PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids 
Diabetologia  2013;56:2266-2274.
Aims/hypothesis
We examined whether analysis of lipids by ultra-performance liquid chromatography (UPLC) coupled to MS allows the development of a laboratory test for non-alcoholic fatty-liver disease (NAFLD), and how a lipid-profile biomarker compares with the prediction of NAFLD and liver-fat content based on routinely available clinical and laboratory data.
Methods
We analysed the concentrations of molecular lipids by UPLC-MS in blood samples of 679 well-characterised individuals in whom liver-fat content was measured using proton magnetic resonance spectroscopy (1H-MRS) or liver biopsy. The participants were divided into biomarker-discovery (n = 287) and validation (n = 392) groups to build and validate the diagnostic models, respectively.
Results
Individuals with NAFLD had increased triacylglycerols with low carbon number and double-bond content while lysophosphatidylcholines and ether phospholipids were diminished in those with NAFLD. A serum-lipid signature comprising three molecular lipids (‘lipid triplet’) was developed to estimate the percentage of liver fat. It had a sensitivity of 69.1% and specificity of 73.8% when applied for diagnosis of NAFLD in the validation series. The usefulness of the lipid triplet was demonstrated in a weight-loss intervention study.
Conclusions/interpretation
The liver-fat-biomarker signature based on molecular lipids may provide a non-invasive tool to diagnose NAFLD, in addition to highlighting lipid molecular pathways involved in the disease.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-013-2981-2) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
doi:10.1007/s00125-013-2981-2
PMCID: PMC3764317  PMID: 23824212
Lipidomics; Mass spectrometry; Non-alcoholic fatty-liver disease
2.  Mondo/ChREBP-Mlx-Regulated Transcriptional Network Is Essential for Dietary Sugar Tolerance in Drosophila 
PLoS Genetics  2013;9(4):e1003438.
Sugars are important nutrients for many animals, but are also proposed to contribute to overnutrition-derived metabolic diseases in humans. Understanding the genetic factors governing dietary sugar tolerance therefore has profound biological and medical significance. Paralogous Mondo transcription factors ChREBP and MondoA, with their common binding partner Mlx, are key sensors of intracellular glucose flux in mammals. Here we report analysis of the in vivo function of Drosophila melanogaster Mlx and its binding partner Mondo (ChREBP) in respect to tolerance to dietary sugars. Larvae lacking mlx or having reduced mondo expression show strikingly reduced survival on a diet with moderate or high levels of sucrose, glucose, and fructose. mlx null mutants display widespread changes in lipid and phospholipid profiles, signs of amino acid catabolism, as well as strongly elevated circulating glucose levels. Systematic loss-of-function analysis of Mlx target genes reveals that circulating glucose levels and dietary sugar tolerance can be genetically uncoupled: Krüppel-like transcription factor Cabut and carbonyl detoxifying enzyme Aldehyde dehydrogenase type III are essential for dietary sugar tolerance, but display no influence on circulating glucose levels. On the other hand, Phosphofructokinase 2, a regulator of the glycolysis pathway, is needed for both dietary sugar tolerance and maintenance of circulating glucose homeostasis. Furthermore, we show evidence that fatty acid synthesis, which is a highly conserved Mondo-Mlx-regulated process, does not promote dietary sugar tolerance. In contrast, survival of larvae with reduced fatty acid synthase expression is sugar-dependent. Our data demonstrate that the transcriptional network regulated by Mondo-Mlx is a critical determinant of the healthful dietary spectrum allowing Drosophila to exploit sugar-rich nutrient sources.
Author Summary
Diet displays extreme natural variation between animal species, which range from highly specialized carnivores, herbivores, and nectarivores to flexible dietary generalists. Humans are not identical in this respect either, but the genetic background likely defines the framework for a healthy diet. However, we understand poorly the genetic factors that define the spectrum of healthy diet for a given species or individual. Here we have explored the genetic basis of dietary sugar tolerance of Drosophila melanogaster. D. melanogaster is a generalist fruit breeder that feeds on micro-organisms on decaying fruits and vegetables with varying sugar content. However, mutants lacking the conserved Mondo-Mlx transcription factor complex display striking intolerance towards dietary sucrose, glucose, or fructose. This is manifested in the larvae by the inability to grow and pupate on sugar-rich food, including red grape, which belongs to the normal diet of wild D. melanogaster. Larvae lacking Mondo-Mlx show widespread metabolic imbalance, including highly elevated circulating glucose. Genome-wide gene expression analysis combined with systematic loss-of-function screening of Mlx targets reveal that the genetic network providing sugar tolerance includes a secondary transcriptional effector as well as regulators of glycolysis and detoxification of reactive metabolites.
doi:10.1371/journal.pgen.1003438
PMCID: PMC3616910  PMID: 23593032
3.  Age- and Islet Autoimmunity–Associated Differences in Amino Acid and Lipid Metabolites in Children at Risk for Type 1 Diabetes 
Diabetes  2011;60(11):2740-2747.
OBJECTIVE
Islet autoimmunity precedes type 1 diabetes and often initiates in childhood. Phenotypic variation in islet autoimmunity relative to the age of its development suggests heterogeneous mechanisms of autoimmune activation. To support this notion, we examined whether serum metabolite profiles differ between children with respect to islet autoantibody status and the age of islet autoantibody development.
RESEARCH DESIGN AND METHODS
The study analyzed 29 metabolites of amino acid metabolism and 511 lipids assigned to 12 lipid clusters in children, with a type 1 diabetic parent, who first developed autoantibodies at age 2 years or younger (n = 13), at age 8 years or older (n = 22), or remained autoantibody-negative, and were matched for age, date of birth, and HLA genotypes (n = 35). Ultraperformance liquid chromatography and mass spectroscopy were used to measure metabolites and lipids quantitatively in the first autoantibody-positive and matched autoantibody-negative serum samples and in a second sample after 1 year of follow-up.
RESULTS
Differences in the metabolite profiles were observed relative to age and islet autoantibody status. Independent of age-related differences, autoantibody-positive children had higher levels of odd-chain triglycerides and polyunsaturated fatty acid–containing phospholipids than autoantibody-negative children and independent of age at first autoantibody appearance (P < 0.0001). Consistent with our hypothesis, children who developed autoantibodies by age 2 years had twofold lower concentration of methionine compared with those who developed autoantibodies in late childhood or remained autoantibody-negative (P < 0.0001).
CONCLUSIONS
Distinct metabolic profiles are associated with age and islet autoimmunity. Pathways that use methionine are potentially relevant for developing islet autoantibodies in early infancy.
doi:10.2337/db10-1652
PMCID: PMC3198092  PMID: 22025777
4.  Fish Oil Supplementation Alters the Plasma Lipidomic Profile and Increases Long-Chain PUFAs of Phospholipids and Triglycerides in Healthy Subjects 
PLoS ONE  2012;7(8):e42550.
Background
While beneficial health effects of fish and fish oil consumption are well documented, the incorporation of n-3 polyunsaturated fatty acids in plasma lipid classes is not completely understood. The aim of this study was to investigate the effect of fish oil supplementation on the plasma lipidomic profile in healthy subjects.
Methodology/Principal Findings
In a double-blinded randomized controlled parallel-group study, healthy subjects received capsules containing either 8 g/d of fish oil (FO) (1.6 g/d EPA+DHA) (n = 16) or 8 g/d of high oleic sunflower oil (HOSO) (n = 17) for seven weeks. During the first three weeks of intervention, the subjects completed a fully controlled diet period. BMI and total serum triglycerides, total-, LDL- and HDL-cholesterol were unchanged during the intervention period. Lipidomic analyses were performed using Ultra Performance Liquid Chromatography (UPLC) coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (QTOFMS), where 568 lipids were detected and 260 identified. Both t-tests and Multi-Block Partial Least Square Regression (MBPLSR) analysis were performed for analysing differences between the intervention groups. The intervention groups were well separated by the lipidomic data after three weeks of intervention. Several lipid classes such as phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, sphingomyelin, phosphatidylserine, phosphatidylglycerol, and triglycerides contributed strongly to this separation. Twenty-three lipids were significantly decreased (FDR<0.05) in the FO group after three weeks compared with the HOSO group, whereas fifty-one were increased including selected phospholipids and triglycerides of long-chain polyunsaturated fatty acids. After seven weeks of intervention the two intervention groups showed similar grouping.
Conclusions/Significance
In healthy subjects, fish oil supplementation alters lipid metabolism and increases the proportion of phospholipids and triglycerides containing long-chain polyunsaturated fatty acids. Whether the beneficial effects of fish oil supplementation may be explained by a remodeling of the plasma lipids into phospholipids and triglycerides of long-chain polyunsaturated fatty acids needs to be further investigated.
Trial Registration
ClinicalTrials.gov NCT01034423
doi:10.1371/journal.pone.0042550
PMCID: PMC3429454  PMID: 22952598
5.  Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches 
European Journal of Nutrition  2012;52(2):833-846.
Purpose
Syrah red grapes are used in the production of tannin-rich red wines. Tannins are high molecular weight molecules, proanthocyanidins (PAs), and poorly absorbed in the upper intestine. In this study, gut microbial metabolism of Syrah grape phenolic compounds was investigated.
Methods
Syrah grape pericarp was subjected to an enzymatic in vitro digestion model, and red wine and grape skin PA fraction were prepared. Microbial conversion was screened using an in vitro colon model with faecal microbiota, by measurement of short-chain fatty acids by gas chromatography (GC) and microbial phenolic metabolites using GC with mass detection (GC–MS). Red wine metabolites were further profiled using two-dimensional GC mass spectrometry (GCxGC-TOFMS). In addition, the effect of PA structure and dose on conversion efficiency was investigated by GC–MS.
Results
Red wine exhibited a higher degree of C1–C3 phenolic acid formation than PA fraction or grape pericarp powders. Hydroxyphenyl valeric acid (flavanols and PAs as precursors) and 3,5-dimethoxy-4-hydroxybenzoic acid (anthocyanin as a precursor) were identified from the red wine metabolite profile. In the absence of native grape pericarp or red wine matrix, the isolated PAs were found to be effective in the dose-dependent inhibition of microbial conversions and short-chain fatty acid formation.
Conclusions
Metabolite profiling was complementary to targeted analysis. The identified metabolites had biological relevance, because the structures of the metabolites resembled fragments of their grape phenolic precursors or were in agreement with literature data.
Electronic supplementary material
The online version of this article (doi:10.1007/s00394-012-0391-8) contains supplementary material, which is available to authorized users.
doi:10.1007/s00394-012-0391-8
PMCID: PMC3573183  PMID: 22699306
Syrah grape; Red wine; Proanthocyanidins; In vitro colon conversions; Phenolic compounds; Short-chain fatty acids; Metabolite profiling
6.  Phospholipids and insulin resistance in psychosis: a lipidomics study of twin pairs discordant for schizophrenia 
Genome Medicine  2012;4(1):1.
Background
Several theories have been proposed to conceptualize the pathological processes inherent to schizophrenia. The 'prostaglandin deficiency' hypothesis postulates that defective enzyme systems converting essential fatty acids to prostaglandins lead to diminished levels of prostaglandins, which in turn affect synaptic transmission.
Methods
Here we sought to determine the lipidomic profiles associated with schizophrenia in twin pairs discordant for schizophrenia as well as unaffected twin pairs. The study included serum samples from 19 twin pairs discordant for schizophrenia (mean age 51 ± 10 years; 7 monozygotic pairs; 13 female pairs) and 34 age and gender matched healthy twins as controls. Neurocognitive assessment data and gray matter density measurements taken from high-resolution magnetic resonance images were also obtained. A lipidomics platform using ultra performance liquid chromatography coupled to time-of-flight mass spectrometry was applied for the analysis of serum samples.
Results
In comparison to their healthy co-twins, the patients had elevated triglycerides and were more insulin resistant. They had diminished lysophosphatidylcholine levels, which associated with decreased cognitive speed.
Conclusions
Our findings may be of pathophysiological relevance since lysophosphatidylcholines, byproducts of phospholipase A2-catalyzed phospholipid hydrolysis, are preferred carriers of polyunsaturated fatty acids across the blood-brain barrier. Furthermore, diminishment of lysophosphatidylcholines suggests that subjects at risk of schizophrenia may be more susceptible to infections. Their association with cognitive speed supports the view that altered neurotransmission in schizophrenia may be in part mediated by reactive lipids such as prostaglandins.
doi:10.1186/gm300
PMCID: PMC3334549  PMID: 22257447
7.  Association of Lipidome Remodeling in the Adipocyte Membrane with Acquired Obesity in Humans 
PLoS Biology  2011;9(6):e1000623.
The authors describe a new approach to studying cellular lipid profiles and propose a compensatory mechanism that may help maintain the normal membrane function of adipocytes in the context of obesity.
Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved states of obesity by investigating a separated set of individuals considered to be morbidly obese. Despite lower dietary polyunsaturated fatty acid intake, the obese twin individuals had increased proportions of palmitoleic and arachidonic acids in their adipose tissue, including increased levels of ethanolamine plasmalogens containing arachidonic acid. Information gathered from these experimental groups was used for molecular dynamics simulations of lipid bilayers combined with dependency network analysis of combined clinical, lipidomics, and gene expression data. The simulations suggested that the observed lipid remodeling maintains the biophysical properties of lipid membranes, at the price, however, of increasing their vulnerability to inflammation. Conversely, in morbidly obese subjects, the proportion of plasmalogens containing arachidonic acid in the adipose tissue was markedly decreased. We also show by in vitro Elovl6 knockdown that the lipid network regulating the observed remodeling may be amenable to genetic modulation. Together, our novel approach suggests a physiological mechanism by which adaptation of adipocyte membranes to adipose tissue expansion associates with positive energy balance, potentially leading to higher vulnerability to inflammation in acquired obesity. Further studies will be needed to determine the cause of this effect.
Author Summary
Obesity is characterized by excess body fat, which is predominantly stored in the adipose tissue. When adipose tissue expands too much it stops storing lipid appropriately. The excess lipid accumulates in organs such as muscle, liver, and pancreas, causing metabolic disease. In this study, we aim to identify factors that cause adipose tissue to malfunction when it reaches its limit of expansion. We performed lipidomic analyses of human adipose tissue in twin pairs discordant for obesity—that is, one of the twins was lean and one was obese—but still metabolically healthy. We identified multiple changes in membrane phospholipids. Using computer modeling, we show that “lean” and “obese” membrane lipid compositions have the same physical properties despite their different compositions. We hypothesize that this represents allostasis—changes in lipid membrane composition in obesity occur to protect the physical properties of the membranes. However, protective changes cannot occur without a cost, and accordingly we demonstrate that switching to the “obese” lipid composition is associated with higher levels of adipose tissue inflammation. In a separate group of metabolically unhealthy obese individuals we investigated how the processes that regulate the “lean” and “obese” lipid profiles are changed. To determine how these lipid membrane changes are regulated we constructed an in silico network model that identified key control points and potential molecular players. We validated this network by performing genetic manipulations in cell models. Therapeutic targeting of this network may open new opportunities for the prevention or treatment of obesity-related metabolic complications.
doi:10.1371/journal.pbio.1000623
PMCID: PMC3110175  PMID: 21666801
8.  Spatial Distribution of Glycerophospholipids in the Ocular Lens 
PLoS ONE  2011;6(4):e19441.
Knowledge of the spatial distribution of lipids in the intraocular lens is important for understanding the physiology and biochemistry of this unique tissue and for gaining a better insight into the mechanisms underlying diseases of the lens. Following our previous study showing the spatial distribution of sphingolipids in the porcine lens, the current study used ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS) to provide the whole lipidome of porcine lens and these studies were supplemented by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) of the lens using ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to determine the spatial distribution of glycerophospholipids. Altogether 172 lipid species were identified with high confidence and their concentration was determined. Sphingomyelins, phosphatidylcholines, and phosphatidylethanolamines were the most abundant lipid classes. We then determined the spatial and concentration-dependent distributions of 20 phosphatidylcholines, 6 phosphatidylethanolamines, and 4 phosphatidic acids. Based on the planar molecular images of the lipids, we report the organization of fiber cell membranes within the ocular lens and suggest roles for these lipids in normal and diseased lenses.
doi:10.1371/journal.pone.0019441
PMCID: PMC3084859  PMID: 21559377
9.  Metabolome in schizophrenia and other psychotic disorders: a general population-based study 
Genome Medicine  2011;3(3):19.
Background
Persons with schizophrenia and other psychotic disorders have a high prevalence of obesity, impaired glucose tolerance, and lipid abnormalities, particularly hypertriglyceridemia and low high-density lipoprotein. More detailed molecular information on the metabolic abnormalities may reveal clues about the pathophysiology of these changes, as well as about disease specificity.
Methods
We applied comprehensive metabolomics in serum samples from a general population-based study in Finland. The study included all persons with DSM-IV primary psychotic disorder (schizophrenia, n = 45; other non-affective psychosis (ONAP), n = 57; affective psychosis, n = 37) and controls matched by age, sex, and region of residence. Two analytical platforms for metabolomics were applied to all serum samples: a global lipidomics platform based on ultra-performance liquid chromatography coupled to mass spectrometry, which covers molecular lipids such as phospholipids and neutral lipids; and a platform for small polar metabolites based on two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS).
Results
Compared with their matched controls, persons with schizophrenia had significantly higher metabolite levels in six lipid clusters containing mainly saturated triglycerides, and in two small-molecule clusters containing, among other metabolites, (1) branched chain amino acids, phenylalanine and tyrosine, and (2) proline, glutamic, lactic and pyruvic acids. Among these, serum glutamic acid was elevated in all psychoses (P = 0.0020) compared to controls, while proline upregulation (P = 0.000023) was specific to schizophrenia. After adjusting for medication and metabolic comorbidity in linear mixed models, schizophrenia remained independently associated with higher levels in seven of these eight clusters (P < 0.05 in each cluster). The metabolic abnormalities were less pronounced in persons with ONAP or affective psychosis.
Conclusions
Our findings suggest that specific metabolic abnormalities related to glucoregulatory processes and proline metabolism are specifically associated with schizophrenia and reflect two different disease-related pathways. Metabolomics, which is sensitive to both genetic and environmental variation, may become a powerful tool in psychiatric research to investigate disease susceptibility, clinical course, and treatment response.
doi:10.1186/gm233
PMCID: PMC3092104  PMID: 21429189

Results 1-9 (9)