other. We studied the convergence of the ME technique using different initial estimates and cost functions. The dependence of estimated MVF on the initialization was attributed to the tangential motion that is undetectable while not suppressed by the strain energy constraint. We optimized the strain energy constraint weighting using noise-free phantom images and noisy reconstructed images, the former against the known MVF and the later in the task of regional motion classification. While the results from the above two studies well coincide with each other, we also demonstrated that upon appropriate optimization the ME method has the capability of serving as a computer motion observer in separating simulated noisy reconstructed GMP SPECT images corresponding to hearts with and without regional motion abnormalities.
PMCID: PMC3095733  PMID: 21269868
14.  A Novel Inhibitor of Human La Protein with Anti-HBV Activity Discovered by Structure-Based Virtual Screening and In Vitro Evaluation 
PLoS ONE  2012;7(4):e36363.
Over 350 million people worldwide are infected with hepatitis B virus (HBV), a major cause of liver failure and hepatocellular carcinoma. Current therapeutic agents are highly effective, but are also associated with development of viral resistance. Therefore, strategies for identifying other anti-HBV agents with specific, but distinctive mechanisms of action are needed. The human La (hLa) protein, which forms a stabilizing complex with HBV RNA ribonucleoprotein to promote HBV replication, is a promising target of molecular therapy.
This study aimed to discover novel inhibitors of hLa that could inhibit HBV replication and expression.
A multistage molecular docking approach was used to screen a Specs database and an in-house library against hLa binding sites. Sequential in vitro evaluations were performed to detect potential compounds with high scores in HepG2.2.15 cells.
Of the 26 potential compounds with high scores chosen for experimental verification, 12 had HBV DNA inhibition ratios of less than 50% with P<0.05. Six had significant inhibition of HBV e antigen (HBeAg) levels, and 13 had significant inhibition of HBV surface antigen (HBsAg) levels by in vitro assays. Compounds HBSC-11, HBSC-15 and HBSC-34 (HBSC is system prefix for active compounds screened by the library) were selected for evaluation. HBSC-11 was found to have an obvious inhibitory effect on hLa transcription and expression.
Our findings suggest that anti-HBV activity of HBSC-11 may be mediated by a reduction in hLa levels. In addition, our data suggest the potential clinical use of hLa inhibitors, such as HBSC-11, for treating HBV infection.
PMCID: PMC3338670  PMID: 22558448
15.  6-Benzoyl-3-hydroxypyrimidine-2,4-diones as Dual Inhibitors of HIV Reverse Transcriptase and Integrase 
N-3-Hydroxylation of pyrimidine-2,4-diones was recently found to yield inhibitors of both HIV-1 reverse transcriptase (RT) and integrase (IN). An extended series of analogues featuring a benzoyl group at the C-6 position of the pyrimidine ring was synthesized. Through biochemical studies it was found that these new analogues are dually active against both RT and IN in low micromolar range. Antiviral assays confirmed that these new inhibitors are active against HIV-1 in cell culture at nanomolar to low micromolar range, further validating 3-hydroxypyrimidine-2,4-diones as a viable scaffold for antiviral development.
PMCID: PMC3070847  PMID: 21392991
HIV; 6-Benzoyl-3-hydroxypyrimidine-2,4-diones; dual inhibitors; reverse transcriptase; integrase
16.  3-Hydroxypyrimidine-2,4-diones as an Inhibitor Scaffold of HIV Integrase 
Journal of medicinal chemistry  2011;54(7):2282-2292.
Integrase (IN) represents a clinically validated target for the development of antivirals against human immunodeficiency virus (HIV). Inhibitors with a novel structure core are essential for combating resistance associated with known IN inhibitors (INIs). We have previously disclosed a novel dual inhibitor scaffold of HIV IN and reverse transcriptase (RT). Here we report the complete structure-activity relationship (SAR), molecular modeling and resistance profile of this inhibitor type on IN inhibition. These studies support an antiviral mechanism of dual inhibition against both IN and RT and validate 3-hydroxypyrimidine-2,4-diones as an IN inhibitor scaffold.
PMCID: PMC3072462  PMID: 21381765
17.  Research on the Stability of a Rabbit Dry Eye Model Induced by Topical Application of the Preservative Benzalkonium Chloride 
PLoS ONE  2012;7(3):e33688.
Dry eye is a common disease worldwide, and animal models are critical for the study of it. At present, there is no research about the stability of the extant animal models, which may have negative implications for previous dry eye studies. In this study, we observed the stability of a rabbit dry eye model induced by the topical benzalkonium chloride (BAC) and determined the valid time of this model.
Methods and Findings
Eighty white rabbits were randomly divided into four groups. One eye from each rabbit was randomly chosen to receive topical 0.1% BAC twice daily for 2 weeks (Group BAC-W2), 3 weeks (Group BAC-W3), 4 weeks (Group BAC-W4), or 5 weeks (Group BAC-W5). Fluorescein staining, Schirmer's tests, and conjunctival impression cytology were performed before BAC treatment (normal) and on days 0, 7, 14 and 21 after BAC removal. The eyeballs were collected at these time points for immunofluorescence staining, hematoxylin and eosin (HE) staining, and electron microscopy. After removing BAC, the signs of dry eye in Group BAC-W2 lasted one week. Compared with normal, there were still significant differences in the results of Schirmer's tests and fluorescein staining in Groups BAC-W3 and BAC-W4 on day 7 (P<0.05) and in Group BAC-W5 on day 14 (P<0.05). Decreases in goblet cell density remained stable in the three experimental groups at all time points (P<0.001). Decreased levels of mucin-5 subtype AC (MUC5AC), along with histopathological and ultrastructural disorders of the cornea and conjunctiva could be observed in Group BAC-W4 and particularly in Group BAC-W5 until day 21.
A stable rabbit dry eye model was induced by topical 0.1% BAC for 5 weeks, and after BAC removal, the signs of dry eye were sustained for 2 weeks (for the mixed type of dry eye) or for at least 3 weeks (for mucin-deficient dry eye).
PMCID: PMC3306287  PMID: 22438984
18.  Overexpression of DNA damage-induced 45 α gene contributes to esophageal squamous cell cancer by promoter hypomethylation 
Environmental factors-induced dysfunction of esophageal squamous epithelium, including genomic DNA impairment and apoptosis, play an important role in the pathogenesis of esophageal squamous cell cancer. DNA damage-induced 45α (GADD45α) has been found promoting DNA repair and removing methylation marker, Therefore, in this study we will investigate whether GADD45α expression is induced and its mechanism in esophageal squamous cell cancer.
Two human esophageal squamous cell lines (ESCC), ECA109 and KYSE510 were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS). Lipofectamine 2000 was used to transfect cells. mRNA level of GADD45α was measured by reverse transcription-quantitive PCR (RT-qPCR), protein level of GADD45α was detected by western blot and Immunohistochemistry. Global DNA methylation of tissue sample was measured using the Methylamp Global DNA Methylation Quantification Ultra kit (Epigentek Group) and promoter methylation was measured by bisulfite sequencing.
GADD45a mRNA and protein levels were increased significantly in tumor tissue than that in adjacent normal tissue. Hypomethylation of global genomic DNA and GADD45α promoter were found in ESCC. The cell sensitivity to Cisplatin DDP was decreased significantly in Eca109 and Kyse510 cells, in which GADD45α expression was down-regulated by RNA interference (RNAi). In addition, silence of GADD45a expression in ESCC cells inhibited proliferation and promoted apoptosis.
Overexpression of GADD45α gene is due to DNA hypomethylation in ESCC. GADD45α may be a protective factor in DDP chemotherapy for esophageal squamous cell carcinoma.
PMCID: PMC3364148  PMID: 22313682
Esophageal squamous cell cancer; GADD45α; DNA methylation; DNA damage
19.  Engineering the First Chimeric Antibody in Targeting Intracellular PRL-3 Oncoprotein for Cancer Therapy in Mice 
Oncotarget  2012;3(2):158-171.
Antibodies are considered as ‘magic bullets’ because of their high specificity. It is believed that antibodies are too large to routinely enter the cytosol, thus antibody therapeutic approach has been limited to extracellular or secreted proteins expressed by cancer cells. However, many oncogenic proteins are localized within the cell. To explore the possibility of antibody therapies against intracellular targets, we generated a chimeric antibody targeting the intracellular PRL-3 oncoprotein to assess its antitumor activities in mice. Remarkably, we observed that the PRL-3 chimeric antibody could efficiently and specifically reduce the formation of PRL-3 expressing metastatic tumors. We further found that natural killer (NK) cells were important in mediating the therapeutic effect, which was only observed in a nude mouse model (T-cell deficient), but not in a Severe Combined Immunodeficiency’ (scid) mouse model (B- and T-cell deficient), indicating the anticancer effect also depends on host B-cell activity. Our study involving 377 nude and scid mice suggests that antibodies targeting intracellular proteins can be developed to treat cancer.
PMCID: PMC3326646  PMID: 22374986
PRL-3 monoclonal antibody; PRL-3 mouse/human chimeric antibody; antibody therapy; intracellular oncoprotein
20.  Phospholipids and insulin resistance in psychosis: a lipidomics study of twin pairs discordant for schizophrenia 
Genome Medicine  2012;4(1):1.
Several theories have been proposed to conceptualize the pathological processes inherent to schizophrenia. The 'prostaglandin deficiency' hypothesis postulates that defective enzyme systems converting essential fatty acids to prostaglandins lead to diminished levels of prostaglandins, which in turn affect synaptic transmission.
Here we sought to determine the lipidomic profiles associated with schizophrenia in twin pairs discordant for schizophrenia as well as unaffected twin pairs. The study included serum samples from 19 twin pairs discordant for schizophrenia (mean age 51 ± 10 years; 7 monozygotic pairs; 13 female pairs) and 34 age and gender matched healthy twins as controls. Neurocognitive assessment data and gray matter density measurements taken from high-resolution magnetic resonance images were also obtained. A lipidomics platform using ultra performance liquid chromatography coupled to time-of-flight mass spectrometry was applied for the analysis of serum samples.
In comparison to their healthy co-twins, the patients had elevated triglycerides and were more insulin resistant. They had diminished lysophosphatidylcholine levels, which associated with decreased cognitive speed.
Our findings may be of pathophysiological relevance since lysophosphatidylcholines, byproducts of phospholipase A2-catalyzed phospholipid hydrolysis, are preferred carriers of polyunsaturated fatty acids across the blood-brain barrier. Furthermore, diminishment of lysophosphatidylcholines suggests that subjects at risk of schizophrenia may be more susceptible to infections. Their association with cognitive speed supports the view that altered neurotransmission in schizophrenia may be in part mediated by reactive lipids such as prostaglandins.
PMCID: PMC3334549  PMID: 22257447
21.  N-3 Hydroxylation of Pyrimidine-2,4-diones Yields Dual Inhibitors of HIV Reverse Transcriptase and Integrase 
A new molecular scaffold featuring an N-hydroxyimide functionality and capable of inhibiting both reverse transcriptase (RT) and integrase (IN) of Human Immunodeficiency Virus (HIV) was rationally designed based on 1-[(2-hydroxyethoxy) methyl]-6-(phenylthio)-thymine (HEPT) non-nucleoside RT inhibitors (NNRTIs). The design involves a minimal 3-N hydroxylation of the pyrimidine ring of HEPT compound to yield a chelating triad which, along with the existing benzyl group, appeared to satisfy major structural requirements for IN binding. In the mean time, this chemical modification did not severely compromise the compound’s ability to inhibit RT. A preliminary structure-activity-relationship (SAR) study reveals that this N-3 OH is essential for IN inhibition and that the benzyl group on N-1 side chain is more important for IN binding than the one on C-6.
PMCID: PMC3074239  PMID: 21499541
HIV; integrase; reverse transcriptase; dual inhibitor; rational design
22.  Propofol Inhibits the Activation of p38 through Up-Regulating the Expression of Annexin A1 to Exert Its Anti-Inflammation Effect 
PLoS ONE  2011;6(12):e27890.
Inflammatory response is a kind of nonspecific immune response, with the central link of vascular response, which is mainly manifested by changes in neutrophils and vascular endothelial cells. In recent years, the in vivo and in vitro role of intravenous anesthetic propofol in inhibiting inflammatory response has been attracting more and more attention, but the anti-inflammatory mechanisms of propofol for mononuclear cells still remain undefined. In this study, proteomics analysis was applied to investigate protein expression profile changes in serum mononuclear cells following intervention of rats with endotoxemia using propofol. After two-dimensional electrophoresis and mass spectrometric identification, it has been found that the protein Annexin A1 was up-regulated in the propofol intervention group. Annexin A1 is a glucocorticoid-dependent anti-inflammatory protein. After detection using ELISA and Western blot assays, it has also been found that propofol can not only promote the expression of Annexin A1, but also inhibit the phosphorylation level of p38 and release of inflammatory factors (IL-1β, IL-6 and TNF-α) in rats with endotoxemia. In order to further determine the role of up-regulated expression of Annexin A1 in anti-inflammation of propofol, this gene was silenced in vitro in human THP-1 cells, to detect the phosphorylation status of p38 and release of inflammatory factors. The results show that Annexin A1 can negatively regulate phosphorylation of p38 and release of IL-1β, IL-6 and TNF-α in THP-1 cells following propofol intervention and lipopolysaccharide (LPS) stimulation. Our results clearly indicate that propofol can up-regulate Annexin A1 to inhibit the phosphorylation level of p38 and release of IL-1β, IL-6 and TNF-α, so as to inhibit inflammatory response. Therefore, it can be speculated that Annexin A1 might be the key signaling protein in the in vivo and in vitro anti-inflammatory mechanisms of propofol.
PMCID: PMC3229486  PMID: 22164217
23.  Hypertonic/hyperoncotic solution attenuate blood-brain barrier breakdown and brain pathology in whole body hyperthermia rats 
This study was designed to investigate the effects of hypertonic/hyperoncotic solution on blood-brain barrier damage, brain edema and morphological changes of rats during whole body hyperthermia. 90 adult male Sprague-Dawley rats were randomized into 5 groups: Control group (a room temperature for 4 hours); Whole body hyperthermia group without solution treatment; Whole body hyperthermia group with Ringer's solution treatment; Whole body hyperthermia group with hydroxyethyl starch and Ringer's solution treatment; Whole body hyperthermia group with Hypertonic/hyperoncotic solution treatment. All rats except those of control group were housed in a heated container and maintained at 36°C for 3 hours until the rectal temperature reached 41-42°C. Corresponding solutions were administered intravenously at the beginning of whole body hyperthermia within 30 minutes as designed. Following whole body hyperthermia, rats were subsequently cooled down for 1h. Evans blue was administered intravenously when the rectal temperature was cooled down to 37°C. The leakage of Evans blue-albumin and water content of brain were calculated and morphological changes were investigated. In group with hypertonic/hyperoncotic solution treatment, brain water content and the leakage of Evans blue-albumin were the lowest among the four whole body hyperthermia groups. Compared with the other three whole body hyperthermia groups, in which profound to moderate damages to blood-brain barrier and brain tissue and cells were found, there were only slight morphological changes in the group with hypertonic/hyperoncotic solutionon treatment. Treatment with hypertonic/hyperoncotic solution appeared to attenuate the injury to blood-brain barrier and reduce brain edema and cell morphological changes in whole body hyperthermia rats.
PMCID: PMC3228583  PMID: 22140599
Whole body hyperthermia; hypertonic/hyperoncotic solution; brain morphological changes; brain edema; blood-brain barrier
24.  Association of Lipidome Remodeling in the Adipocyte Membrane with Acquired Obesity in Humans 
PLoS Biology  2011;9(6):e1000623.
The authors describe a new approach to studying cellular lipid profiles and propose a compensatory mechanism that may help maintain the normal membrane function of adipocytes in the context of obesity.
Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved states of obesity by investigating a separated set of individuals considered to be morbidly obese. Despite lower dietary polyunsaturated fatty acid intake, the obese twin individuals had increased proportions of palmitoleic and arachidonic acids in their adipose tissue, including increased levels of ethanolamine plasmalogens containing arachidonic acid. Information gathered from these experimental groups was used for molecular dynamics simulations of lipid bilayers combined with dependency network analysis of combined clinical, lipidomics, and gene expression data. The simulations suggested that the observed lipid remodeling maintains the biophysical properties of lipid membranes, at the price, however, of increasing their vulnerability to inflammation. Conversely, in morbidly obese subjects, the proportion of plasmalogens containing arachidonic acid in the adipose tissue was markedly decreased. We also show by in vitro Elovl6 knockdown that the lipid network regulating the observed remodeling may be amenable to genetic modulation. Together, our novel approach suggests a physiological mechanism by which adaptation of adipocyte membranes to adipose tissue expansion associates with positive energy balance, potentially leading to higher vulnerability to inflammation in acquired obesity. Further studies will be needed to determine the cause of this effect.
Author Summary
Obesity is characterized by excess body fat, which is predominantly stored in the adipose tissue. When adipose tissue expands too much it stops storing lipid appropriately. The excess lipid accumulates in organs such as muscle, liver, and pancreas, causing metabolic disease. In this study, we aim to identify factors that cause adipose tissue to malfunction when it reaches its limit of expansion. We performed lipidomic analyses of human adipose tissue in twin pairs discordant for obesity—that is, one of the twins was lean and one was obese—but still metabolically healthy. We identified multiple changes in membrane phospholipids. Using computer modeling, we show that “lean” and “obese” membrane lipid compositions have the same physical properties despite their different compositions. We hypothesize that this represents allostasis—changes in lipid membrane composition in obesity occur to protect the physical properties of the membranes. However, protective changes cannot occur without a cost, and accordingly we demonstrate that switching to the “obese” lipid composition is associated with higher levels of adipose tissue inflammation. In a separate group of metabolically unhealthy obese individuals we investigated how the processes that regulate the “lean” and “obese” lipid profiles are changed. To determine how these lipid membrane changes are regulated we constructed an in silico network model that identified key control points and potential molecular players. We validated this network by performing genetic manipulations in cell models. Therapeutic targeting of this network may open new opportunities for the prevention or treatment of obesity-related metabolic complications.
PMCID: PMC3110175  PMID: 21666801
25.  Bayesian PET image reconstruction incorporating anato-functional joint entropy 
Physics in medicine and biology  2009;54(23):7063-7075.
We developed a maximum a posterior (MAP) reconstruction method for positron emission tomography (PET) image reconstruction incorporating magnetic resonance (MR) image information, with the joint entropy between the PET and MR image features serving as the regularization constraint. A non-parametric method was used to estimate the joint probability density of the PET and MR images. Using realistically simulated PET and MR human brain phantoms, the quantitative performance of the proposed algorithm was investigated. Incorporation of the anatomic information via this technique, after parameter optimization, was seen to dramatically improve the noise versus bias tradeoff in every region of interest, compared to the result from using conventional MAP reconstruction. In particular, hot lesions in the FDG PET image, which had no anatomical correspondence in the MR image, also had improved contrast versus noise tradeoff.
PMCID: PMC3104509  PMID: 19904028

Results 1-25 (43)