Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Selective effect of cell membrane on synaptic neurotransmission 
Scientific Reports  2016;6:19345.
Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic membrane surface whenever the ligand-binding sites of their synaptic receptors are buried in the lipid bilayer. In contrast, NTs that have extracellular ligand-binding sites do not have a similar tendency to adhere to the membrane surface. This finding is a seemingly simple yet important addition to the paradigm of neurotransmission, essentially dividing it into membrane-independent and membrane-dependent mechanisms. Moreover, the simulations also indicate that the lipid composition especially in terms of charged lipids can affect the membrane partitioning of NTs. The revised paradigm, highlighting the importance of cell membrane and specific lipids for neurotransmission, should to be of interest to neuroscientists, drug industry and the general public alike.
PMCID: PMC4725992  PMID: 26782980
2.  Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions† 
The Journal of Physical Chemistry. B  2015;119(49):15075-15088.
Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C–H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P–N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files ( has become the most extensive publicly available collection of molecular dynamics simulation trajectories of lipid bilayers.
PMCID: PMC4677354  PMID: 26509669
3.  Topologies, structures and parameter files for lipid simulations in GROMACS with the OPLS-aa force field: DPPC, POPC, DOPC, PEPC, and cholesterol 
Data in Brief  2015;5:333-336.
In this data article we provide topologies and force field parameters files for molecular dynamics simulations of lipids in the OPLS-aa force field using the GROMACS package. This is the first systematic parameterization of lipid molecules in this force field. Topologies are provided for four phosphatidylcholines: saturated DPPC, mono-cis unsaturated POPC and DOPC, and mono-trans unsaturated PEPC. Parameterization of the phosphatidylcholines was achieved in two steps: first, we supplemented the OPLS force field parameters for DPPC with new parameters for torsion angles and van der Waals parameters for the carbon and hydrogen atoms in the acyl chains, as well as new partial atomic charges and parameters for torsion angles in the phosphatidylcholine and glycerol moieties [1]. Next, we derived parameters for the cis and trans double bonds and the neighboring them single bonds [2]. Additionally, we provide GROMACS input files with parameters describing simulation conditions (md.mdp), which are strongly recommended to be used with these lipids models. The data are associated with the research article “Cis and trans unsaturated phosphatidylcholine bilayers: a molecular dynamics simulation study” [2] and provided as supporting materials.
PMCID: PMC4602361  PMID: 26568975
4.  Sec14-nodulin proteins and the patterning of phosphoinositide landmarks for developmental control of membrane morphogenesis 
Molecular Biology of the Cell  2015;26(9):1764-1781.
A Sec14-nodulin protein model is used to identify the nodulin domain as a novel phosphoinositide effector module with a role in controlling lateral organization of phosphoinositide. The domain organization of Sec14-nodulin proteins suggests a versatile principle for the bit mapping of membrane surfaces into high-definition lipid-signaling screens.
Polarized membrane morphogenesis is a fundamental activity of eukaryotic cells. This process is essential for the biology of cells and tissues, and its execution demands exquisite temporal coordination of functionally diverse membrane signaling reactions with high spatial resolution. Moreover, mechanisms must exist to establish and preserve such organization in the face of randomizing forces that would diffuse it. Here we identify the conserved AtSfh1 Sec14-nodulin protein as a novel effector of phosphoinositide signaling in the extreme polarized membrane growth program exhibited by growing Arabidopsis root hairs. The data are consistent with Sec14-nodulin proteins controlling the lateral organization of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) landmarks for polarized membrane morphogenesis in plants. This patterning activity requires both the PtdIns(4,5)P2 binding and homo-oligomerization activities of the AtSfh1 nodulin domain and is an essential aspect of the polarity signaling program in root hairs. Finally, the data suggest a general principle for how the phosphoinositide signaling landscape is physically bit mapped so that eukaryotic cells are able to convert a membrane surface into a high-definition lipid-signaling screen.
PMCID: PMC4436786  PMID: 25739452
5.  Building Synthetic Sterols Computationally – Unlocking the Secrets of Evolution? 
Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent on cholesterol. Practical applications of cholesterol include its use in liposomes in drug delivery and cosmetics, cholesterol-based detergents in membrane protein crystallography, its fluorescent analogs in studies of cholesterol transport in cells and tissues, etc. Clearly, in spite of their difficult synthesis, producing the synthetic analogs of cholesterol is of great commercial and scientific interest. In this article, we discuss how synthetic sterols non-existent in nature can be used to elucidate the roles of cholesterol’s structural elements. To this end, we discuss recent atomistic molecular dynamics simulation studies that have predicted new synthetic sterols with properties comparable to those of cholesterol. We also discuss more recent experimental studies that have vindicated these predictions. The paper highlights the strength of computational simulations in making predictions for synthetic biology, thereby guiding experiments.
PMCID: PMC4543873  PMID: 26347865
cholesterol; synthetic sterol; computer simulation; molecular dynamics simulation
6.  Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals 
PLoS ONE  2014;9(12):e114490.
In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.
PMCID: PMC4256445  PMID: 25473947
7.  Cholesterol level affects surface charge of lipid membranes in saline solution 
Scientific Reports  2014;4:5005.
Cholesterol is an important component of all biological membranes as well as drug delivery liposomes. We show here that increasing the level of cholesterol in a phospholipid membrane decreases surface charge in the physiological environment. Through molecular dynamics simulation we have shown that increasing the level of cholesterol decreases Na+ ion binding. Complementary experimental ζ – potential measurements have shown a decreased ζ – potential with increasing cholesterol content, indicative of reduced surface charge. Both experiments and simulations have been carried out on both saturated 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and monounsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes. This result is particularly important because membrane surface charge plays an important role in the interactions of biomembranes with peripheral membrane proteins and drug delivery liposomes with the immune system.
PMCID: PMC4028897  PMID: 24845659
8.  Association of Lipidome Remodeling in the Adipocyte Membrane with Acquired Obesity in Humans 
PLoS Biology  2011;9(6):e1000623.
The authors describe a new approach to studying cellular lipid profiles and propose a compensatory mechanism that may help maintain the normal membrane function of adipocytes in the context of obesity.
Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved states of obesity by investigating a separated set of individuals considered to be morbidly obese. Despite lower dietary polyunsaturated fatty acid intake, the obese twin individuals had increased proportions of palmitoleic and arachidonic acids in their adipose tissue, including increased levels of ethanolamine plasmalogens containing arachidonic acid. Information gathered from these experimental groups was used for molecular dynamics simulations of lipid bilayers combined with dependency network analysis of combined clinical, lipidomics, and gene expression data. The simulations suggested that the observed lipid remodeling maintains the biophysical properties of lipid membranes, at the price, however, of increasing their vulnerability to inflammation. Conversely, in morbidly obese subjects, the proportion of plasmalogens containing arachidonic acid in the adipose tissue was markedly decreased. We also show by in vitro Elovl6 knockdown that the lipid network regulating the observed remodeling may be amenable to genetic modulation. Together, our novel approach suggests a physiological mechanism by which adaptation of adipocyte membranes to adipose tissue expansion associates with positive energy balance, potentially leading to higher vulnerability to inflammation in acquired obesity. Further studies will be needed to determine the cause of this effect.
Author Summary
Obesity is characterized by excess body fat, which is predominantly stored in the adipose tissue. When adipose tissue expands too much it stops storing lipid appropriately. The excess lipid accumulates in organs such as muscle, liver, and pancreas, causing metabolic disease. In this study, we aim to identify factors that cause adipose tissue to malfunction when it reaches its limit of expansion. We performed lipidomic analyses of human adipose tissue in twin pairs discordant for obesity—that is, one of the twins was lean and one was obese—but still metabolically healthy. We identified multiple changes in membrane phospholipids. Using computer modeling, we show that “lean” and “obese” membrane lipid compositions have the same physical properties despite their different compositions. We hypothesize that this represents allostasis—changes in lipid membrane composition in obesity occur to protect the physical properties of the membranes. However, protective changes cannot occur without a cost, and accordingly we demonstrate that switching to the “obese” lipid composition is associated with higher levels of adipose tissue inflammation. In a separate group of metabolically unhealthy obese individuals we investigated how the processes that regulate the “lean” and “obese” lipid profiles are changed. To determine how these lipid membrane changes are regulated we constructed an in silico network model that identified key control points and potential molecular players. We validated this network by performing genetic manipulations in cell models. Therapeutic targeting of this network may open new opportunities for the prevention or treatment of obesity-related metabolic complications.
PMCID: PMC3110175  PMID: 21666801
9.  Cholesterol Induces Specific Spatial and Orientational Order in Cholesterol/Phospholipid Membranes 
PLoS ONE  2010;5(6):e11162.
In lipid bilayers, cholesterol facilitates the formation of the liquid-ordered phase and enables the formation of laterally ordered structures such as lipid rafts. While these domains have an important role in a variety of cellular processes, the precise atomic-level mechanisms responsible for cholesterol's specific ordering and packing capability have remained unresolved.
Methodology/Principal Findings
Our atomic-scale molecular dynamics simulations reveal that this ordering and the associated packing effects in membranes largely result from cholesterol's molecular structure, which differentiates cholesterol from other sterols. We find that cholesterol molecules prefer to be located in the second coordination shell, avoiding direct cholesterol-cholesterol contacts, and form a three-fold symmetric arrangement with proximal cholesterol molecules. At larger distances, the lateral three-fold organization is broken by thermal fluctuations. For other sterols having less structural asymmetry, the three-fold arrangement is considerably lost.
We conclude that cholesterol molecules act collectively in lipid membranes. This is the main reason why the liquid-ordered phase only emerges for Chol concentrations well above 10 mol% where the collective self-organization of Chol molecules emerges spontaneously. The collective ordering process requires specific molecular-scale features that explain why different sterols have very different membrane ordering properties: the three-fold symmetry in the Chol-Chol organization arises from the cholesterol off-plane methyl groups allowing the identification of raft-promoting sterols from those that do not promote rafts.
PMCID: PMC2887443  PMID: 20567600

Results 1-9 (9)