PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children☆ 
EBioMedicine  2015;2(8):968-984.
Gut microbiota has been implicated as a pivotal contributing factor in diet-related obesity; however, its role in development of disease phenotypes in human genetic obesity such as Prader–Willi syndrome (PWS) remains elusive. In this hospitalized intervention trial with PWS (n = 17) and simple obesity (n = 21) children, a diet rich in non-digestible carbohydrates induced significant weight loss and concomitant structural changes of the gut microbiota together with reduction of serum antigen load and alleviation of inflammation. Co-abundance network analysis of 161 prevalent bacterial draft genomes assembled directly from metagenomic datasets showed relative increase of functional genome groups for acetate production from carbohydrates fermentation. NMR-based metabolomic profiling of urine showed diet-induced overall changes of host metabotypes and identified significantly reduced trimethylamine N-oxide and indoxyl sulfate, host-bacteria co-metabolites known to induce metabolic deteriorations. Specific bacterial genomes that were correlated with urine levels of these detrimental co-metabolites were found to encode enzyme genes for production of their precursors by fermentation of choline or tryptophan in the gut. When transplanted into germ-free mice, the pre-intervention gut microbiota induced higher inflammation and larger adipocytes compared with the post-intervention microbiota from the same volunteer. Our multi-omics-based systems analysis indicates a significant etiological contribution of dysbiotic gut microbiota to both genetic and simple obesity in children, implicating a potentially effective target for alleviation.
Research in context
Poorly managed diet and genetic mutations are the two primary driving forces behind the devastating epidemic of obesity-related diseases. Lack of understanding of the molecular chain of causation between the driving forces and the disease endpoints retards progress in prevention and treatment of the diseases. We found that children genetically obese with Prader–Willi syndrome shared a similar dysbiosis in their gut microbiota with those having diet-related obesity. A diet rich in non-digestible but fermentable carbohydrates significantly promoted beneficial groups of bacteria and reduced toxin-producers, which contributes to the alleviation of metabolic deteriorations in obesity regardless of the primary driving forces.
Highlights
•Genetic and simple obesity in children shared a similar dysbiotic gut microbiota.•A diet rich in non-digestible carbohydrates significantly improved gut microbiota and alleviated genetic and simple obesity.•Specific bacterial genomes for producing obesity-related metabolites were identified.
doi:10.1016/j.ebiom.2015.07.007
PMCID: PMC4563136  PMID: 26425705
Prader–Willi syndrome; Obesity; Gut microbiota; Metagenomics; Metabolomics; Genome interaction network
2.  Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula 
The ISME Journal  2014;9(3):552-562.
The gut microbiota is hypothesized to have a critical role in metabolic diseases, including type 2 diabetes (T2D). A traditional Chinese herbal formula, Gegen Qinlian Decoction (GQD), can alleviate T2D. To find out whether GQD modulates the composition of the gut microbiota during T2D treatment, 187 T2D patients were randomly allocated to receive high (HD, n=44), moderate (MD, n=52), low dose GQD (LD, n=50) or the placebo (n=41) for 12 weeks in a double-blinded trial. Patients who received the HD or MD demonstrated significant reductions in adjusted mean changes from baseline of fasting blood glucose (FBG) and glycated hemoglobin (HbA1c) compared with the placebo and LD groups. Pyrosequencing of the V3 regions of 16S rRNA genes revealed a dose-dependent deviation of gut microbiota in response to GQD treatment. This deviation occurred before significant improvement of T2D symptoms was observed. Redundancy analysis identified 47 GQD-enriched species level phylotypes, 17 of which were negatively correlated with FBG and 9 with HbA1c. Real-time quantitative PCR confirmed that GQD significantly enriched Faecalibacterium prausnitzii, which was negatively correlated with FBG, HbA1c and 2-h postprandial blood glucose levels and positively correlated with homeostasis model assessment of β-cell function. Therefore, these data indicate that structural changes of gut microbiota are induced by Chinese herbal formula GQD. Specifically, GQD treatment may enrich the amounts of beneficial bacteria, such as Faecalibacterium spp. In conclusion, changes in the gut microbiota are associated with the anti-diabetic effects of GQD.
doi:10.1038/ismej.2014.177
PMCID: PMC4331591  PMID: 25279787
3.  Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice 
The ISME Journal  2014;9(1):1-15.
Structural disruption of gut microbiota and associated inflammation are considered important etiological factors in high fat diet (HFD)-induced metabolic syndrome (MS). Three candidate probiotic strains, Lactobacillus paracasei CNCM I-4270 (LC), L. rhamnosus I-3690 (LR) and Bifidobacterium animalis subsp. lactis I-2494 (BA), were individually administered to HFD-fed mice (108 cells day−1) for 12 weeks. Each strain attenuated weight gain and macrophage infiltration into epididymal adipose tissue and markedly improved glucose–insulin homeostasis and hepatic steatosis. Weighted UniFrac principal coordinate analysis based on 454 pyrosequencing of fecal bacterial 16S rRNA genes showed that the probiotic strains shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean mice fed a normal (chow) diet. Redundancy analysis revealed that abundances of 83 operational taxonomic units (OTUs) were altered by probiotics. Forty-nine altered OTUs were significantly correlated with one or more host MS parameters and were designated ‘functionally relevant phylotypes'. Thirteen of the 15 functionally relevant OTUs that were negatively correlated with MS phenotypes were promoted, and 26 of the 34 functionally relevant OTUs that were positively correlated with MS were reduced by at least one of the probiotics, but each strain changed a distinct set of functionally relevant OTUs. LC and LR increased cecal acetate but did not affect circulating lipopolysaccharide-binding protein; in contrast, BA did not increase acetate but significantly decreased adipose and hepatic tumor necrosis factor-α gene expression. These results suggest that Lactobacillus and Bifidobacterium differentially attenuate obesity comorbidities in part through strain-specific impacts on MS-associated phylotypes of gut microbiota in mice.
doi:10.1038/ismej.2014.99
PMCID: PMC4274436  PMID: 24936764
4.  Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations 
The ISME Journal  2012;6(10):1848-1857.
Disruption of the gut microbiota by high-fat diet (HFD) has been implicated in the development of obesity. It remains to be elucidated whether the HFD-induced shifts occur at the phylum level or whether they can be attributed to specific phylotypes; additionally, it is unclear to what extent the changes are reversible under normal chow (NC) feeding. One group (diet-induced obesity, DIO) of adult C57BL/6J mice was fed a HFD for 12 weeks until significant obesity and insulin resistance were observed, and then these mice were switched to NC feeding for 10 weeks. Upon switching to NC feeding, the metabolic deteriorations observed during HFD consumption were significantly alleviated. The second group (control, CHO) remained healthy under continuous NC feeding. UniFrac analysis of bar-coded pyrosequencing data showed continued structural segregation of DIO from CHO on HFD. At 4 weeks after switching back to NC, the gut microbiota in the DIO group had already moved back to the CHO space, and continued to progress along the same age trajectory and completely converged with CHO after 10 weeks. Redundancy analysis identified 77 key phylotypes responding to the dietary perturbations. HFD-induced shifts of these phylotypes all reverted to CHO levels over time. Some of these phylotypes exhibited robust age-related changes despite the dramatic abundance variations in response to dietary alternations. These findings suggest that HFD-induced structural changes of the gut microbiota can be attributed to reversible elevation or diminution of specific phylotypes, indicating the significant structural resilience of the gut microbiota of adult mice to dietary perturbations.
doi:10.1038/ismej.2012.27
PMCID: PMC3446802  PMID: 22495068
dietary perturbations; gut microbiota; obesity; resilience
5.  Structural Changes of Gut Microbiota during Berberine-Mediated Prevention of Obesity and Insulin Resistance in High-Fat Diet-Fed Rats 
PLoS ONE  2012;7(8):e42529.
Berberine, a major pharmacological component of the Chinese herb Coptis chinensis, which was originally used to treat bacterial diarrhea, has recently been demonstrated to be clinically effective in alleviating type 2 diabetes. In this study, we revealed that berberine effectively prevented the development of obesity and insulin resistance in high-fat diet (HFD)-fed rats, which showed decreased food intake. Increases in the levels of serum lipopolysaccharide-binding protein, monocyte chemoattractant protein-1, and leptin and decrease in the serum level of adiponectin corrected for body fat in HFD-fed rats were also significantly retarded by the co-administration of berberine at 100 mg/kg body weight. Bar-coded pyrosequencing of the V3 region of 16S rRNA genes revealed a significant reduction in the gut microbiota diversity of berberine-treated rats. UniFrac principal coordinates analysis revealed a marked shift of the gut microbiota structure in berberine-treated rats away from that of the controls. Redundancy analysis identified 268 berberine-responding operational taxonomic units (OTUs), most of which were essentially eliminated, whereas a few putative short-chain fatty acid (SCFA)-producing bacteria, including Blautia and Allobaculum, were selectively enriched, along with elevations of fecal SCFA concentrations. Partial least square regression models based on these 268 OTUs were established (Q2>0.6) for predicting the adiposity index, body weight, leptin and adiponectin corrected for body fat, indicating that these discrete phylotypes might have a close association with the host metabolic phenotypes. Taken together, our findings suggest that the prevention of obesity and insulin resistance by berberine in HFD-fed rats is at least partially mediated by structural modulation of the gut microbiota, which may help to alleviate inflammation by reducing the exogenous antigen load in the host and elevating SCFA levels in the intestine.
doi:10.1371/journal.pone.0042529
PMCID: PMC3411811  PMID: 22880019
6.  Adapting functional genomic tools to metagenomic analyses: investigating the role of gut bacteria in relation to obesity 
Briefings in Functional Genomics  2010;9(5-6):355-361.
With the expanding availability of sequencing technologies, research previously centered on the human genome can now afford to include the study of humans’ internal ecosystem (human microbiome). Given the scale of the data involved in this metagenomic research (two orders of magnitude larger than the human genome) and their importance in relation to human health, it is crucial to guarantee (along with the appropriate data collection and taxonomy) proper tools for data analysis. We propose to adapt the approaches defined for the analysis of gene-expression microarray in order to infer information in metagenomics. In particular, we applied SAM, a broadly used tool for the identification of differentially expressed genes among different samples classes, to a reported dataset on a research model with mice of two genotypes (a high density lipoprotein knockout mouse and its wild-type counterpart). The data contain two different diets (high-fat or normal-chow) to ensure the onset of obesity, prodrome of metabolic syndromes (MS). By using 16S rRNA gene as a genomic diversity marker, we illustrate how this approach can identify bacterial populations differentially enriched among different genetic and dietary conditions of the host. This approach faithfully reproduces highly-relevant results from phylogenetic and standard statistical analyses, used to explain the role of the gut microbiome in relation to obesity. This represents a promising proof-of-principle for using functional genomic approaches in the fast growing area of metagenomics, and warrants the availability of a large body of thoroughly tested and theoretically sound methodologies to this exciting new field.
doi:10.1093/bfgp/elq011
PMCID: PMC3080776  PMID: 21266343
human microbiome; functional genomic; metagenomics
7.  Structural modulation of gut microbiota in life-long calorie-restricted mice 
Nature Communications  2013;4:2163.
Calorie restriction has been regarded as the only experimental regimen that can effectively lengthen lifespan in various animal models, but the actual mechanism remains controversial. The gut microbiota has been shown to have a pivotal role in host health, and its structure is mostly shaped by diet. Here we show that life-long calorie restriction on both high-fat or low-fat diet, but not voluntary exercise, significantly changes the overall structure of the gut microbiota of C57BL/6 J mice. Calorie restriction enriches phylotypes positively correlated with lifespan, for example, the genus Lactobacillus on low-fat diet, and reduces phylotypes negatively correlated with lifespan. These calorie restriction-induced changes in the gut microbiota are concomitant with significantly reduced serum levels of lipopolysaccharide-binding protein, suggesting that animals under calorie restriction can establish a structurally balanced architecture of gut microbiota that may exert a health benefit to the host via reduction of antigen load from the gut.
Calorie restriction has been shown to extend lifespan in diverse model systems, however, the mechanisms underlying this effect remain unclear. Zhang et al. show that calorie restriction changes the structure of the gut microbiota in mice, enriching for phylotypes positively correlated with lifespan.
doi:10.1038/ncomms3163
PMCID: PMC3717500  PMID: 23860099
8.  A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome 
Fems Microbiology Ecology  2013;87(2):357-367.
Chronic inflammation induced by endotoxin from a dysbiotic gut microbiota contributes to the development of obesity-related metabolic disorders. Modification of gut microbiota by a diet to balance its composition becomes a promising strategy to help manage obesity. A dietary scheme based on whole grains, traditional Chinese medicinal foods, and prebiotics (WTP diet) was designed to meet human nutritional needs as well as balance the gut microbiota. Ninety-three of 123 central obese volunteers (BMI ≥ 28 kg m−2) completed a self-controlled clinical trial consisting of 9-week intervention on WTP diet followed by a 14-week maintenance period. The average weight loss reached 5.79 ± 4.64 kg (6.62 ± 4.94%), in addition to improvement in insulin sensitivity, lipid profiles, and blood pressure. Pyrosequencing of fecal samples showed that phylotypes related to endotoxin-producing opportunistic pathogens of Enterobacteriaceae and Desulfovibrionaceae were reduced significantly, while those related to gut barrier-protecting bacteria of Bifidobacteriaceae increased. Gut permeability, measured as lactulose/mannitol ratio, was decreased compared with the baseline. Plasma endotoxin load as lipopolysaccharide-binding protein was also significantly reduced, with concomitant decrease in tumor necrosis factor-α, interleukin-6, and an increase in adiponectin. These results suggest that modulation of the gut microbiota via dietary intervention may enhance the intestinal barrier integrity, reduce circulating antigen load, and ultimately ameliorate the inflammation and metabolic phenotypes.
doi:10.1111/1574-6941.12228
PMCID: PMC4255291  PMID: 24117923
gut microbiota; dietary intervention; chronic inflammation; metabolic syndrome

Results 1-8 (8)