PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (82)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  A Genome-Wide Association Study of Monozygotic Twin-Pairs Suggests a Locus Related to Variability of Serum High-Density Lipoprotein Cholesterol 
Genome-wide association analysis on monozygotic twin pairs offers a route to discovery of gene–environment interactions through testing for variability loci associated with sensitivity to individual environment/lifestyle. We present a genome-wide scan of loci associated with intra-pair differences in serum lipid and apolipoprotein levels. We report data for 1,720 monozygotic female twin pairs from GenomEUtwin project with 2.5 million SNPs, imputed or genotyped, and measured serum lipid fractions for both twins. We found one locus associated with intra-pair differences in high density lipoprotein (HDL) cholesterol, rs2483058 in an intron of SRGAP2, where twins carrying the C allele are more sensitive to environmental factors (p = 3.98 × 10−8). We followed up the association in further genotyped monozygotic twins (N = 1 261) which showed a moderate association for the variant (p = .002, same direction of an effect). In addition, we report a new association on the level of apolipoprotein A-II (p = 4.03 × 10−8).
doi:10.1017/thg.2012.63
PMCID: PMC4333218  PMID: 23031429
twins; association; lipids; apolipoproteins; interaction
2.  Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization 
Arking, Dan E. | Pulit, Sara L. | Crotti, Lia | van der Harst, Pim | Munroe, Patricia B. | Koopmann, Tamara T. | Sotoodehnia, Nona | Rossin, Elizabeth J. | Morley, Michael | Wang, Xinchen | Johnson, Andrew D. | Lundby, Alicia | Gudbjartsson, Daníel F. | Noseworthy, Peter A. | Eijgelsheim, Mark | Bradford, Yuki | Tarasov, Kirill V. | Dörr, Marcus | Müller-Nurasyid, Martina | Lahtinen, Annukka M. | Nolte, Ilja M. | Smith, Albert Vernon | Bis, Joshua C. | Isaacs, Aaron | Newhouse, Stephen J. | Evans, Daniel S. | Post, Wendy S. | Waggott, Daryl | Lyytikäinen, Leo-Pekka | Hicks, Andrew A. | Eisele, Lewin | Ellinghaus, David | Hayward, Caroline | Navarro, Pau | Ulivi, Sheila | Tanaka, Toshiko | Tester, David J. | Chatel, Stéphanie | Gustafsson, Stefan | Kumari, Meena | Morris, Richard W. | Naluai, Åsa T. | Padmanabhan, Sandosh | Kluttig, Alexander | Strohmer, Bernhard | Panayiotou, Andrie G. | Torres, Maria | Knoflach, Michael | Hubacek, Jaroslav A. | Slowikowski, Kamil | Raychaudhuri, Soumya | Kumar, Runjun D. | Harris, Tamara B. | Launer, Lenore J. | Shuldiner, Alan R. | Alonso, Alvaro | Bader, Joel S. | Ehret, Georg | Huang, Hailiang | Kao, W.H. Linda | Strait, James B. | Macfarlane, Peter W. | Brown, Morris | Caulfield, Mark J. | Samani, Nilesh J. | Kronenberg, Florian | Willeit, Johann | Smith, J. Gustav | Greiser, Karin H. | zu Schwabedissen, Henriette Meyer | Werdan, Karl | Carella, Massimo | Zelante, Leopoldo | Heckbert, Susan R. | Psaty, Bruce M. | Rotter, Jerome I. | Kolcic, Ivana | Polašek, Ozren | Wright, Alan F. | Griffin, Maura | Daly, Mark J. | Arnar, David O. | Hólm, Hilma | Thorsteinsdottir, Unnur | Denny, Joshua C. | Roden, Dan M. | Zuvich, Rebecca L. | Emilsson, Valur | Plump, Andrew S. | Larson, Martin G. | O'Donnell, Christopher J. | Yin, Xiaoyan | Bobbo, Marco | D'Adamo, Adamo P. | Iorio, Annamaria | Sinagra, Gianfranco | Carracedo, Angel | Cummings, Steven R. | Nalls, Michael A. | Jula, Antti | Kontula, Kimmo K. | Marjamaa, Annukka | Oikarinen, Lasse | Perola, Markus | Porthan, Kimmo | Erbel, Raimund | Hoffmann, Per | Jöckel, Karl-Heinz | Kälsch, Hagen | Nöthen, Markus M. | consortium, HRGEN | den Hoed, Marcel | Loos, Ruth J.F. | Thelle, Dag S. | Gieger, Christian | Meitinger, Thomas | Perz, Siegfried | Peters, Annette | Prucha, Hanna | Sinner, Moritz F. | Waldenberger, Melanie | de Boer, Rudolf A. | Franke, Lude | van der Vleuten, Pieter A. | Beckmann, Britt Maria | Martens, Eimo | Bardai, Abdennasser | Hofman, Nynke | Wilde, Arthur A.M. | Behr, Elijah R. | Dalageorgou, Chrysoula | Giudicessi, John R. | Medeiros-Domingo, Argelia | Barc, Julien | Kyndt, Florence | Probst, Vincent | Ghidoni, Alice | Insolia, Roberto | Hamilton, Robert M. | Scherer, Stephen W. | Brandimarto, Jeffrey | Margulies, Kenneth | Moravec, Christine E. | Fabiola Del, Greco M. | Fuchsberger, Christian | O'Connell, Jeffrey R. | Lee, Wai K. | Watt, Graham C.M. | Campbell, Harry | Wild, Sarah H. | El Mokhtari, Nour E. | Frey, Norbert | Asselbergs, Folkert W. | Leach, Irene Mateo | Navis, Gerjan | van den Berg, Maarten P. | van Veldhuisen, Dirk J. | Kellis, Manolis | Krijthe, Bouwe P. | Franco, Oscar H. | Hofman, Albert | Kors, Jan A. | Uitterlinden, André G. | Witteman, Jacqueline C.M. | Kedenko, Lyudmyla | Lamina, Claudia | Oostra, Ben A. | Abecasis, Gonçalo R. | Lakatta, Edward G. | Mulas, Antonella | Orrú, Marco | Schlessinger, David | Uda, Manuela | Markus, Marcello R.P. | Völker, Uwe | Snieder, Harold | Spector, Timothy D. | Ärnlöv, Johan | Lind, Lars | Sundström, Johan | Syvänen, Ann-Christine | Kivimaki, Mika | Kähönen, Mika | Mononen, Nina | Raitakari, Olli T. | Viikari, Jorma S. | Adamkova, Vera | Kiechl, Stefan | Brion, Maria | Nicolaides, Andrew N. | Paulweber, Bernhard | Haerting, Johannes | Dominiczak, Anna F. | Nyberg, Fredrik | Whincup, Peter H. | Hingorani, Aroon | Schott, Jean-Jacques | Bezzina, Connie R. | Ingelsson, Erik | Ferrucci, Luigi | Gasparini, Paolo | Wilson, James F. | Rudan, Igor | Franke, Andre | Mühleisen, Thomas W. | Pramstaller, Peter P. | Lehtimäki, Terho J. | Paterson, Andrew D. | Parsa, Afshin | Liu, Yongmei | van Duijn, Cornelia | Siscovick, David S. | Gudnason, Vilmundur | Jamshidi, Yalda | Salomaa, Veikko | Felix, Stephan B. | Sanna, Serena | Ritchie, Marylyn D. | Stricker, Bruno H. | Stefansson, Kari | Boyer, Laurie A. | Cappola, Thomas P. | Olsen, Jesper V. | Lage, Kasper | Schwartz, Peter J. | Kääb, Stefan | Chakravarti, Aravinda | Ackerman, Michael J. | Pfeufer, Arne | de Bakker, Paul I.W. | Newton-Cheh, Christopher
Nature genetics  2014;46(8):826-836.
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal Mendelian Long QT Syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals we identified 35 common variant QT interval loci, that collectively explain ∼8-10% of QT variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 novel QT loci in 298 unrelated LQTS probands identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode for proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies novel candidate genes for ventricular arrhythmias, LQTS,and SCD.
doi:10.1038/ng.3014
PMCID: PMC4124521  PMID: 24952745
genome-wide association study; QT interval; Long QT Syndrome; sudden cardiac death; myocardial repolarization; arrhythmias
3.  Genetic Variation on the BAT1-NFKBIL1-LTA Region of Major Histocompatibility Complex Class III Associates with Periodontitis 
Infection and Immunity  2014;82(5):1939-1948.
Periodontitis is a chronic inflammatory disease with a multifactorial etiology. We investigated whether human major histocompatibility complex (MHC) polymorphisms (6p21.3) are associated with periodontal parameters. Parogene 1 population samples (n = 169) were analyzed with 13,245 single nucleotide polymorphisms (SNPs) of the MHC region. Eighteen selected SNPs (P ≤ 0.001) were replicated in Parogene 2 population samples (n = 339) and the Health 2000 Survey (n = 1,420). All subjects had a detailed clinical and radiographic oral health examination. Serum lymphotoxin-α (LTA) concentrations were measured in the Parogene populations, and the protein was detected in inflamed periodontal tissue. In the Parogene 1 population, 10 SNPs were associated with periodontal parameters. The strongest associations emerged from the parameters bleeding on probing (BOP) and a probing pocket depth (PPD) of ≥6 mm with the genes BAT1, NFKBIL1, and LTA. Six SNPs, rs11796, rs3130059, rs2239527, rs2071591, rs909253, and rs1041981 (r2, ≥0.92), constituted a risk haplotype. In the Parogene 1 population, the haplotype had the strongest association with the parameter BOP, a PPD of ≥6 mm, and severe periodontitis with odds ratios (95% confidence intervals) of 2.63 (2.21 to 3.20), 2.90 (2.37 to 3.52), and 3.10 (1.63 to 5.98), respectively. These results were replicated in the other two populations. High serum LTA concentrations in the Parogene population were associated with the periodontitis risk alleles of the LTA SNPs (rs909253 and rs1041981) of the haplotype. In addition, the protein was expressed in inflamed gingival connective tissue. We identified a novel BAT1-NFKBIL1-LTA haplotype as a significant contributor to the risk of periodontitis. The genetic polymorphisms in the MHC class III region may be functionally important in periodontitis susceptibility.
doi:10.1128/IAI.01681-13
PMCID: PMC3993418  PMID: 24566624
4.  DataSHIELD: taking the analysis to the data, not the data to the analysis 
Background: Research in modern biomedicine and social science requires sample sizes so large that they can often only be achieved through a pooled co-analysis of data from several studies. But the pooling of information from individuals in a central database that may be queried by researchers raises important ethico-legal questions and can be controversial. In the UK this has been highlighted by recent debate and controversy relating to the UK’s proposed ‘care.data’ initiative, and these issues reflect important societal and professional concerns about privacy, confidentiality and intellectual property. DataSHIELD provides a novel technological solution that can circumvent some of the most basic challenges in facilitating the access of researchers and other healthcare professionals to individual-level data.
Methods: Commands are sent from a central analysis computer (AC) to several data computers (DCs) storing the data to be co-analysed. The data sets are analysed simultaneously but in parallel. The separate parallelized analyses are linked by non-disclosive summary statistics and commands transmitted back and forth between the DCs and the AC. This paper describes the technical implementation of DataSHIELD using a modified R statistical environment linked to an Opal database deployed behind the computer firewall of each DC. Analysis is controlled through a standard R environment at the AC.
Results: Based on this Opal/R implementation, DataSHIELD is currently used by the Healthy Obese Project and the Environmental Core Project (BioSHaRE-EU) for the federated analysis of 10 data sets across eight European countries, and this illustrates the opportunities and challenges presented by the DataSHIELD approach.
Conclusions: DataSHIELD facilitates important research in settings where: (i) a co-analysis of individual-level data from several studies is scientifically necessary but governance restrictions prohibit the release or sharing of some of the required data, and/or render data access unacceptably slow; (ii) a research group (e.g. in a developing nation) is particularly vulnerable to loss of intellectual property—the researchers want to fully share the information held in their data with national and international collaborators, but do not wish to hand over the physical data themselves; and (iii) a data set is to be included in an individual-level co-analysis but the physical size of the data precludes direct transfer to a new site for analysis.
doi:10.1093/ije/dyu188
PMCID: PMC4276062  PMID: 25261970
DataSHIELD; pooled analysis; ELSI; privacy; confidentiality; disclosure; distributed computing; intellectual property; bioinformatics
5.  Neolithic dairy farming at the extreme of agriculture in northern Europe 
The conventional ‘Neolithic package’ comprised animals and plants originally domesticated in the Near East. As farming spread on a generally northwest trajectory across Europe, early pastoralists would have been faced with the challenge of making farming viable in regions in which the organisms were poorly adapted to providing optimal yields or even surviving. Hence, it has long been debated whether Neolithic economies were ever established at the modern limits of agriculture. Here, we examine food residues in pottery, testing a hypothesis that Neolithic farming was practiced beyond the 60th parallel north. Our findings, based on diagnostic biomarker lipids and δ13C values of preserved fatty acids, reveal a transition at ca 2500 BC from the exploitation of aquatic organisms to processing of ruminant products, specifically milk, confirming farming was practiced at high latitudes. Combining this with genetic, environmental and archaeological information, we demonstrate the origins of dairying probably accompanied an incoming, genetically distinct, population successfully establishing this new subsistence ‘package’.
doi:10.1098/rspb.2014.0819
PMCID: PMC4132672  PMID: 25080345
60th parallel north; dairy farming; biomarker lipids; isotopes; lactase persistence; incoming prehistoric population
6.  Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population 
PLoS Genetics  2014;10(7):e1004494.
Exome sequencing studies in complex diseases are challenged by the allelic heterogeneity, large number and modest effect sizes of associated variants on disease risk and the presence of large numbers of neutral variants, even in phenotypically relevant genes. Isolated populations with recent bottlenecks offer advantages for studying rare variants in complex diseases as they have deleterious variants that are present at higher frequencies as well as a substantial reduction in rare neutral variation. To explore the potential of the Finnish founder population for studying low-frequency (0.5–5%) variants in complex diseases, we compared exome sequence data on 3,000 Finns to the same number of non-Finnish Europeans and discovered that, despite having fewer variable sites overall, the average Finn has more low-frequency loss-of-function variants and complete gene knockouts. We then used several well-characterized Finnish population cohorts to study the phenotypic effects of 83 enriched loss-of-function variants across 60 phenotypes in 36,262 Finns. Using a deep set of quantitative traits collected on these cohorts, we show 5 associations (p<5×10−8) including splice variants in LPA that lowered plasma lipoprotein(a) levels (P = 1.5×10−117). Through accessing the national medical records of these participants, we evaluate the LPA finding via Mendelian randomization and confirm that these splice variants confer protection from cardiovascular disease (OR = 0.84, P = 3×10−4), demonstrating for the first time the correlation between very low levels of LPA in humans with potential therapeutic implications for cardiovascular diseases. More generally, this study articulates substantial advantages for studying the role of rare variation in complex phenotypes in founder populations like the Finns and by combining a unique population genetic history with data from large population cohorts and centralized research access to National Health Registers.
Author Summary
We explored the coding regions of 3,000 Finnish individuals with 3,000 non-Finnish Europeans (NFEs) using whole-exome sequence data, in order to understand how an individual from a bottlenecked population might differ from an individual from an out-bred population. We provide empirical evidence that there are more rare and low-frequency deleterious alleles in Finns compared to NFEs, such that an average Finn has almost twice as many low-frequency complete knockouts of a gene. As such, we hypothesized that some of these low-frequency loss-of-function variants might have important medical consequences in humans and genotyped 83 of these variants in 36,000 Finns. In doing so, we discovered that completely knocking out the TSFM gene might result in inviability or a very severe phenotype in humans and that knocking out the LPA gene might confer protection against coronary heart diseases, suggesting that LPA is likely to be a good potential therapeutic target.
doi:10.1371/journal.pgen.1004494
PMCID: PMC4117444  PMID: 25078778
7.  Identification of heart rate–associated loci and their effects on cardiac conduction and rhythm disorders 
den Hoed, Marcel | Eijgelsheim, Mark | Esko, Tõnu | Brundel, Bianca J J M | Peal, David S | Evans, David M | Nolte, Ilja M | Segrè, Ayellet V | Holm, Hilma | Handsaker, Robert E | Westra, Harm-Jan | Johnson, Toby | Isaacs, Aaron | Yang, Jian | Lundby, Alicia | Zhao, Jing Hua | Kim, Young Jin | Go, Min Jin | Almgren, Peter | Bochud, Murielle | Boucher, Gabrielle | Cornelis, Marilyn C | Gudbjartsson, Daniel | Hadley, David | Van Der Harst, Pim | Hayward, Caroline | Heijer, Martin Den | Igl, Wilmar | Jackson, Anne U | Kutalik, Zoltán | Luan, Jian’an | Kemp, John P | Kristiansson, Kati | Ladenvall, Claes | Lorentzon, Mattias | Montasser, May E | Njajou, Omer T | O’Reilly, Paul F | Padmanabhan, Sandosh | Pourcain, Beate St. | Rankinen, Tuomo | Salo, Perttu | Tanaka, Toshiko | Timpson, Nicholas J | Vitart, Veronique | Waite, Lindsay | Wheeler, William | Zhang, Weihua | Draisma, Harmen H M | Feitosa, Mary F | Kerr, Kathleen F | Lind, Penelope A | Mihailov, Evelin | Onland-Moret, N Charlotte | Song, Ci | Weedon, Michael N | Xie, Weijia | Yengo, Loic | Absher, Devin | Albert, Christine M | Alonso, Alvaro | Arking, Dan E | de Bakker, Paul I W | Balkau, Beverley | Barlassina, Cristina | Benaglio, Paola | Bis, Joshua C | Bouatia-Naji, Nabila | Brage, Søren | Chanock, Stephen J | Chines, Peter S | Chung, Mina | Darbar, Dawood | Dina, Christian | Dörr, Marcus | Elliott, Paul | Felix, Stephan B | Fischer, Krista | Fuchsberger, Christian | de Geus, Eco J C | Goyette, Philippe | Gudnason, Vilmundur | Harris, Tamara B | Hartikainen, Anna-liisa | Havulinna, Aki S | Heckbert, Susan R | Hicks, Andrew A | Hofman, Albert | Holewijn, Suzanne | Hoogstra-Berends, Femke | Hottenga, Jouke-Jan | Jensen, Majken K | Johansson, Åsa | Junttila, Juhani | Kääb, Stefan | Kanon, Bart | Ketkar, Shamika | Khaw, Kay-Tee | Knowles, Joshua W | Kooner, Angrad S | Kors, Jan A | Kumari, Meena | Milani, Lili | Laiho, Päivi | Lakatta, Edward G | Langenberg, Claudia | Leusink, Maarten | Liu, Yongmei | Luben, Robert N | Lunetta, Kathryn L | Lynch, Stacey N | Markus, Marcello R P | Marques-Vidal, Pedro | Leach, Irene Mateo | McArdle, Wendy L | McCarroll, Steven A | Medland, Sarah E | Miller, Kathryn A | Montgomery, Grant W | Morrison, Alanna C | Müller-Nurasyid, Martina | Navarro, Pau | Nelis, Mari | O’Connell, Jeffrey R | O’Donnell, Christopher J | Ong, Ken K | Newman, Anne B | Peters, Annette | Polasek, Ozren | Pouta, Anneli | Pramstaller, Peter P | Psaty, Bruce M | Rao, Dabeeru C | Ring, Susan M | Rossin, Elizabeth J | Rudan, Diana | Sanna, Serena | Scott, Robert A | Sehmi, Jaban S | Sharp, Stephen | Shin, Jordan T | Singleton, Andrew B | Smith, Albert V | Soranzo, Nicole | Spector, Tim D | Stewart, Chip | Stringham, Heather M | Tarasov, Kirill V | Uitterlinden, André G | Vandenput, Liesbeth | Hwang, Shih-Jen | Whitfield, John B | Wijmenga, Cisca | Wild, Sarah H | Willemsen, Gonneke | Wilson, James F | Witteman, Jacqueline C M | Wong, Andrew | Wong, Quenna | Jamshidi, Yalda | Zitting, Paavo | Boer, Jolanda M A | Boomsma, Dorret I | Borecki, Ingrid B | Van Duijn, Cornelia M | Ekelund, Ulf | Forouhi, Nita G | Froguel, Philippe | Hingorani, Aroon | Ingelsson, Erik | Kivimaki, Mika | Kronmal, Richard A | Kuh, Diana | Lind, Lars | Martin, Nicholas G | Oostra, Ben A | Pedersen, Nancy L | Quertermous, Thomas | Rotter, Jerome I | van der Schouw, Yvonne T | Verschuren, W M Monique | Walker, Mark | Albanes, Demetrius | Arnar, David O | Assimes, Themistocles L | Bandinelli, Stefania | Boehnke, Michael | de Boer, Rudolf A | Bouchard, Claude | Caulfield, W L Mark | Chambers, John C | Curhan, Gary | Cusi, Daniele | Eriksson, Johan | Ferrucci, Luigi | van Gilst, Wiek H | Glorioso, Nicola | de Graaf, Jacqueline | Groop, Leif | Gyllensten, Ulf | Hsueh, Wen-Chi | Hu, Frank B | Huikuri, Heikki V | Hunter, David J | Iribarren, Carlos | Isomaa, Bo | Jarvelin, Marjo-Riitta | Jula, Antti | Kähönen, Mika | Kiemeney, Lambertus A | van der Klauw, Melanie M | Kooner, Jaspal S | Kraft, Peter | Iacoviello, Licia | Lehtimäki, Terho | Lokki, Marja-Liisa L | Mitchell, Braxton D | Navis, Gerjan | Nieminen, Markku S | Ohlsson, Claes | Poulter, Neil R | Qi, Lu | Raitakari, Olli T | Rimm, Eric B | Rioux, John D | Rizzi, Federica | Rudan, Igor | Salomaa, Veikko | Sever, Peter S | Shields, Denis C | Shuldiner, Alan R | Sinisalo, Juha | Stanton, Alice V | Stolk, Ronald P | Strachan, David P | Tardif, Jean-Claude | Thorsteinsdottir, Unnur | Tuomilehto, Jaako | van Veldhuisen, Dirk J | Virtamo, Jarmo | Viikari, Jorma | Vollenweider, Peter | Waeber, Gérard | Widen, Elisabeth | Cho, Yoon Shin | Olsen, Jesper V | Visscher, Peter M | Willer, Cristen | Franke, Lude | Erdmann, Jeanette | Thompson, John R | Pfeufer, Arne | Sotoodehnia, Nona | Newton-Cheh, Christopher | Ellinor, Patrick T | Stricker, Bruno H Ch | Metspalu, Andres | Perola, Markus | Beckmann, Jacques S | Smith, George Davey | Stefansson, Kari | Wareham, Nicholas J | Munroe, Patricia B | Sibon, Ody C M | Milan, David J | Snieder, Harold | Samani, Nilesh J | Loos, Ruth J F
Nature genetics  2013;45(6):621-631.
Elevated resting heart rate is associated with greater risk of cardiovascular disease and mortality. In a 2-stage meta-analysis of genome-wide association studies in up to 181,171 individuals, we identified 14 new loci associated with heart rate and confirmed associations with all 7 previously established loci. Experimental downregulation of gene expression in Drosophila melanogaster and Danio rerio identified 20 genes at 11 loci that are relevant for heart rate regulation and highlight a role for genes involved in signal transmission, embryonic cardiac development and the pathophysiology of dilated cardiomyopathy, congenital heart failure and/or sudden cardiac death. In addition, genetic susceptibility to increased heart rate is associated with altered cardiac conduction and reduced risk of sick sinus syndrome, and both heart rate–increasing and heart rate–decreasing variants associate with risk of atrial fibrillation. Our findings provide fresh insights into the mechanisms regulating heart rate and identify new therapeutic targets.
doi:10.1038/ng.2610
PMCID: PMC3696959  PMID: 23583979
8.  The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific 
Aging Cell  2013;13(3):401-407.
To re-examine the correlation between mtDNA variability and longevity, we examined mtDNAs from samples obtained from over 2200 ultranonagenarians (and an equal number of controls) collected within the framework of the GEHA EU project. The samples were categorized by high-resolution classification, while about 1300 mtDNA molecules (650 ultranonagenarians and an equal number of controls) were completely sequenced. Sequences, unlike standard haplogroup analysis, made possible to evaluate for the first time the cumulative effects of specific, concomitant mtDNA mutations, including those that per se have a low, or very low, impact. In particular, the analysis of the mutations occurring in different OXPHOS complex showed a complex scenario with a different mutation burden in 90+ subjects with respect to controls. These findings suggested that mutations in subunits of the OXPHOS complex I had a beneficial effect on longevity, while the simultaneous presence of mutations in complex I and III (which also occurs in J subhaplogroups involved in LHON) and in complex I and V seemed to be detrimental, likely explaining previous contradictory results. On the whole, our study, which goes beyond haplogroup analysis, suggests that mitochondrial DNA variation does affect human longevity, but its effect is heavily influenced by the interaction between mutations concomitantly occurring on different mtDNA genes.
doi:10.1111/acel.12186
PMCID: PMC4326891  PMID: 24341918
genetics of longevity; longevity; mitochondrial DNA; mtDNA sequencing; oxidative phosphorylation
9.  Discovery and Refinement of Loci Associated with Lipid Levels 
Willer, Cristen J. | Schmidt, Ellen M. | Sengupta, Sebanti | Peloso, Gina M. | Gustafsson, Stefan | Kanoni, Stavroula | Ganna, Andrea | Chen, Jin | Buchkovich, Martin L. | Mora, Samia | Beckmann, Jacques S. | Bragg-Gresham, Jennifer L. | Chang, Hsing-Yi | Demirkan, Ayşe | Den Hertog, Heleen M. | Do, Ron | Donnelly, Louise A. | Ehret, Georg B. | Esko, Tõnu | Feitosa, Mary F. | Ferreira, Teresa | Fischer, Krista | Fontanillas, Pierre | Fraser, Ross M. | Freitag, Daniel F. | Gurdasani, Deepti | Heikkilä, Kauko | Hyppönen, Elina | Isaacs, Aaron | Jackson, Anne U. | Johansson, Åsa | Johnson, Toby | Kaakinen, Marika | Kettunen, Johannes | Kleber, Marcus E. | Li, Xiaohui | Luan, Jian’an | Lyytikäinen, Leo-Pekka | Magnusson, Patrik K.E. | Mangino, Massimo | Mihailov, Evelin | Montasser, May E. | Müller-Nurasyid, Martina | Nolte, Ilja M. | O’Connell, Jeffrey R. | Palmer, Cameron D. | Perola, Markus | Petersen, Ann-Kristin | Sanna, Serena | Saxena, Richa | Service, Susan K. | Shah, Sonia | Shungin, Dmitry | Sidore, Carlo | Song, Ci | Strawbridge, Rona J. | Surakka, Ida | Tanaka, Toshiko | Teslovich, Tanya M. | Thorleifsson, Gudmar | Van den Herik, Evita G. | Voight, Benjamin F. | Volcik, Kelly A. | Waite, Lindsay L. | Wong, Andrew | Wu, Ying | Zhang, Weihua | Absher, Devin | Asiki, Gershim | Barroso, Inês | Been, Latonya F. | Bolton, Jennifer L. | Bonnycastle, Lori L | Brambilla, Paolo | Burnett, Mary S. | Cesana, Giancarlo | Dimitriou, Maria | Doney, Alex S.F. | Döring, Angela | Elliott, Paul | Epstein, Stephen E. | Ingi Eyjolfsson, Gudmundur | Gigante, Bruna | Goodarzi, Mark O. | Grallert, Harald | Gravito, Martha L. | Groves, Christopher J. | Hallmans, Göran | Hartikainen, Anna-Liisa | Hayward, Caroline | Hernandez, Dena | Hicks, Andrew A. | Holm, Hilma | Hung, Yi-Jen | Illig, Thomas | Jones, Michelle R. | Kaleebu, Pontiano | Kastelein, John J.P. | Khaw, Kay-Tee | Kim, Eric | Klopp, Norman | Komulainen, Pirjo | Kumari, Meena | Langenberg, Claudia | Lehtimäki, Terho | Lin, Shih-Yi | Lindström, Jaana | Loos, Ruth J.F. | Mach, François | McArdle, Wendy L | Meisinger, Christa | Mitchell, Braxton D. | Müller, Gabrielle | Nagaraja, Ramaiah | Narisu, Narisu | Nieminen, Tuomo V.M. | Nsubuga, Rebecca N. | Olafsson, Isleifur | Ong, Ken K. | Palotie, Aarno | Papamarkou, Theodore | Pomilla, Cristina | Pouta, Anneli | Rader, Daniel J. | Reilly, Muredach P. | Ridker, Paul M. | Rivadeneira, Fernando | Rudan, Igor | Ruokonen, Aimo | Samani, Nilesh | Scharnagl, Hubert | Seeley, Janet | Silander, Kaisa | Stančáková, Alena | Stirrups, Kathleen | Swift, Amy J. | Tiret, Laurence | Uitterlinden, Andre G. | van Pelt, L. Joost | Vedantam, Sailaja | Wainwright, Nicholas | Wijmenga, Cisca | Wild, Sarah H. | Willemsen, Gonneke | Wilsgaard, Tom | Wilson, James F. | Young, Elizabeth H. | Zhao, Jing Hua | Adair, Linda S. | Arveiler, Dominique | Assimes, Themistocles L. | Bandinelli, Stefania | Bennett, Franklyn | Bochud, Murielle | Boehm, Bernhard O. | Boomsma, Dorret I. | Borecki, Ingrid B. | Bornstein, Stefan R. | Bovet, Pascal | Burnier, Michel | Campbell, Harry | Chakravarti, Aravinda | Chambers, John C. | Chen, Yii-Der Ida | Collins, Francis S. | Cooper, Richard S. | Danesh, John | Dedoussis, George | de Faire, Ulf | Feranil, Alan B. | Ferrières, Jean | Ferrucci, Luigi | Freimer, Nelson B. | Gieger, Christian | Groop, Leif C. | Gudnason, Vilmundur | Gyllensten, Ulf | Hamsten, Anders | Harris, Tamara B. | Hingorani, Aroon | Hirschhorn, Joel N. | Hofman, Albert | Hovingh, G. Kees | Hsiung, Chao Agnes | Humphries, Steve E. | Hunt, Steven C. | Hveem, Kristian | Iribarren, Carlos | Järvelin, Marjo-Riitta | Jula, Antti | Kähönen, Mika | Kaprio, Jaakko | Kesäniemi, Antero | Kivimaki, Mika | Kooner, Jaspal S. | Koudstaal, Peter J. | Krauss, Ronald M. | Kuh, Diana | Kuusisto, Johanna | Kyvik, Kirsten O. | Laakso, Markku | Lakka, Timo A. | Lind, Lars | Lindgren, Cecilia M. | Martin, Nicholas G. | März, Winfried | McCarthy, Mark I. | McKenzie, Colin A. | Meneton, Pierre | Metspalu, Andres | Moilanen, Leena | Morris, Andrew D. | Munroe, Patricia B. | Njølstad, Inger | Pedersen, Nancy L. | Power, Chris | Pramstaller, Peter P. | Price, Jackie F. | Psaty, Bruce M. | Quertermous, Thomas | Rauramaa, Rainer | Saleheen, Danish | Salomaa, Veikko | Sanghera, Dharambir K. | Saramies, Jouko | Schwarz, Peter E.H. | Sheu, Wayne H-H | Shuldiner, Alan R. | Siegbahn, Agneta | Spector, Tim D. | Stefansson, Kari | Strachan, David P. | Tayo, Bamidele O. | Tremoli, Elena | Tuomilehto, Jaakko | Uusitupa, Matti | van Duijn, Cornelia M. | Vollenweider, Peter | Wallentin, Lars | Wareham, Nicholas J. | Whitfield, John B. | Wolffenbuttel, Bruce H.R. | Ordovas, Jose M. | Boerwinkle, Eric | Palmer, Colin N.A. | Thorsteinsdottir, Unnur | Chasman, Daniel I. | Rotter, Jerome I. | Franks, Paul W. | Ripatti, Samuli | Cupples, L. Adrienne | Sandhu, Manjinder S. | Rich, Stephen S. | Boehnke, Michael | Deloukas, Panos | Kathiresan, Sekar | Mohlke, Karen L. | Ingelsson, Erik | Abecasis, Gonçalo R.
Nature genetics  2013;45(11):10.1038/ng.2797.
Low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, and total cholesterol are heritable, modifiable, risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,578 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5×10−8, including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian, and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipids are often associated with cardiovascular and metabolic traits including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio, and body mass index. Our results illustrate the value of genetic data from individuals of diverse ancestries and provide insights into biological mechanisms regulating blood lipids to guide future genetic, biological, and therapeutic research.
doi:10.1038/ng.2797
PMCID: PMC3838666  PMID: 24097068
10.  Common variants associated with plasma triglycerides and risk for coronary artery disease 
Do, Ron | Willer, Cristen J. | Schmidt, Ellen M. | Sengupta, Sebanti | Gao, Chi | Peloso, Gina M. | Gustafsson, Stefan | Kanoni, Stavroula | Ganna, Andrea | Chen, Jin | Buchkovich, Martin L. | Mora, Samia | Beckmann, Jacques S. | Bragg-Gresham, Jennifer L. | Chang, Hsing-Yi | Demirkan, Ayşe | Den Hertog, Heleen M. | Donnelly, Louise A. | Ehret, Georg B. | Esko, Tõnu | Feitosa, Mary F. | Ferreira, Teresa | Fischer, Krista | Fontanillas, Pierre | Fraser, Ross M. | Freitag, Daniel F. | Gurdasani, Deepti | Heikkilä, Kauko | Hyppönen, Elina | Isaacs, Aaron | Jackson, Anne U. | Johansson, Åsa | Johnson, Toby | Kaakinen, Marika | Kettunen, Johannes | Kleber, Marcus E. | Li, Xiaohui | Luan, Jian'an | Lyytikäinen, Leo-Pekka | Magnusson, Patrik K.E. | Mangino, Massimo | Mihailov, Evelin | Montasser, May E. | Müller-Nurasyid, Martina | Nolte, Ilja M. | O'Connell, Jeffrey R. | Palmer, Cameron D. | Perola, Markus | Petersen, Ann-Kristin | Sanna, Serena | Saxena, Richa | Service, Susan K. | Shah, Sonia | Shungin, Dmitry | Sidore, Carlo | Song, Ci | Strawbridge, Rona J. | Surakka, Ida | Tanaka, Toshiko | Teslovich, Tanya M. | Thorleifsson, Gudmar | Van den Herik, Evita G. | Voight, Benjamin F. | Volcik, Kelly A. | Waite, Lindsay L. | Wong, Andrew | Wu, Ying | Zhang, Weihua | Absher, Devin | Asiki, Gershim | Barroso, Inês | Been, Latonya F. | Bolton, Jennifer L. | Bonnycastle, Lori L | Brambilla, Paolo | Burnett, Mary S. | Cesana, Giancarlo | Dimitriou, Maria | Doney, Alex S.F. | Döring, Angela | Elliott, Paul | Epstein, Stephen E. | Eyjolfsson, Gudmundur Ingi | Gigante, Bruna | Goodarzi, Mark O. | Grallert, Harald | Gravito, Martha L. | Groves, Christopher J. | Hallmans, Göran | Hartikainen, Anna-Liisa | Hayward, Caroline | Hernandez, Dena | Hicks, Andrew A. | Holm, Hilma | Hung, Yi-Jen | Illig, Thomas | Jones, Michelle R. | Kaleebu, Pontiano | Kastelein, John J.P. | Khaw, Kay-Tee | Kim, Eric | Klopp, Norman | Komulainen, Pirjo | Kumari, Meena | Langenberg, Claudia | Lehtimäki, Terho | Lin, Shih-Yi | Lindström, Jaana | Loos, Ruth J.F. | Mach, François | McArdle, Wendy L | Meisinger, Christa | Mitchell, Braxton D. | Müller, Gabrielle | Nagaraja, Ramaiah | Narisu, Narisu | Nieminen, Tuomo V.M. | Nsubuga, Rebecca N. | Olafsson, Isleifur | Ong, Ken K. | Palotie, Aarno | Papamarkou, Theodore | Pomilla, Cristina | Pouta, Anneli | Rader, Daniel J. | Reilly, Muredach P. | Ridker, Paul M. | Rivadeneira, Fernando | Rudan, Igor | Ruokonen, Aimo | Samani, Nilesh | Scharnagl, Hubert | Seeley, Janet | Silander, Kaisa | Stančáková, Alena | Stirrups, Kathleen | Swift, Amy J. | Tiret, Laurence | Uitterlinden, Andre G. | van Pelt, L. Joost | Vedantam, Sailaja | Wainwright, Nicholas | Wijmenga, Cisca | Wild, Sarah H. | Willemsen, Gonneke | Wilsgaard, Tom | Wilson, James F. | Young, Elizabeth H. | Zhao, Jing Hua | Adair, Linda S. | Arveiler, Dominique | Assimes, Themistocles L. | Bandinelli, Stefania | Bennett, Franklyn | Bochud, Murielle | Boehm, Bernhard O. | Boomsma, Dorret I. | Borecki, Ingrid B. | Bornstein, Stefan R. | Bovet, Pascal | Burnier, Michel | Campbell, Harry | Chakravarti, Aravinda | Chambers, John C. | Chen, Yii-Der Ida | Collins, Francis S. | Cooper, Richard S. | Danesh, John | Dedoussis, George | de Faire, Ulf | Feranil, Alan B. | Ferrières, Jean | Ferrucci, Luigi | Freimer, Nelson B. | Gieger, Christian | Groop, Leif C. | Gudnason, Vilmundur | Gyllensten, Ulf | Hamsten, Anders | Harris, Tamara B. | Hingorani, Aroon | Hirschhorn, Joel N. | Hofman, Albert | Hovingh, G. Kees | Hsiung, Chao Agnes | Humphries, Steve E. | Hunt, Steven C. | Hveem, Kristian | Iribarren, Carlos | Järvelin, Marjo-Riitta | Jula, Antti | Kähönen, Mika | Kaprio, Jaakko | Kesäniemi, Antero | Kivimaki, Mika | Kooner, Jaspal S. | Koudstaal, Peter J. | Krauss, Ronald M. | Kuh, Diana | Kuusisto, Johanna | Kyvik, Kirsten O. | Laakso, Markku | Lakka, Timo A. | Lind, Lars | Lindgren, Cecilia M. | Martin, Nicholas G. | März, Winfried | McCarthy, Mark I. | McKenzie, Colin A. | Meneton, Pierre | Metspalu, Andres | Moilanen, Leena | Morris, Andrew D. | Munroe, Patricia B. | Njølstad, Inger | Pedersen, Nancy L. | Power, Chris | Pramstaller, Peter P. | Price, Jackie F. | Psaty, Bruce M. | Quertermous, Thomas | Rauramaa, Rainer | Saleheen, Danish | Salomaa, Veikko | Sanghera, Dharambir K. | Saramies, Jouko | Schwarz, Peter E.H. | Sheu, Wayne H-H | Shuldiner, Alan R. | Siegbahn, Agneta | Spector, Tim D. | Stefansson, Kari | Strachan, David P. | Tayo, Bamidele O. | Tremoli, Elena | Tuomilehto, Jaakko | Uusitupa, Matti | van Duijn, Cornelia M. | Vollenweider, Peter | Wallentin, Lars | Wareham, Nicholas J. | Whitfield, John B. | Wolffenbuttel, Bruce H.R. | Altshuler, David | Ordovas, Jose M. | Boerwinkle, Eric | Palmer, Colin N.A. | Thorsteinsdottir, Unnur | Chasman, Daniel I. | Rotter, Jerome I. | Franks, Paul W. | Ripatti, Samuli | Cupples, L. Adrienne | Sandhu, Manjinder S. | Rich, Stephen S. | Boehnke, Michael | Deloukas, Panos | Mohlke, Karen L. | Ingelsson, Erik | Abecasis, Goncalo R. | Daly, Mark J. | Neale, Benjamin M. | Kathiresan, Sekar
Nature genetics  2013;45(11):1345-1352.
Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiologic studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P<5×10−8 for each) to examine the role of triglycerides on risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglycerides, and show that the direction and magnitude of both are factors in determining CAD risk. Second, we consider loci with only a strong magnitude of association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol, a polymorphism's strength of effect on triglycerides is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
doi:10.1038/ng.2795
PMCID: PMC3904346  PMID: 24097064
11.  Identification of seven loci affecting mean telomere length and their association with disease 
Codd, Veryan | Nelson, Christopher P. | Albrecht, Eva | Mangino, Massimo | Deelen, Joris | Buxton, Jessica L. | Jan Hottenga, Jouke | Fischer, Krista | Esko, Tõnu | Surakka, Ida | Broer, Linda | Nyholt, Dale R. | Mateo Leach, Irene | Salo, Perttu | Hägg, Sara | Matthews, Mary K. | Palmen, Jutta | Norata, Giuseppe D. | O’Reilly, Paul F. | Saleheen, Danish | Amin, Najaf | Balmforth, Anthony J. | Beekman, Marian | de Boer, Rudolf A. | Böhringer, Stefan | Braund, Peter S. | Burton, Paul R. | de Craen, Anton J. M. | Denniff, Matthew | Dong, Yanbin | Douroudis, Konstantinos | Dubinina, Elena | Eriksson, Johan G. | Garlaschelli, Katia | Guo, Dehuang | Hartikainen, Anna-Liisa | Henders, Anjali K. | Houwing-Duistermaat, Jeanine J. | Kananen, Laura | Karssen, Lennart C. | Kettunen, Johannes | Klopp, Norman | Lagou, Vasiliki | van Leeuwen, Elisabeth M. | Madden, Pamela A. | Mägi, Reedik | Magnusson, Patrik K.E. | Männistö, Satu | McCarthy, Mark I. | Medland, Sarah E. | Mihailov, Evelin | Montgomery, Grant W. | Oostra, Ben A. | Palotie, Aarno | Peters, Annette | Pollard, Helen | Pouta, Anneli | Prokopenko, Inga | Ripatti, Samuli | Salomaa, Veikko | Suchiman, H. Eka D. | Valdes, Ana M. | Verweij, Niek | Viñuela, Ana | Wang, Xiaoling | Wichmann, H.-Erich | Widen, Elisabeth | Willemsen, Gonneke | Wright, Margaret J. | Xia, Kai | Xiao, Xiangjun | van Veldhuisen, Dirk J. | Catapano, Alberico L. | Tobin, Martin D. | Hall, Alistair S. | Blakemore, Alexandra I.F. | van Gilst, Wiek H. | Zhu, Haidong | Erdmann, Jeanette | Reilly, Muredach P. | Kathiresan, Sekar | Schunkert, Heribert | Talmud, Philippa J. | Pedersen, Nancy L. | Perola, Markus | Ouwehand, Willem | Kaprio, Jaakko | Martin, Nicholas G. | van Duijn, Cornelia M. | Hovatta, Iiris | Gieger, Christian | Metspalu, Andres | Boomsma, Dorret I. | Jarvelin, Marjo-Riitta | Slagboom, P. Eline | Thompson, John R. | Spector, Tim D. | van der Harst, Pim | Samani, Nilesh J.
Nature genetics  2013;45(4):422-427e2.
Inter-individual variation in mean leukocyte telomere length (LTL) is associated with cancer and several age-associated diseases. Here, in a genome-wide meta-analysis of 37,684 individuals with replication of selected variants in a further 10,739 individuals, we identified seven loci, including five novel loci, associated with mean LTL (P<5x10−8). Five of the loci contain genes (TERC, TERT, NAF1, OBFC1, RTEL1) that are known to be involved in telomere biology. Lead SNPs at two loci (TERC and TERT) associate with several cancers and other diseases, including idiopathic pulmonary fibrosis. Moreover, a genetic risk score analysis combining lead variants at all seven loci in 22,233 coronary artery disease cases and 64,762 controls showed an association of the alleles associated with shorter LTL with increased risk of CAD (21% (95% CI: 5–35%) per standard deviation in LTL, p=0.014). Our findings support a causal role of telomere length variation in some age-related diseases.
doi:10.1038/ng.2528
PMCID: PMC4006270  PMID: 23535734
12.  Systematic identification of trans-eQTLs as putative drivers of known disease associations 
Nature genetics  2013;45(10):1238-1243.
Identifying the downstream effects of disease-associated single nucleotide polymorphisms (SNPs) is challenging: the causal gene is often unknown or it is unclear how the SNP affects the causal gene, making it difficult to design experiments that reveal functional consequences. To help overcome this problem, we performed the largest expression quantitative trait locus (eQTL) meta-analysis so far reported in non-transformed peripheral blood samples of 5,311 individuals, with replication in 2,775 individuals. We identified and replicated trans-eQTLs for 233 SNPs (reflecting 103 independent loci) that were previously associated with complex traits at genome-wide significance. Although we did not study specific patient cohorts, we identified trait-associated SNPs that affect multiple trans-genes that are known to be markedly altered in patients: for example, systemic lupus erythematosus (SLE) SNP rs49170141 altered C1QB and five type 1 interferon response genes, both hallmarks of SLE2-4. Subsequent ChIP-seq data analysis on these trans-genes implicated transcription factor IKZF1 as the causal gene at this locus, with DeepSAGE RNA-sequencing revealing that rs4917014 strongly alters 3’ UTR levels of IKZF1. Variants associated with cholesterol metabolism and type 1 diabetes showed similar phenomena, indicating that large-scale eQTL mapping provides insight into the downstream effects of many trait-associated variants.
doi:10.1038/ng.2756
PMCID: PMC3991562  PMID: 24013639
13.  Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture 
Berndt, Sonja I. | Gustafsson, Stefan | Mägi, Reedik | Ganna, Andrea | Wheeler, Eleanor | Feitosa, Mary F. | Justice, Anne E. | Monda, Keri L. | Croteau-Chonka, Damien C. | Day, Felix R. | Esko, Tõnu | Fall, Tove | Ferreira, Teresa | Gentilini, Davide | Jackson, Anne U. | Luan, Jian’an | Randall, Joshua C. | Vedantam, Sailaja | Willer, Cristen J. | Winkler, Thomas W. | Wood, Andrew R. | Workalemahu, Tsegaselassie | Hu, Yi-Juan | Lee, Sang Hong | Liang, Liming | Lin, Dan-Yu | Min, Josine L. | Neale, Benjamin M. | Thorleifsson, Gudmar | Yang, Jian | Albrecht, Eva | Amin, Najaf | Bragg-Gresham, Jennifer L. | Cadby, Gemma | den Heijer, Martin | Eklund, Niina | Fischer, Krista | Goel, Anuj | Hottenga, Jouke-Jan | Huffman, Jennifer E. | Jarick, Ivonne | Johansson, Åsa | Johnson, Toby | Kanoni, Stavroula | Kleber, Marcus E. | König, Inke R. | Kristiansson, Kati | Kutalik, Zoltán | Lamina, Claudia | Lecoeur, Cecile | Li, Guo | Mangino, Massimo | McArdle, Wendy L. | Medina-Gomez, Carolina | Müller-Nurasyid, Martina | Ngwa, Julius S. | Nolte, Ilja M. | Paternoster, Lavinia | Pechlivanis, Sonali | Perola, Markus | Peters, Marjolein J. | Preuss, Michael | Rose, Lynda M. | Shi, Jianxin | Shungin, Dmitry | Smith, Albert Vernon | Strawbridge, Rona J. | Surakka, Ida | Teumer, Alexander | Trip, Mieke D. | Tyrer, Jonathan | Van Vliet-Ostaptchouk, Jana V. | Vandenput, Liesbeth | Waite, Lindsay L. | Zhao, Jing Hua | Absher, Devin | Asselbergs, Folkert W. | Atalay, Mustafa | Attwood, Antony P. | Balmforth, Anthony J. | Basart, Hanneke | Beilby, John | Bonnycastle, Lori L. | Brambilla, Paolo | Bruinenberg, Marcel | Campbell, Harry | Chasman, Daniel I. | Chines, Peter S. | Collins, Francis S. | Connell, John M. | Cookson, William | de Faire, Ulf | de Vegt, Femmie | Dei, Mariano | Dimitriou, Maria | Edkins, Sarah | Estrada, Karol | Evans, David M. | Farrall, Martin | Ferrario, Marco M. | Ferrières, Jean | Franke, Lude | Frau, Francesca | Gejman, Pablo V. | Grallert, Harald | Grönberg, Henrik | Gudnason, Vilmundur | Hall, Alistair S. | Hall, Per | Hartikainen, Anna-Liisa | Hayward, Caroline | Heard-Costa, Nancy L. | Heath, Andrew C. | Hebebrand, Johannes | Homuth, Georg | Hu, Frank B. | Hunt, Sarah E. | Hyppönen, Elina | Iribarren, Carlos | Jacobs, Kevin B. | Jansson, John-Olov | Jula, Antti | Kähönen, Mika | Kathiresan, Sekar | Kee, Frank | Khaw, Kay-Tee | Kivimaki, Mika | Koenig, Wolfgang | Kraja, Aldi T. | Kumari, Meena | Kuulasmaa, Kari | Kuusisto, Johanna | Laitinen, Jaana H. | Lakka, Timo A. | Langenberg, Claudia | Launer, Lenore J. | Lind, Lars | Lindström, Jaana | Liu, Jianjun | Liuzzi, Antonio | Lokki, Marja-Liisa | Lorentzon, Mattias | Madden, Pamela A. | Magnusson, Patrik K. | Manunta, Paolo | Marek, Diana | März, Winfried | Mateo Leach, Irene | McKnight, Barbara | Medland, Sarah E. | Mihailov, Evelin | Milani, Lili | Montgomery, Grant W. | Mooser, Vincent | Mühleisen, Thomas W. | Munroe, Patricia B. | Musk, Arthur W. | Narisu, Narisu | Navis, Gerjan | Nicholson, George | Nohr, Ellen A. | Ong, Ken K. | Oostra, Ben A. | Palmer, Colin N.A. | Palotie, Aarno | Peden, John F. | Pedersen, Nancy | Peters, Annette | Polasek, Ozren | Pouta, Anneli | Pramstaller, Peter P. | Prokopenko, Inga | Pütter, Carolin | Radhakrishnan, Aparna | Raitakari, Olli | Rendon, Augusto | Rivadeneira, Fernando | Rudan, Igor | Saaristo, Timo E. | Sambrook, Jennifer G. | Sanders, Alan R. | Sanna, Serena | Saramies, Jouko | Schipf, Sabine | Schreiber, Stefan | Schunkert, Heribert | Shin, So-Youn | Signorini, Stefano | Sinisalo, Juha | Skrobek, Boris | Soranzo, Nicole | Stančáková, Alena | Stark, Klaus | Stephens, Jonathan C. | Stirrups, Kathleen | Stolk, Ronald P. | Stumvoll, Michael | Swift, Amy J. | Theodoraki, Eirini V. | Thorand, Barbara | Tregouet, David-Alexandre | Tremoli, Elena | Van der Klauw, Melanie M. | van Meurs, Joyce B.J. | Vermeulen, Sita H. | Viikari, Jorma | Virtamo, Jarmo | Vitart, Veronique | Waeber, Gérard | Wang, Zhaoming | Widén, Elisabeth | Wild, Sarah H. | Willemsen, Gonneke | Winkelmann, Bernhard R. | Witteman, Jacqueline C.M. | Wolffenbuttel, Bruce H.R. | Wong, Andrew | Wright, Alan F. | Zillikens, M. Carola | Amouyel, Philippe | Boehm, Bernhard O. | Boerwinkle, Eric | Boomsma, Dorret I. | Caulfield, Mark J. | Chanock, Stephen J. | Cupples, L. Adrienne | Cusi, Daniele | Dedoussis, George V. | Erdmann, Jeanette | Eriksson, Johan G. | Franks, Paul W. | Froguel, Philippe | Gieger, Christian | Gyllensten, Ulf | Hamsten, Anders | Harris, Tamara B. | Hengstenberg, Christian | Hicks, Andrew A. | Hingorani, Aroon | Hinney, Anke | Hofman, Albert | Hovingh, Kees G. | Hveem, Kristian | Illig, Thomas | Jarvelin, Marjo-Riitta | Jöckel, Karl-Heinz | Keinanen-Kiukaanniemi, Sirkka M. | Kiemeney, Lambertus A. | Kuh, Diana | Laakso, Markku | Lehtimäki, Terho | Levinson, Douglas F. | Martin, Nicholas G. | Metspalu, Andres | Morris, Andrew D. | Nieminen, Markku S. | Njølstad, Inger | Ohlsson, Claes | Oldehinkel, Albertine J. | Ouwehand, Willem H. | Palmer, Lyle J. | Penninx, Brenda | Power, Chris | Province, Michael A. | Psaty, Bruce M. | Qi, Lu | Rauramaa, Rainer | Ridker, Paul M. | Ripatti, Samuli | Salomaa, Veikko | Samani, Nilesh J. | Snieder, Harold | Sørensen, Thorkild I.A. | Spector, Timothy D. | Stefansson, Kari | Tönjes, Anke | Tuomilehto, Jaakko | Uitterlinden, André G. | Uusitupa, Matti | van der Harst, Pim | Vollenweider, Peter | Wallaschofski, Henri | Wareham, Nicholas J. | Watkins, Hugh | Wichmann, H.-Erich | Wilson, James F. | Abecasis, Goncalo R. | Assimes, Themistocles L. | Barroso, Inês | Boehnke, Michael | Borecki, Ingrid B. | Deloukas, Panos | Fox, Caroline S. | Frayling, Timothy | Groop, Leif C. | Haritunian, Talin | Heid, Iris M. | Hunter, David | Kaplan, Robert C. | Karpe, Fredrik | Moffatt, Miriam | Mohlke, Karen L. | O’Connell, Jeffrey R. | Pawitan, Yudi | Schadt, Eric E. | Schlessinger, David | Steinthorsdottir, Valgerdur | Strachan, David P. | Thorsteinsdottir, Unnur | van Duijn, Cornelia M. | Visscher, Peter M. | Di Blasio, Anna Maria | Hirschhorn, Joel N. | Lindgren, Cecilia M. | Morris, Andrew P. | Meyre, David | Scherag, André | McCarthy, Mark I. | Speliotes, Elizabeth K. | North, Kari E. | Loos, Ruth J.F. | Ingelsson, Erik
Nature genetics  2013;45(5):501-512.
Approaches exploiting extremes of the trait distribution may reveal novel loci for common traits, but it is unknown whether such loci are generalizable to the general population. In a genome-wide search for loci associated with upper vs. lower 5th percentiles of body mass index, height and waist-hip ratio, as well as clinical classes of obesity including up to 263,407 European individuals, we identified four new loci (IGFBP4, H6PD, RSRC1, PPP2R2A) influencing height detected in the tails and seven new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3, ZZZ3) for clinical classes of obesity. Further, we show that there is large overlap in terms of genetic structure and distribution of variants between traits based on extremes and the general population and little etiologic heterogeneity between obesity subgroups.
doi:10.1038/ng.2606
PMCID: PMC3973018  PMID: 23563607
14.  Genome-wide linkage analysis for human longevity: Genetics of Healthy Ageing Study 
Aging cell  2013;12(2):184-193.
Summary
Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian sibling pairs that have been enrolled in fifteen study centers of eleven European countries as part of the Genetics of Healthy Ageing (GEHA) project. In the joint linkage analyses we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD=3.47), chromosome 17q12-q22 (LOD=2.95), chromosome 19p13.3-p13.11 (LOD=3.76) and chromosome 19q13.11-q13.32 (LOD=3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1,228 unrelated nonagenarian and 1,907 geographically matched controls. Using a fixed effect meta-analysis approach, rs4420638 at the TOMM40/APOE/APOC1 gene locus showed significant association with longevity (p-value=9.6 × 10−8). By combined modeling of linkage and association we showed that association of longevity with APOEε4 and APOEε2 alleles explain the linkage at 19q13.11-q13.32 with p-value=0.02 and p-value=1.0 × 10−5, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22 and 19p13.3-p13.11. Since the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity.
doi:10.1111/acel.12039
PMCID: PMC3725963  PMID: 23286790
Human familial longevity; genome-wide linkage analysis; APOE gene; association analysis; nonagenarian sibling pairs
15.  Meta-analysis on blood transcriptomic studies identifies consistently coexpressed protein–protein interaction modules as robust markers of human aging 
Aging Cell  2013;13(2):216-225.
The bodily decline that occurs with advancing age strongly impacts on the prospects for future health and life expectancy. Despite the profound role of age in disease etiology, knowledge about the molecular mechanisms driving the process of aging in humans is limited. Here, we used an integrative network-based approach for combining multiple large-scale expression studies in blood (2539 individuals) with protein–protein Interaction (PPI) data for the detection of consistently coexpressed PPI modules that may reflect key processes that change throughout the course of normative aging. Module detection followed by a meta-analysis on chronological age identified fifteen consistently coexpressed PPI modules associated with chronological age, including a highly significant module (P = 3.5 × 10−38) enriched for ‘T-cell activation’ marking age-associated shifts in lymphocyte blood cell counts (R2 = 0.603; P = 1.9 × 10−10). Adjusting the analysis in the compendium for the ‘T-cell activation’ module showed five consistently coexpressed PPI modules that robustly associated with chronological age and included modules enriched for ‘Translational elongation’, ‘Cytolysis’ and ‘DNA metabolic process’. In an independent study of 3535 individuals, four of five modules consistently associated with chronological age, underpinning the robustness of the approach. We found three of five modules to be significantly enriched with aging-related genes, as defined by the GenAge database, and association with prospective survival at high ages for one of the modules including ASF1A. The hereby-detected age-associated and consistently coexpressed PPI modules therefore may provide a molecular basis for future research into mechanisms underlying human aging.
doi:10.1111/acel.12160
PMCID: PMC4331790  PMID: 24119000
aging; blood transcriptomics; meta-analysis; network-based analysis; protein–protein interactions
16.  A polymorphism in the protein kinase C gene PRKCB is associated with α2-adrenoceptor-mediated vasoconstriction 
Pharmacogenetics and genomics  2013;23(3):127-134.
Objectives
α2-Adrenoceptors (α2-AR) mediate both constriction and dilatation of blood vessels. There is substantial inter-individual variability in dorsal hand vein (DHV) constriction responses to α2-AR agonist activation. Genetic factors appear to contribute significantly to this variation. The present study was designed to identify genetic factors contributing to the inter-individual variability in α2-AR-mediated vascular constriction induced by the selective α2-AR agonist dexmedetomidine.
Methods
DHV constriction responses to local infusion of dexmedetomidine were assessed by measuring changes in vein diameter with a linear variable differential transformer. The outcome variable was log-transformed dexmedetomidine ED50 for constriction. A genome-wide association study (GWAS) of 433,378 single nucleotide polymorphisms (SNPs) was performed for the sensitivity of DHV responses in 64 healthy Finnish subjects. 20 SNPs were selected based on the GWAS results and their associations with the ED50 of dexmedetomidine were tested in an independent North American study population of 68 healthy individuals.
Results
In both study populations (GWAS and replication samples), the SNP rs9922316 in the gene for protein kinase C type β was consistently associated with dexmedetomidine ED50 for dorsal hand vein constriction (unadjusted p = 0.00016 for the combined population).
Conclusions
Genetic variation in protein kinase C type β may contribute to the inter-individual variation in dorsal hand vein constriction responses to α2-AR activation by the agonist dexmedetomidine.
doi:10.1097/FPC.0b013e32835d247f
PMCID: PMC3912740  PMID: 23337848
receptors, adrenergic, alpha; dorsal hand vein; GWAS; candidate genes; dexmedetomidine
17.  Biomarker Profiling by Nuclear Magnetic Resonance Spectroscopy for the Prediction of All-Cause Mortality: An Observational Study of 17,345 Persons 
PLoS Medicine  2014;11(2):e1001606.
In this study, Würtz and colleagues conducted high-throughput profiling of blood specimens in two large population-based cohorts in order to identify biomarkers for all-cause mortality and enhance risk prediction. The authors found that biomarker profiling improved prediction of the short-term risk of death from all causes above established risk factors. However, further investigations are needed to clarify the biological mechanisms and the utility of these biomarkers to guide screening and prevention.
Please see later in the article for the Editors' Summary
Background
Early identification of ambulatory persons at high short-term risk of death could benefit targeted prevention. To identify biomarkers for all-cause mortality and enhance risk prediction, we conducted high-throughput profiling of blood specimens in two large population-based cohorts.
Methods and Findings
106 candidate biomarkers were quantified by nuclear magnetic resonance spectroscopy of non-fasting plasma samples from a random subset of the Estonian Biobank (n = 9,842; age range 18–103 y; 508 deaths during a median of 5.4 y of follow-up). Biomarkers for all-cause mortality were examined using stepwise proportional hazards models. Significant biomarkers were validated and incremental predictive utility assessed in a population-based cohort from Finland (n = 7,503; 176 deaths during 5 y of follow-up). Four circulating biomarkers predicted the risk of all-cause mortality among participants from the Estonian Biobank after adjusting for conventional risk factors: alpha-1-acid glycoprotein (hazard ratio [HR] 1.67 per 1–standard deviation increment, 95% CI 1.53–1.82, p = 5×10−31), albumin (HR 0.70, 95% CI 0.65–0.76, p = 2×10−18), very-low-density lipoprotein particle size (HR 0.69, 95% CI 0.62–0.77, p = 3×10−12), and citrate (HR 1.33, 95% CI 1.21–1.45, p = 5×10−10). All four biomarkers were predictive of cardiovascular mortality, as well as death from cancer and other nonvascular diseases. One in five participants in the Estonian Biobank cohort with a biomarker summary score within the highest percentile died during the first year of follow-up, indicating prominent systemic reflections of frailty. The biomarker associations all replicated in the Finnish validation cohort. Including the four biomarkers in a risk prediction score improved risk assessment for 5-y mortality (increase in C-statistics 0.031, p = 0.01; continuous reclassification improvement 26.3%, p = 0.001).
Conclusions
Biomarker associations with cardiovascular, nonvascular, and cancer mortality suggest novel systemic connectivities across seemingly disparate morbidities. The biomarker profiling improved prediction of the short-term risk of death from all causes above established risk factors. Further investigations are needed to clarify the biological mechanisms and the utility of these biomarkers for guiding screening and prevention.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
A biomarker is a biological molecule found in blood, body fluids, or tissues that may signal an abnormal process, a condition, or a disease. The level of a particular biomarker may indicate a patient's risk of disease, or likely response to a treatment. For example, cholesterol levels are measured to assess the risk of heart disease. Most current biomarkers are used to test an individual's risk of developing a specific condition. There are none that accurately assess whether a person is at risk of ill health generally, or likely to die soon from a disease. Early and accurate identification of people who appear healthy but in fact have an underlying serious illness would provide valuable opportunities for preventative treatment.
While most tests measure the levels of a specific biomarker, there are some technologies that allow blood samples to be screened for a wide range of biomarkers. These include nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. These tools have the potential to be used to screen the general population for a range of different biomarkers.
Why Was This Study Done?
Identifying new biomarkers that provide insight into the risk of death from all causes could be an important step in linking different diseases and assessing patient risk. The authors in this study screened patient samples using NMR spectroscopy for biomarkers that accurately predict the risk of death particularly amongst the general population, rather than amongst people already known to be ill.
What Did the Researchers Do and Find?
The researchers studied two large groups of people, one in Estonia and one in Finland. Both countries have set up health registries that collect and store blood samples and health records over many years. The registries include large numbers of people who are representative of the wider population.
The researchers first tested blood samples from a representative subset of the Estonian group, testing 9,842 samples in total. They looked at 106 different biomarkers in each sample using NMR spectroscopy. They also looked at the health records of this group and found that 508 people died during the follow-up period after the blood sample was taken, the majority from heart disease, cancer, and other diseases. Using statistical analysis, they looked for any links between the levels of different biomarkers in the blood and people's short-term risk of dying. They found that the levels of four biomarkers—plasma albumin, alpha-1-acid glycoprotein, very-low-density lipoprotein (VLDL) particle size, and citrate—appeared to accurately predict short-term risk of death. They repeated this study with the Finnish group, this time with 7,503 individuals (176 of whom died during the five-year follow-up period after giving a blood sample) and found similar results.
The researchers carried out further statistical analyses to take into account other known factors that might have contributed to the risk of life-threatening illness. These included factors such as age, weight, tobacco and alcohol use, cholesterol levels, and pre-existing illness, such as diabetes and cancer. The association between the four biomarkers and short-term risk of death remained the same even when controlling for these other factors.
The analysis also showed that combining the test results for all four biomarkers, to produce a biomarker score, provided a more accurate measure of risk than any of the biomarkers individually. This biomarker score also proved to be the strongest predictor of short-term risk of dying in the Estonian group. Individuals with a biomarker score in the top 20% had a risk of dying within five years that was 19 times greater than that of individuals with a score in the bottom 20% (288 versus 15 deaths).
What Do These Findings Mean?
This study suggests that there are four biomarkers in the blood—alpha-1-acid glycoprotein, albumin, VLDL particle size, and citrate—that can be measured by NMR spectroscopy to assess whether otherwise healthy people are at short-term risk of dying from heart disease, cancer, and other illnesses. However, further validation of these findings is still required, and additional studies should examine the biomarker specificity and associations in settings closer to clinical practice. The combined biomarker score appears to be a more accurate predictor of risk than tests for more commonly known risk factors. Identifying individuals who are at high risk using these biomarkers might help to target preventative medical treatments to those with the greatest need.
However, there are several limitations to this study. As an observational study, it provides evidence of only a correlation between a biomarker score and ill health. It does not identify any underlying causes. Other factors, not detectable by NMR spectroscopy, might be the true cause of serious health problems and would provide a more accurate assessment of risk. Nor does this study identify what kinds of treatment might prove successful in reducing the risks. Therefore, more research is needed to determine whether testing for these biomarkers would provide any clinical benefit.
There were also some technical limitations to the study. NMR spectroscopy does not detect as many biomarkers as mass spectrometry, which might therefore identify further biomarkers for a more accurate risk assessment. In addition, because both study groups were northern European, it is not yet known whether the results would be the same in other ethnic groups or populations with different lifestyles.
In spite of these limitations, the fact that the same four biomarkers are associated with a short-term risk of death from a variety of diseases does suggest that similar underlying mechanisms are taking place. This observation points to some potentially valuable areas of research to understand precisely what's contributing to the increased risk.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001606
The US National Institute of Environmental Health Sciences has information on biomarkers
The US Food and Drug Administration has a Biomarker Qualification Program to help researchers in identifying and evaluating new biomarkers
Further information on the Estonian Biobank is available
The Computational Medicine Research Team of the University of Oulu and the University of Bristol have a webpage that provides further information on high-throughput biomarker profiling by NMR spectroscopy
doi:10.1371/journal.pmed.1001606
PMCID: PMC3934819  PMID: 24586121
18.  Chromosome X-Wide Association Study Identifies Loci for Fasting Insulin and Height and Evidence for Incomplete Dosage Compensation 
PLoS Genetics  2014;10(2):e1004127.
The X chromosome (chrX) represents one potential source for the “missing heritability” for complex phenotypes, which thus far has remained underanalyzed in genome-wide association studies (GWAS). Here we demonstrate the benefits of including chrX in GWAS by assessing the contribution of 404,862 chrX SNPs to levels of twelve commonly studied cardiometabolic and anthropometric traits in 19,697 Finnish and Swedish individuals with replication data on 5,032 additional Finns. By using a linear mixed model, we estimate that on average 2.6% of the additive genetic variance in these twelve traits is attributable to chrX, this being in proportion to the number of SNPs in the chromosome. In a chrX-wide association analysis, we identify three novel loci: two for height (rs182838724 near FGF16/ATRX/MAGT1, joint P-value = 2.71×10−9, and rs1751138 near ITM2A, P-value = 3.03×10−10) and one for fasting insulin (rs139163435 in Xq23, P-value = 5.18×10−9). Further, we find that effect sizes for variants near ITM2A, a gene implicated in cartilage development, show evidence for a lack of dosage compensation. This observation is further supported by a sex-difference in ITM2A expression in whole blood (P-value = 0.00251), and is also in agreement with a previous report showing ITM2A escapes from X chromosome inactivation (XCI) in the majority of women. Hence, our results show one of the first links between phenotypic variation in a population sample and an XCI-escaping locus and pinpoint ITM2A as a potential contributor to the sexual dimorphism in height. In conclusion, our study provides a clear motivation for including chrX in large-scale genetic studies of complex diseases and traits.
Author Summary
The X chromosome (chrX) analyses have often been neglected in large-scale genome-wide association studies. Given that chrX contains a considerable proportion of DNA, we wanted to examine how the variation in the chromosome contributes to commonly studied phenotypes. To this end, we studied the associations of over 400,000 chrX variants with twelve complex phenotypes, such as height, in almost 25,000 Northern European individuals. Demonstrating the value of assessing chrX associations, we found that as a whole the variation in the chromosome influences the levels of many of these phenotypes and further identified three new genomic regions where the variants associate with height or fasting insulin levels. In one of these three associated regions, the region near ITM2A, we observed that there is a sex difference in the genetic effects on height in a manner consistent with a lack of dosage compensation in this locus. Further supporting this observation, ITM2A has been shown to be among those chrX genes where the X chromosome inactivation is incomplete. Identifying phenotype associations in regions like this where chrX allele dosages are not balanced between men and women can be particularly valuable in helping us to understand why some characteristics differ between sexes.
doi:10.1371/journal.pgen.1004127
PMCID: PMC3916240  PMID: 24516404
19.  The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies 
Background
Not all obese subjects have an adverse metabolic profile predisposing them to developing type 2 diabetes or cardiovascular disease. The BioSHaRE-EU Healthy Obese Project aims to gain insights into the consequences of (healthy) obesity using data on risk factors and phenotypes across several large-scale cohort studies. Aim of this study was to describe the prevalence of obesity, metabolic syndrome (MetS) and metabolically healthy obesity (MHO) in ten participating studies.
Methods
Ten different cohorts in seven countries were combined, using data transformed into a harmonized format. All participants were of European origin, with age 18–80 years. They had participated in a clinical examination for anthropometric and blood pressure measurements. Blood samples had been drawn for analysis of lipids and glucose. Presence of MetS was assessed in those with obesity (BMI ≥ 30 kg/m2) based on the 2001 NCEP ATP III criteria, as well as an adapted set of less strict criteria. MHO was defined as obesity, having none of the MetS components, and no previous diagnosis of cardiovascular disease.
Results
Data for 163,517 individuals were available; 17% were obese (11,465 men and 16,612 women). The prevalence of obesity varied from 11.6% in the Italian CHRIS cohort to 26.3% in the German KORA cohort. The age-standardized percentage of obese subjects with MetS ranged in women from 24% in CHRIS to 65% in the Finnish Health2000 cohort, and in men from 43% in CHRIS to 78% in the Finnish DILGOM cohort, with elevated blood pressure the most frequently occurring factor contributing to the prevalence of the metabolic syndrome. The age-standardized prevalence of MHO varied in women from 7% in Health2000 to 28% in NCDS, and in men from 2% in DILGOM to 19% in CHRIS. MHO was more prevalent in women than in men, and decreased with age in both sexes.
Conclusions
Through a rigorous harmonization process, the BioSHaRE-EU consortium was able to compare key characteristics defining the metabolically healthy obese phenotype across ten cohort studies. There is considerable variability in the prevalence of healthy obesity across the different European populations studied, even when unified criteria were used to classify this phenotype.
doi:10.1186/1472-6823-14-9
PMCID: PMC3923238  PMID: 24484869
Harmonization; Obesity; Metabolic syndrome; Cardiovascular disease; Metabolically healthy
20.  High Risk Population Isolate Reveals Low Frequency Variants Predisposing to Intracranial Aneurysms 
PLoS Genetics  2014;10(1):e1004134.
3% of the population develops saccular intracranial aneurysms (sIAs), a complex trait, with a sporadic and a familial form. Subarachnoid hemorrhage from sIA (sIA-SAH) is a devastating form of stroke. Certain rare genetic variants are enriched in the Finns, a population isolate with a small founder population and bottleneck events. As the sIA-SAH incidence in Finland is >2× increased, such variants may associate with sIA in the Finnish population. We tested 9.4 million variants for association in 760 Finnish sIA patients (enriched for familial sIA), and in 2,513 matched controls with case-control status and with the number of sIAs. The most promising loci (p<5E-6) were replicated in 858 Finnish sIA patients and 4,048 controls. The frequencies and effect sizes of the replicated variants were compared to a continental European population using 717 Dutch cases and 3,004 controls. We discovered four new high-risk loci with low frequency lead variants. Three were associated with the case-control status: 2q23.3 (MAF 2.1%, OR 1.89, p 1.42×10-9); 5q31.3 (MAF 2.7%, OR 1.66, p 3.17×10-8); 6q24.2 (MAF 2.6%, OR 1.87, p 1.87×10-11) and one with the number of sIAs: 7p22.1 (MAF 3.3%, RR 1.59, p 6.08×-9). Two of the associations (5q31.3, 6q24.2) replicated in the Dutch sample. The 7p22.1 locus was strongly differentiated; the lead variant was more frequent in Finland (4.6%) than in the Netherlands (0.3%). Additionally, we replicated a previously inconclusive locus on 2q33.1 in all samples tested (OR 1.27, p 1.87×10-12). The five loci explain 2.1% of the sIA heritability in Finland, and may relate to, but not explain, the increased incidence of sIA-SAH in Finland. This study illustrates the utility of population isolates, familial enrichment, dense genotype imputation and alternate phenotyping in search for variants associated with complex diseases.
Author Summary
Genome-wide association studies (GWAS) have been extensively used to identify common genetic variants associated with complex diseases. As common genetic variants have explained only a small fraction of the heritability of most complex diseases, there is a growing interest in the role of how low frequency and rare variants contribute to the susceptibility. Low frequency variants are more often specific to populations of distinct ancestries. Saccular intracranial aneurysms (sIA) are balloon-like dilatations in the arteries on the surface of the brain. The rupture of sIA causes life-threatening intracranial bleeding. sIA is a complex disease, which is known to sometimes run in families. Here, we utilize the recent advancements in knowledge of genetic variation in different populations to examine the role of low-frequency variants in sIA disease in the isolated population of Finland where sIA related strokes are more common than in most other populations. By studying >8000 Finns we identify four low-frequency variants associated with the sIA disease. We also show that the association of two of the variants are seen in other European populations as well. Our findings demonstrate that multiple study designs are needed to uncover more comprehensively their genetic background, including population isolates.
doi:10.1371/journal.pgen.1004134
PMCID: PMC3907358  PMID: 24497844
21.  Data harmonization and federated analysis of population-based studies: the BioSHaRE project 
Abstracts
Background
Individual-level data pooling of large population-based studies across research centres in international research projects faces many hurdles. The BioSHaRE (Biobank Standardisation and Harmonisation for Research Excellence in the European Union) project aims to address these issues by building a collaborative group of investigators and developing tools for data harmonization, database integration and federated data analyses.
Methods
Eight population-based studies in six European countries were recruited to participate in the BioSHaRE project. Through workshops, teleconferences and electronic communications, participating investigators identified a set of 96 variables targeted for harmonization to answer research questions of interest. Using each study’s questionnaires, standard operating procedures, and data dictionaries, harmonization potential was assessed. Whenever harmonization was deemed possible, processing algorithms were developed and implemented in an open-source software infrastructure to transform study-specific data into the target (i.e. harmonized) format. Harmonized datasets located on server in each research centres across Europe were interconnected through a federated database system to perform statistical analysis.
Results
Retrospective harmonization led to the generation of common format variables for 73% of matches considered (96 targeted variables across 8 studies). Authenticated investigators can now perform complex statistical analyses of harmonized datasets stored on distributed servers without actually sharing individual-level data using the DataSHIELD method.
Conclusion
New Internet-based networking technologies and database management systems are providing the means to support collaborative, multi-center research in an efficient and secure manner. The results from this pilot project show that, given a strong collaborative relationship between participating studies, it is possible to seamlessly co-analyse internationally harmonized research databases while allowing each study to retain full control over individual-level data. We encourage additional collaborative research networks in epidemiology, public health, and the social sciences to make use of the open source tools presented herein.
doi:10.1186/1742-7622-10-12
PMCID: PMC4175511  PMID: 24257327
23.  Prevalence of arrhythmia-associated gene mutations and risk of sudden cardiac death in the Finnish population 
Annals of medicine  2013;45(4):328-335.
Background
Sudden cardiac death (SCD) remains a major cause of death in Western Countries. It has a heritable component, but previous molecular studies have mainly focused on common genetic variants. We studied the prevalence, clinical phenotypes, and risk of SCD presented by ten rare mutations previously associated with arrhythmogenic right ventricular cardiomyopathy, long QT syndrome, or catecholaminergic polymorphic ventricular tachycardia.
Methods
The occurrence of ten arrhythmia-associated mutations was determined in four large prospective population cohorts (FINRISK 1992, 1997, 2002, and Health 2000, n = 28,465) and two series of forensic autopsies (The Helsinki Sudden Death Study and The Tampere Autopsy Study, n = 825). Follow-up data was collected from national registries.
Results
The ten mutations showed a combined prevalence of 79 per 10,000 individuals in Finland and six of them showed remarkable geographic clustering. Of a total of 715 SCD cases, seven (1.0%) carried one of the ten mutations assayed: three carried KCNH2 R176W, one KCNH2 L552S, two PKP2 Q59L, and one RYR2 R3570W.
Conclusions
Arrhythmia-associated mutations are prevalent in the general Finnish population but do not seem to present a major risk factor for SCD, at least during a mean of 10-year follow-up of a random adult population sample.
doi:10.3109/07853890.2013.783995
PMCID: PMC3778376  PMID: 23651034
Arrhythmia; Genetic epidemiology; Genetics; Mutation; Sudden cardiac death
24.  GWAS of 126,559 Individuals Identifies Genetic Variants Associated with Educational Attainment 
Rietveld, Cornelius A. | Medland, Sarah E. | Derringer, Jaime | Yang, Jian | Esko, Tõnu | Martin, Nicolas W. | Westra, Harm-Jan | Shakhbazov, Konstantin | Abdellaoui, Abdel | Agrawal, Arpana | Albrecht, Eva | Alizadeh, Behrooz Z. | Amin, Najaf | Barnard, John | Baumeister, Sebastian E. | Benke, Kelly S. | Bielak, Lawrence F. | Boatman, Jeffrey A. | Boyle, Patricia A. | Davies, Gail | de Leeuw, Christiaan | Eklund, Niina | Evans, Daniel S. | Ferhmann, Rudolf | Fischer, Krista | Gieger, Christian | Gjessing, Håkon K. | Hägg, Sara | Harris, Jennifer R. | Hayward, Caroline | Holzapfel, Christina | Ibrahim-Verbaas, Carla A. | Ingelsson, Erik | Jacobsson, Bo | Joshi, Peter K. | Jugessur, Astanand | Kaakinen, Marika | Kanoni, Stavroula | Karjalainen, Juha | Kolcic, Ivana | Kristiansson, Kati | Kutalik, Zoltán | Lahti, Jari | Lee, Sang H. | Lin, Peng | Lind, Penelope A. | Liu, Yongmei | Lohman, Kurt | Loitfelder, Marisa | McMahon, George | Vidal, Pedro Marques | Meirelles, Osorio | Milani, Lili | Myhre, Ronny | Nuotio, Marja-Liisa | Oldmeadow, Christopher J. | Petrovic, Katja E. | Peyrot, Wouter J. | Polašek, Ozren | Quaye, Lydia | Reinmaa, Eva | Rice, John P. | Rizzi, Thais S. | Schmidt, Helena | Schmidt, Reinhold | Smith, Albert V. | Smith, Jennifer A. | Tanaka, Toshiko | Terracciano, Antonio | van der Loos, Matthijs J.H.M. | Vitart, Veronique | Völzke, Henry | Wellmann, Jürgen | Yu, Lei | Zhao, Wei | Allik, Jüri | Attia, John R. | Bandinelli, Stefania | Bastardot, François | Beauchamp, Jonathan | Bennett, David A. | Berger, Klaus | Bierut, Laura J. | Boomsma, Dorret I. | Bültmann, Ute | Campbell, Harry | Chabris, Christopher F. | Cherkas, Lynn | Chung, Mina K. | Cucca, Francesco | de Andrade, Mariza | De Jager, Philip L. | De Neve, Jan-Emmanuel | Deary, Ian J. | Dedoussis, George V. | Deloukas, Panos | Dimitriou, Maria | Eiriksdottir, Gudny | Elderson, Martin F. | Eriksson, Johan G. | Evans, David M. | Faul, Jessica D. | Ferrucci, Luigi | Garcia, Melissa E. | Grönberg, Henrik | Gudnason, Vilmundur | Hall, Per | Harris, Juliette M. | Harris, Tamara B. | Hastie, Nicholas D. | Heath, Andrew C. | Hernandez, Dena G. | Hoffmann, Wolfgang | Hofman, Adriaan | Holle, Rolf | Holliday, Elizabeth G. | Hottenga, Jouke-Jan | Iacono, William G. | Illig, Thomas | Järvelin, Marjo-Riitta | Kähönen, Mika | Kaprio, Jaakko | Kirkpatrick, Robert M. | Kowgier, Matthew | Latvala, Antti | Launer, Lenore J. | Lawlor, Debbie A. | Lehtimäki, Terho | Li, Jingmei | Lichtenstein, Paul | Lichtner, Peter | Liewald, David C. | Madden, Pamela A. | Magnusson, Patrik K. E. | Mäkinen, Tomi E. | Masala, Marco | McGue, Matt | Metspalu, Andres | Mielck, Andreas | Miller, Michael B. | Montgomery, Grant W. | Mukherjee, Sutapa | Nyholt, Dale R. | Oostra, Ben A. | Palmer, Lyle J. | Palotie, Aarno | Penninx, Brenda | Perola, Markus | Peyser, Patricia A. | Preisig, Martin | Räikkönen, Katri | Raitakari, Olli T. | Realo, Anu | Ring, Susan M. | Ripatti, Samuli | Rivadeneira, Fernando | Rudan, Igor | Rustichini, Aldo | Salomaa, Veikko | Sarin, Antti-Pekka | Schlessinger, David | Scott, Rodney J. | Snieder, Harold | Pourcain, Beate St | Starr, John M. | Sul, Jae Hoon | Surakka, Ida | Svento, Rauli | Teumer, Alexander | Tiemeier, Henning | Rooij, Frank JAan | Van Wagoner, David R. | Vartiainen, Erkki | Viikari, Jorma | Vollenweider, Peter | Vonk, Judith M. | Waeber, Gérard | Weir, David R. | Wichmann, H.-Erich | Widen, Elisabeth | Willemsen, Gonneke | Wilson, James F. | Wright, Alan F. | Conley, Dalton | Davey-Smith, George | Franke, Lude | Groenen, Patrick J. F. | Hofman, Albert | Johannesson, Magnus | Kardia, Sharon L.R. | Krueger, Robert F. | Laibson, David | Martin, Nicholas G. | Meyer, Michelle N. | Posthuma, Danielle | Thurik, A. Roy | Timpson, Nicholas J. | Uitterlinden, André G. | van Duijn, Cornelia M. | Visscher, Peter M. | Benjamin, Daniel J. | Cesarini, David | Koellinger, Philipp D.
Science (New York, N.Y.)  2013;340(6139):1467-1471.
A genome-wide association study of educational attainment was conducted in a discovery sample of 101,069 individuals and a replication sample of 25,490. Three independent SNPs are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (R2 ≈ 0.02%), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for ≈ 2% of the variance in both educational attainment and cognitive function. Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for follow-up work, and our effect size estimates can anchor power analyses in social-science genetics.
doi:10.1126/science.1235488
PMCID: PMC3751588  PMID: 23722424
25.  Genome-wide association analyses identify 18 new loci associated with serum urate concentrations 
Köttgen, Anna | Albrecht, Eva | Teumer, Alexander | Vitart, Veronique | Krumsiek, Jan | Hundertmark, Claudia | Pistis, Giorgio | Ruggiero, Daniela | O’Seaghdha, Conall M | Haller, Toomas | Yang, Qiong | Tanaka, Toshiko | Johnson, Andrew D | Kutalik, Zoltán | Smith, Albert V | Shi, Julia | Struchalin, Maksim | Middelberg, Rita P S | Brown, Morris J | Gaffo, Angelo L | Pirastu, Nicola | Li, Guo | Hayward, Caroline | Zemunik, Tatijana | Huffman, Jennifer | Yengo, Loic | Zhao, Jing Hua | Demirkan, Ayse | Feitosa, Mary F | Liu, Xuan | Malerba, Giovanni | Lopez, Lorna M | van der Harst, Pim | Li, Xinzhong | Kleber, Marcus E | Hicks, Andrew A | Nolte, Ilja M | Johansson, Asa | Murgia, Federico | Wild, Sarah H | Bakker, Stephan J L | Peden, John F | Dehghan, Abbas | Steri, Maristella | Tenesa, Albert | Lagou, Vasiliki | Salo, Perttu | Mangino, Massimo | Rose, Lynda M | Lehtimäki, Terho | Woodward, Owen M | Okada, Yukinori | Tin, Adrienne | Müller, Christian | Oldmeadow, Christopher | Putku, Margus | Czamara, Darina | Kraft, Peter | Frogheri, Laura | Thun, Gian Andri | Grotevendt, Anne | Gislason, Gauti Kjartan | Harris, Tamara B | Launer, Lenore J | McArdle, Patrick | Shuldiner, Alan R | Boerwinkle, Eric | Coresh, Josef | Schmidt, Helena | Schallert, Michael | Martin, Nicholas G | Montgomery, Grant W | Kubo, Michiaki | Nakamura, Yusuke | Tanaka, Toshihiro | Munroe, Patricia B | Samani, Nilesh J | Jacobs, David R | Liu, Kiang | D’Adamo, Pio | Ulivi, Sheila | Rotter, Jerome I | Psaty, Bruce M | Vollenweider, Peter | Waeber, Gerard | Campbell, Susan | Devuyst, Olivier | Navarro, Pau | Kolcic, Ivana | Hastie, Nicholas | Balkau, Beverley | Froguel, Philippe | Esko, Tõnu | Salumets, Andres | Khaw, Kay Tee | Langenberg, Claudia | Wareham, Nicholas J | Isaacs, Aaron | Kraja, Aldi | Zhang, Qunyuan | Wild, Philipp S | Scott, Rodney J | Holliday, Elizabeth G | Org, Elin | Viigimaa, Margus | Bandinelli, Stefania | Metter, Jeffrey E | Lupo, Antonio | Trabetti, Elisabetta | Sorice, Rossella | Döring, Angela | Lattka, Eva | Strauch, Konstantin | Theis, Fabian | Waldenberger, Melanie | Wichmann, H-Erich | Davies, Gail | Gow, Alan J | Bruinenberg, Marcel | Study, LifeLines Cohort | Stolk, Ronald P | Kooner, Jaspal S | Zhang, Weihua | Winkelmann, Bernhard R | Boehm, Bernhard O | Lucae, Susanne | Penninx, Brenda W | Smit, Johannes H | Curhan, Gary | Mudgal, Poorva | Plenge, Robert M | Portas, Laura | Persico, Ivana | Kirin, Mirna | Wilson, James F | Leach, Irene Mateo | van Gilst, Wiek H | Goel, Anuj | Ongen, Halit | Hofman, Albert | Rivadeneira, Fernando | Uitterlinden, Andre G | Imboden, Medea | von Eckardstein, Arnold | Cucca, Francesco | Nagaraja, Ramaiah | Piras, Maria Grazia | Nauck, Matthias | Schurmann, Claudia | Budde, Kathrin | Ernst, Florian | Farrington, Susan M | Theodoratou, Evropi | Prokopenko, Inga | Stumvoll, Michael | Jula, Antti | Perola, Markus | Salomaa, Veikko | Shin, So-Youn | Spector, Tim D | Sala, Cinzia | Ridker, Paul M | Kähönen, Mika | Viikari, Jorma | Hengstenberg, Christian | Nelson, Christopher P | Consortium, CARDIoGRAM | Consortium, DIAGRAM | Consortium, ICBP | Consortium, MAGIC | Meschia, James F | Nalls, Michael A | Sharma, Pankaj | Singleton, Andrew B | Kamatani, Naoyuki | Zeller, Tanja | Burnier, Michel | Attia, John | Laan, Maris | Klopp, Norman | Hillege, Hans L | Kloiber, Stefan | Choi, Hyon | Pirastu, Mario | Tore, Silvia | Probst-Hensch, Nicole M | Völzke, Henry | Gudnason, Vilmundur | Parsa, Afshin | Schmidt, Reinhold | Whitfield, John B | Fornage, Myriam | Gasparini, Paolo | Siscovick, David S | Polašek, Ozren | Campbell, Harry | Rudan, Igor | Bouatia-Naji, Nabila | Metspalu, Andres | Loos, Ruth J F | van Duijn, Cornelia M | Borecki, Ingrid B | Ferrucci, Luigi | Gambaro, Giovanni | Deary, Ian J | Wolffenbuttel, Bruce H R | Chambers, John C | März, Winfried | Pramstaller, Peter P | Snieder, Harold | Gyllensten, Ulf | Wright, Alan F | Navis, Gerjan | Watkins, Hugh | Witteman, Jacqueline C M | Sanna, Serena | Schipf, Sabine | Dunlop, Malcolm G | Tönjes, Anke | Ripatti, Samuli | Soranzo, Nicole | Toniolo, Daniela | Chasman, Daniel I | Raitakari, Olli | Kao, W H Linda | Ciullo, Marina | Fox, Caroline S | Caulfield, Mark | Bochud, Murielle | Gieger, Christian
Nature genetics  2012;45(2):145-154.
Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SFMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout.
doi:10.1038/ng.2500
PMCID: PMC3663712  PMID: 23263486

Results 1-25 (82)