PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
author:("sonora, Elena")
2.  Maternally inherited genetic variants of CADPS2 are present in Autism Spectrum Disorders and Intellectual Disability patients 
EMBO Molecular Medicine  2014;6(6):795-809.
Intellectual disability (ID) and autism spectrum disorders (ASDs) are complex neuropsychiatric conditions, with overlapping clinical boundaries in many patients. We identified a novel intragenic deletion of maternal origin in two siblings with mild ID and epilepsy in the CADPS2 gene, encoding for a synaptic protein involved in neurotrophin release and interaction with dopamine receptor type 2 (D2DR). Mutation screening of 223 additional patients (187 with ASD and 36 with ID) identified a missense change of maternal origin disrupting CADPS2/D2DR interaction. CADPS2 allelic expression was tested in blood and different adult human brain regions, revealing that the gene was monoallelically expressed in blood and amygdala, and the expressed allele was the one of maternal origin. Cadps2 gene expression performed in mice at different developmental stages was biallelic in the postnatal and adult stages; however, a monoallelic (maternal) expression was detected in the embryonal stage, suggesting that CADPS2 is subjected to tissue- and temporal-specific regulation in human and mice. We suggest that CADPS2 variants may contribute to ID/ASD development, possibly through a parent-of-origin effect.
doi:10.1002/emmm.201303235
PMCID: PMC4203356  PMID: 24737869
autism spectrum disorders; CADPS2; intellectual disability; monoallelic expression; mutation screening
3.  A CTNNA3 compound heterozygous deletion implicates a role for αT-catenin in susceptibility to autism spectrum disorder 
Background
Autism spectrum disorder (ASD) is a highly heritable, neurodevelopmental condition showing extreme genetic heterogeneity. While it is well established that rare genetic variation, both de novo and inherited, plays an important role in ASD risk, recent studies also support a rare recessive contribution.
Methods
We identified a compound heterozygous deletion intersecting the CTNNA3 gene, encoding αT-catenin, in a proband with ASD and moderate intellectual disability. The deletion breakpoints were mapped at base-pair resolution, and segregation analysis was performed. We compared the frequency of CTNNA3 exonic deletions in 2,147 ASD cases from the Autism Genome Project (AGP) study versus the frequency in 6,639 controls. Western blot analysis was performed to get a quantitative characterisation of Ctnna3 expression during early brain development in mouse.
Results
The CTNNA3 compound heterozygous deletion includes a coding exon, leading to a putative frameshift and premature stop codon. Segregation analysis in the family showed that the unaffected sister is heterozygote for the deletion, having only inherited the paternal deletion. While the frequency of CTNNA3 exonic deletions is not significantly different between ASD cases and controls, no homozygous or compound heterozygous exonic deletions were found in a sample of over 6,000 controls. Expression analysis of Ctnna3 in the mouse cortex and hippocampus (P0-P90) provided support for its role in the early stage of brain development.
Conclusion
The finding of a rare compound heterozygous CTNNA3 exonic deletion segregating with ASD, the absence of CTNNA3 homozygous exonic deletions in controls and the high expression of Ctnna3 in both brain areas analysed implicate CTNNA3 in ASD susceptibility.
doi:10.1186/1866-1955-6-17
PMCID: PMC4104741  PMID: 25050139
Autism spectrum disorder (ASD); CTNNA3; αT-catenin; Alpha T-catenin; Cell adhesion; DNA copy number variants
4.  EXCAVATOR: detecting copy number variants from whole-exome sequencing data 
Genome Biology  2013;14(10):R120.
We developed a novel software tool, EXCAVATOR, for the detection of copy number variants (CNVs) from whole-exome sequencing data. EXCAVATOR combines a three-step normalization procedure with a novel heterogeneous hidden Markov model algorithm and a calling method that classifies genomic regions into five copy number states. We validate EXCAVATOR on three datasets and compare the results with three other methods. These analyses show that EXCAVATOR outperforms the other methods and is therefore a valuable tool for the investigation of CNVs in largescale projects, as well as in clinical research and diagnostics. EXCAVATOR is freely available at http://sourceforge.net/projects/excavatortool/.
doi:10.1186/gb-2013-14-10-r120
PMCID: PMC4053953  PMID: 24172663
5.  Genetic Predisposition to Familial Nonmedullary Thyroid Cancer: An Update of Molecular Findings and State-of-the-Art Studies 
Journal of Oncology  2010;2010:385206.
Familial thyroid cancer has become a well-recognized entity in patients with thyroid cancer originating from follicular cells, that is, nonmedullary thyroid carcinoma. The diagnosis of familial thyroid cancer provides an opportunity for early detection and possible prevention in family members. Understanding the syndromes associated with familial thyroid cancer allows clinicians to evaluate and treat patients for coexisting pathologic conditions. About five percents of patients with well-differentiated thyroid carcinoma have a familial disease. Patients with familial non-medullalry thyroid cancer have more aggressive tumors with increased rates of extrathyroid extension, lymph node metastases, and frequently show the phenomenon of “anticipation” (earlier age at disease onset and increased severity in successive generations). So far, four predisposition loci have been identified in relatively rare extended pedigrees, and association studies have identified multiple predisposing variants for differentiated thyroid cancer. This suggests that there is a high degree of genetic heterogeneity and that the development of this type of tumor is a multifactorial and complex process in which predisposing genetic variants interact with a number of incompletely understood environmental risk factors. Thus, the search for the causative variants is still open and will surely benefit from the new technological approaches that have been developed in recent years.
doi:10.1155/2010/385206
PMCID: PMC2902056  PMID: 20628519
6.  TOM: a web-based integrated approach for identification of candidate disease genes 
Nucleic Acids Research  2006;34(Web Server issue):W285-W292.
The massive production of biological data by means of highly parallel devices like microarrays for gene expression has paved the way to new possible approaches in molecular genetics. Among them the possibility of inferring biological answers by querying large amounts of expression data. Based on this principle, we present here TOM, a web-based resource for the efficient extraction of candidate genes for hereditary diseases. The service requires the previous knowledge of at least another gene responsible for the disease and the linkage area, or else of two disease associated genetic intervals. The algorithm uses the information stored in public resources, including mapping, expression and functional databases. Given the queries, TOM will select and list one or more candidate genes. This approach allows the geneticist to bypass the costly and time consuming tracing of genetic markers through entire families and might improve the chance of identifying disease genes, particularly for rare diseases. We present here the tool and the results obtained on known benchmark and on hereditary predisposition to familial thyroid cancer. Our algorithm is available at .
doi:10.1093/nar/gkl340
PMCID: PMC1538851  PMID: 16845011

Results 1-6 (6)