PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Identification of seven loci affecting mean telomere length and their association with disease 
Codd, Veryan | Nelson, Christopher P. | Albrecht, Eva | Mangino, Massimo | Deelen, Joris | Buxton, Jessica L. | Jan Hottenga, Jouke | Fischer, Krista | Esko, Tõnu | Surakka, Ida | Broer, Linda | Nyholt, Dale R. | Mateo Leach, Irene | Salo, Perttu | Hägg, Sara | Matthews, Mary K. | Palmen, Jutta | Norata, Giuseppe D. | O’Reilly, Paul F. | Saleheen, Danish | Amin, Najaf | Balmforth, Anthony J. | Beekman, Marian | de Boer, Rudolf A. | Böhringer, Stefan | Braund, Peter S. | Burton, Paul R. | de Craen, Anton J. M. | Denniff, Matthew | Dong, Yanbin | Douroudis, Konstantinos | Dubinina, Elena | Eriksson, Johan G. | Garlaschelli, Katia | Guo, Dehuang | Hartikainen, Anna-Liisa | Henders, Anjali K. | Houwing-Duistermaat, Jeanine J. | Kananen, Laura | Karssen, Lennart C. | Kettunen, Johannes | Klopp, Norman | Lagou, Vasiliki | van Leeuwen, Elisabeth M. | Madden, Pamela A. | Mägi, Reedik | Magnusson, Patrik K.E. | Männistö, Satu | McCarthy, Mark I. | Medland, Sarah E. | Mihailov, Evelin | Montgomery, Grant W. | Oostra, Ben A. | Palotie, Aarno | Peters, Annette | Pollard, Helen | Pouta, Anneli | Prokopenko, Inga | Ripatti, Samuli | Salomaa, Veikko | Suchiman, H. Eka D. | Valdes, Ana M. | Verweij, Niek | Viñuela, Ana | Wang, Xiaoling | Wichmann, H.-Erich | Widen, Elisabeth | Willemsen, Gonneke | Wright, Margaret J. | Xia, Kai | Xiao, Xiangjun | van Veldhuisen, Dirk J. | Catapano, Alberico L. | Tobin, Martin D. | Hall, Alistair S. | Blakemore, Alexandra I.F. | van Gilst, Wiek H. | Zhu, Haidong | Erdmann, Jeanette | Reilly, Muredach P. | Kathiresan, Sekar | Schunkert, Heribert | Talmud, Philippa J. | Pedersen, Nancy L. | Perola, Markus | Ouwehand, Willem | Kaprio, Jaakko | Martin, Nicholas G. | van Duijn, Cornelia M. | Hovatta, Iiris | Gieger, Christian | Metspalu, Andres | Boomsma, Dorret I. | Jarvelin, Marjo-Riitta | Slagboom, P. Eline | Thompson, John R. | Spector, Tim D. | van der Harst, Pim | Samani, Nilesh J.
Nature genetics  2013;45(4):422-427e2.
Inter-individual variation in mean leukocyte telomere length (LTL) is associated with cancer and several age-associated diseases. Here, in a genome-wide meta-analysis of 37,684 individuals with replication of selected variants in a further 10,739 individuals, we identified seven loci, including five novel loci, associated with mean LTL (P<5x10−8). Five of the loci contain genes (TERC, TERT, NAF1, OBFC1, RTEL1) that are known to be involved in telomere biology. Lead SNPs at two loci (TERC and TERT) associate with several cancers and other diseases, including idiopathic pulmonary fibrosis. Moreover, a genetic risk score analysis combining lead variants at all seven loci in 22,233 coronary artery disease cases and 64,762 controls showed an association of the alleles associated with shorter LTL with increased risk of CAD (21% (95% CI: 5–35%) per standard deviation in LTL, p=0.014). Our findings support a causal role of telomere length variation in some age-related diseases.
doi:10.1038/ng.2528
PMCID: PMC4006270  PMID: 23535734
2.  The Relation of Rapid Changes in Obesity Measures to Lipid Profile - Insights from a Nationwide Metabolic Health Survey in 444 Polish Cities 
PLoS ONE  2014;9(1):e86837.
Objective
The impact of fast changes in obesity indices on other measures of metabolic health is poorly defined in the general population. Using the Polish accession to the European Union as a model of political and social transformation we examined how an expected rapid increase in body mass index (BMI) and waist circumference relates to changes in lipid profile, both at the population and personal level.
Methods
Through primary care centres in 444 Polish cities, two cross-sectional nationwide population-based surveys (LIPIDOGRAM 2004 and LIPIDOGRAM 2006) examined 15,404 and 15,453 adult individuals in 2004 and 2006, respectively. A separate prospective sample of 1,840 individuals recruited in 2004 had a follow-up in 2006 (LIPIDOGRAM PLUS).
Results
Two years after Polish accession to European Union, mean population BMI and waist circumference increased by 0.6% and 0.9%, respectively. This tracked with a 7.6% drop in HDL-cholesterol and a 2.1% increase in triglycerides (all p<0.001) nationwide. The direction and magnitude of the population changes were replicated at the personal level in LIPIDOGRAM PLUS (0.7%, 0.3%, 8.6% and 1.8%, respectively). However, increases in BMI and waist circumference were both only weakly associated with HDL-cholesterol and triglycerides changes prospectively. The relation of BMI to the magnitude of change in both lipid fractions was comparable to that of waist circumference.
Conclusions
Moderate changes in obesity measures tracked with a significant deterioration in measures of pro-atherogenic dyslipidaemia at both personal and population level. These associations were predominantly driven by factors not measureable directly through either BMI or waist circumference.
doi:10.1371/journal.pone.0086837
PMCID: PMC3908946  PMID: 24497983
3.  Longer Leukocyte Telomeres Are Associated with Ultra-Endurance Exercise Independent of Cardiovascular Risk Factors 
PLoS ONE  2013;8(7):e69377.
Telomere length is recognized as a marker of biological age, and shorter mean leukocyte telomere length is associated with increased risk of cardiovascular disease. It is unclear whether repeated exposure to ultra-endurance aerobic exercise is beneficial or detrimental in the long-term and whether it attenuates biological aging. We quantified 67 ultra-marathon runners’ and 56 apparently healthy males’ leukocyte telomere length (T/S ratio) using real-time quantitative PCR. The ultra-marathon runners had 11% longer telomeres (T/S ratio) than controls (ultra-marathon runners: T/S ratio = 3.5±0.68, controls: T/S ratio = 3.1±0.41; β = 0.40, SE = 0.10, P = 1.4×10−4) in age-adjusted analysis. The difference remained statistically significant after adjustment for cardiovascular risk factors (P = 2.2×10−4). The magnitude of this association translates into 16.2±0.26 years difference in biological age and approximately 324–648bp difference in leukocyte telomere length between ultra-marathon runners and healthy controls. Neither traditional cardiovascular risk factors nor markers of inflammation/adhesion molecules explained the difference in leukocyte telomere length between ultra-marathon runners and controls. Taken together these data suggest that regular engagement in ultra-endurance aerobic exercise attenuates cellular aging.
doi:10.1371/journal.pone.0069377
PMCID: PMC3729964  PMID: 23936000
4.  Association Between the Chromosome 9p21 Locus and Angiographic Coronary Artery Disease Burden 
Objectives
This study sought to ascertain the relationship of 9p21 locus with: 1) angiographic coronary artery disease (CAD) burden; and 2) myocardial infarction (MI) in individuals with underlying CAD.
Background
Chromosome 9p21 variants have been robustly associated with coronary heart disease, but questions remain on the mechanism of risk, specifically whether the locus contributes to coronary atheroma burden or plaque instability.
Methods
We established a collaboration of 21 studies consisting of 33,673 subjects with information on both CAD (clinical or angiographic) and MI status along with 9p21 genotype. Tabular data are provided for each cohort on the presence and burden of angiographic CAD, MI cases with underlying CAD, and the diabetic status of all subjects.
Results
We first confirmed an association between 9p21 and CAD with angiographically defined cases and control subjects (pooled odds ratio [OR]: 1.31, 95% confidence interval [CI]: 1.20 to 1.43). Among subjects with angiographic CAD (n = 20,987), random-effects model identified an association with multivessel CAD, compared with those with single-vessel disease (OR: 1.10, 95% CI: 1.04 to 1.17)/copy of risk allele). Genotypic models showed an OR of 1.15, 95% CI: 1.04 to 1.26 for heterozygous carrier and OR: 1.23, 95% CI: 1.08 to 1.39 for homozygous carrier. Finally, there was no significant association between 9p21 and prevalent MI when both cases (n = 17,791) and control subjects (n = 15,882) had underlying CAD (OR: 0.99, 95% CI: 0.95 to 1.03)/risk allele.
Conclusions
The 9p21 locus shows convincing association with greater burden of CAD but not with MI in the presence of underlying CAD. This adds further weight to the hypothesis that 9p21 locus primarily mediates an atherosclerotic phenotype.
doi:10.1016/j.jacc.2012.10.051
PMCID: PMC3653306  PMID: 23352782
9p21; angiography; coronary artery disease; meta-analysis; myocardial infarction; single nucleotide polymorphism
5.  Novel Loci Associated with Increased Risk of Sudden Cardiac Death in the Context of Coronary Artery Disease 
PLoS ONE  2013;8(4):e59905.
Background
Recent genome-wide association studies (GWAS) have identified novel loci associated with sudden cardiac death (SCD). Despite this progress, identified DNA variants account for a relatively small portion of overall SCD risk, suggesting that additional loci contributing to SCD susceptibility await discovery. The objective of this study was to identify novel DNA variation associated with SCD in the context of coronary artery disease (CAD).
Methods and Findings
Using the MetaboChip custom array we conducted a case-control association analysis of 119,117 SNPs in 948 SCD cases (with underlying CAD) from the Oregon Sudden Unexpected Death Study (Oregon-SUDS) and 3,050 controls with CAD from the Wellcome Trust Case-Control Consortium (WTCCC). Two newly identified loci were significantly associated with increased risk of SCD after correction for multiple comparisons at: rs6730157 in the RAB3GAP1 gene on chromosome 2 (P = 4.93×10−12, OR = 1.60) and rs2077316 in the ZNF365 gene on chromosome 10 (P = 3.64×10−8, OR = 2.41).
Conclusions
Our findings suggest that RAB3GAP1 and ZNF365 are relevant candidate genes for SCD and will contribute to the mechanistic understanding of SCD susceptibility.
doi:10.1371/journal.pone.0059905
PMCID: PMC3617189  PMID: 23593153
6.  Dense Genotyping of Candidate Gene Loci Identifies Variants Associated with High-Density Lipoprotein Cholesterol 
Background
Plasma levels of high density lipoprotein cholesterol (HDL-C) are known to be heritable, but only a fraction of the heritability is explained. We used a high density genotyping array containing SNPs from HDL-C candidate genes selected on known biology of HDL-C metabolism, mouse genetic studies, and human genetic association studies. SNP selection was based on tagging-SNPs but also included low-frequency nonsynonymous SNPs.
Methods and Results
Association analysis in a cohort containing extremes of HDL-C (case-control, n=1733) provided a discovery phase, with replication in three additional populations for a total meta-analysis in 7,857 individuals. We replicated the majority of loci identified through genome wide association studies and present on the array (including ABCA1, APOA1/C3/A4/A5, APOB, APOE/C1/C2, CETP, CTCF-PRMT8, FADS1/2/3, GALNT2, LCAT, LILRA3, LIPC, LIPG, LPL, LRP4, SCARB1, TRIB1, ZNF664), and provide evidence suggestive of association in several previously unreported candidate gene loci (including ABCG1, GPR109A/B/81, NFKB1, PON1/2/3/4). There was evidence for multiple, independent association signals in five loci, including association with low frequency nonsynonymous variants.
Conclusions
Genetic loci associated with HDL-C are likely to harbor multiple, independent causative variants, frequently with opposite effects on the HDL-C phenotype. Cohorts composed of extreme individuals may be efficiently used in a case-control discovery of quantitative traits.
doi:10.1161/CIRCGENETICS.110.957563
PMCID: PMC3319351  PMID: 21303902
lipids; genetic association; HDL cholesterol; cardiovascular diseases
7.  Inheritance of coronary artery disease in men: an analysis of the role of the Y chromosome 
Lancet  2012;379(9819):915-922.
Summary
Background
A sexual dimorphism exists in the incidence and prevalence of coronary artery disease—men are more commonly affected than are age-matched women. We explored the role of the Y chromosome in coronary artery disease in the context of this sexual inequity.
Methods
We genotyped 11 markers of the male-specific region of the Y chromosome in 3233 biologically unrelated British men from three cohorts: the British Heart Foundation Family Heart Study (BHF-FHS), West of Scotland Coronary Prevention Study (WOSCOPS), and Cardiogenics Study. On the basis of this information, each Y chromosome was tracked back into one of 13 ancient lineages defined as haplogroups. We then examined associations between common Y chromosome haplogroups and the risk of coronary artery disease in cross-sectional BHF-FHS and prospective WOSCOPS. Finally, we undertook functional analysis of Y chromosome effects on monocyte and macrophage transcriptome in British men from the Cardiogenics Study.
Findings
Of nine haplogroups identified, two (R1b1b2 and I) accounted for roughly 90% of the Y chromosome variants among British men. Carriers of haplogroup I had about a 50% higher age-adjusted risk of coronary artery disease than did men with other Y chromosome lineages in BHF-FHS (odds ratio 1·75, 95% CI 1·20–2·54, p=0·004), WOSCOPS (1·45, 1·08–1·95, p=0·012), and joint analysis of both populations (1·56, 1·24–1·97, p=0·0002). The association between haplogroup I and increased risk of coronary artery disease was independent of traditional cardiovascular and socioeconomic risk factors. Analysis of macrophage transcriptome in the Cardiogenics Study revealed that 19 molecular pathways showing strong differential expression between men with haplogroup I and other lineages of the Y chromosome were interconnected by common genes related to inflammation and immunity, and that some of them have a strong relevance to atherosclerosis.
Interpretation
The human Y chromosome is associated with risk of coronary artery disease in men of European ancestry, possibly through interactions of immunity and inflammation.
Funding
British Heart Foundation; UK National Institute for Health Research; LEW Carty Charitable Fund; National Health and Medical Research Council of Australia; European Union 6th Framework Programme; Wellcome Trust.
doi:10.1016/S0140-6736(11)61453-0
PMCID: PMC3314981  PMID: 22325189
8.  GENETIC ARCHITECTURE OF AMBULATORY BLOOD PRESSURE IN THE GENERAL POPULATION – INSIGHTS FROM CARDIOVASCULAR GENE-CENTRIC ARRAY 
Hypertension  2010;56(6):1069-1076.
Genetic determinants of blood pressure are poorly defined. We undertook a large-scale gene-centric analysis to identify loci and pathways associated with ambulatory systolic and diastolic blood pressure.
We measured 24-hour ambulatory BP in 2020 individuals from 520 white European nuclear families (the GRAPHIC Study) and genotyped their DNA using the Illumina HumanCVD BeadChip array which contains approximately 50000 single nucleotide polymorphisms in >2000 cardiovascular candidate loci. We found a strong association between rs13306560 polymorphism in the promoter region of MTHFR and CLCN6 and mean 24-hour diastolic blood pressure - each minor allele copy of rs13306560 was associated with 2.6 mmHg lower mean 24-hour diastolic blood pressure (P=1.2×10−8). rs13306560 was also associated with clinic diastolic blood pressure in a combined analysis of 8129 subjects from the GRAPHIC Study, the CoLaus Study and the Silesian Cardiovascular Study (P=5.4×10−6). Additional analysis of associations between variants in Gene Ontology-defined pathways and mean 24-hour blood pressure in the GRAPHIC Study showed that cell survival control signalling cascades could play a role in blood pressure regulation. There was also a significant over-representation of rare variants (minor allele frequency <0.05) amongst polymorphisms showing at least nominal association with mean 24-hour blood pressure indicating that a considerable proportion of its heritability may be explained by uncommon alleles.
Through a large scale gene-centric analysis of ambulatory blood pressure, we identified an association of a novel variant at the MTHFR/CLNC6 locus with diastolic blood pressure and provided new insights into the genetic architecture of blood pressure.
doi:10.1161/HYPERTENSIONAHA.110.155721
PMCID: PMC3035934  PMID: 21060006
gene; genetics; blood pressure; single nucleotide polymorphism; association; heritability
9.  Genetic predisposition to higher blood pressure increases coronary artery disease risk 
Hypertension  2013;61(5):10.1161/HYPERTENSIONAHA.111.00275.
Hypertension is a risk factor for coronary artery disease. Recent genome-wide association studies have identified 30 genetic variants associated with higher blood pressure at genome-wide significance (p<5×10−8). If elevated blood pressure is a causative factor for coronary artery disease, these variants should also increase coronary artery disease risk. Analyzing genome-wide association data from 22,233 coronary artery disease cases and 64,762 controls, we observed in the Coronary artery disease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) consortium that 88% of these blood pressure-associated polymorphisms were likewise positively associated with coronary artery disease, i.e. they had an odds ratio >1 for coronary artery disease, a proportion much higher than expected by chance (p=4.10−5). The average relative coronary artery disease risk increase per each of the multiple blood pressure-raising alleles observed in the consortium was 3.0% for systolic blood pressure-associated polymorphisms (95% confidence interval, 1.8 to 4.3%) and 2.9% for diastolic blood pressure-associated polymorphisms (95% confidence interval, 1.7 to 4.1%). In sub-studies, individuals carrying most systolic blood pressure- and diastolic blood pressure-related risk alleles (top quintile of a genetic risk score distribution) had 70% (95% confidence interval, 50-94%) and 59% (95% confidence interval, 40-81%) higher odds of having coronary artery disease, respectively, as compared to individuals in the bottom quintile. In conclusion, most blood pressure-associated polymorphisms also confer an increased risk for coronary artery disease. These findings are consistent with a causal relationship of increasing blood pressure to coronary artery disease. Genetic variants primarily affecting blood pressure contribute to the genetic basis of coronary artery disease.
doi:10.1161/HYPERTENSIONAHA.111.00275
PMCID: PMC3855241  PMID: 23478099
Blood pressure; polymorphism; genetics; coronary artery disease
10.  Large-Scale Candidate Gene Analysis of HDL Particle Features 
PLoS ONE  2011;6(1):e14529.
Background
HDL cholesterol (HDL-C) is an established marker of cardiovascular risk with significant genetic determination. However, HDL particles are not homogenous, and refined HDL phenotyping may improve insight into regulation of HDL metabolism. We therefore assessed HDL particles by NMR spectroscopy and conducted a large-scale candidate gene association analysis.
Methodology/Principal Findings
We measured plasma HDL-C and determined mean HDL particle size and particle number by NMR spectroscopy in 2024 individuals from 512 British Caucasian families. Genotypes were 49,094 SNPs in >2,100 cardiometabolic candidate genes/loci as represented on the HumanCVD BeadChip version 2. False discovery rates (FDR) were calculated to account for multiple testing. Analyses on classical HDL-C revealed significant associations (FDR<0.05) only for CETP (cholesteryl ester transfer protein; lead SNP rs3764261: p = 5.6*10−15) and SGCD (sarcoglycan delta; rs6877118: p = 8.6*10−6). In contrast, analysis with HDL mean particle size yielded additional associations in LIPC (hepatic lipase; rs261332: p = 6.1*10−9), PLTP (phospholipid transfer protein, rs4810479: p = 1.7*10−8) and FBLN5 (fibulin-5; rs2246416: p = 6.2*10−6). The associations of SGCD and Fibulin-5 with HDL particle size could not be replicated in PROCARDIS (n = 3,078) and/or the Women's Genome Health Study (n = 23,170).
Conclusions
We show that refined HDL phenotyping by NMR spectroscopy can detect known genes of HDL metabolism better than analyses on HDL-C.
doi:10.1371/journal.pone.0014529
PMCID: PMC3024972  PMID: 21283740
11.  Secretory Phospholipase A2-IIA and Cardiovascular Disease 
Holmes, Michael V. | Simon, Tabassome | Exeter, Holly J. | Folkersen, Lasse | Asselbergs, Folkert W. | Guardiola, Montse | Cooper, Jackie A. | Palmen, Jutta | Hubacek, Jaroslav A. | Carruthers, Kathryn F. | Horne, Benjamin D. | Brunisholz, Kimberly D. | Mega, Jessica L. | van Iperen, Erik P.A. | Li, Mingyao | Leusink, Maarten | Trompet, Stella | Verschuren, Jeffrey J.W. | Hovingh, G. Kees | Dehghan, Abbas | Nelson, Christopher P. | Kotti, Salma | Danchin, Nicolas | Scholz, Markus | Haase, Christiane L. | Rothenbacher, Dietrich | Swerdlow, Daniel I. | Kuchenbaecker, Karoline B. | Staines-Urias, Eleonora | Goel, Anuj | van 't Hooft, Ferdinand | Gertow, Karl | de Faire, Ulf | Panayiotou, Andrie G. | Tremoli, Elena | Baldassarre, Damiano | Veglia, Fabrizio | Holdt, Lesca M. | Beutner, Frank | Gansevoort, Ron T. | Navis, Gerjan J. | Mateo Leach, Irene | Breitling, Lutz P. | Brenner, Hermann | Thiery, Joachim | Dallmeier, Dhayana | Franco-Cereceda, Anders | Boer, Jolanda M.A. | Stephens, Jeffrey W. | Hofker, Marten H. | Tedgui, Alain | Hofman, Albert | Uitterlinden, André G. | Adamkova, Vera | Pitha, Jan | Onland-Moret, N. Charlotte | Cramer, Maarten J. | Nathoe, Hendrik M. | Spiering, Wilko | Klungel, Olaf H. | Kumari, Meena | Whincup, Peter H. | Morrow, David A. | Braund, Peter S. | Hall, Alistair S. | Olsson, Anders G. | Doevendans, Pieter A. | Trip, Mieke D. | Tobin, Martin D. | Hamsten, Anders | Watkins, Hugh | Koenig, Wolfgang | Nicolaides, Andrew N. | Teupser, Daniel | Day, Ian N.M. | Carlquist, John F. | Gaunt, Tom R. | Ford, Ian | Sattar, Naveed | Tsimikas, Sotirios | Schwartz, Gregory G. | Lawlor, Debbie A. | Morris, Richard W. | Sandhu, Manjinder S. | Poledne, Rudolf | Maitland-van der Zee, Anke H. | Khaw, Kay-Tee | Keating, Brendan J. | van der Harst, Pim | Price, Jackie F. | Mehta, Shamir R. | Yusuf, Salim | Witteman, Jaqueline C.M. | Franco, Oscar H. | Jukema, J. Wouter | de Knijff, Peter | Tybjaerg-Hansen, Anne | Rader, Daniel J. | Farrall, Martin | Samani, Nilesh J. | Kivimaki, Mika | Fox, Keith A.A. | Humphries, Steve E. | Anderson, Jeffrey L. | Boekholdt, S. Matthijs | Palmer, Tom M. | Eriksson, Per | Paré, Guillaume | Hingorani, Aroon D. | Sabatine, Marc S. | Mallat, Ziad | Casas, Juan P. | Talmud, Philippa J.
Objectives
This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease.
Background
Higher circulating levels of sPLA2-IIA mass or sPLA2 enzyme activity have been associated with increased risk of cardiovascular events. However, it is not clear if this association is causal. A recent phase III clinical trial of an sPLA2 inhibitor (varespladib) was stopped prematurely for lack of efficacy.
Methods
We conducted a Mendelian randomization meta-analysis of 19 general population studies (8,021 incident, 7,513 prevalent major vascular events [MVE] in 74,683 individuals) and 10 acute coronary syndrome (ACS) cohorts (2,520 recurrent MVE in 18,355 individuals) using rs11573156, a variant in PLA2G2A encoding the sPLA2-IIA isoenzyme, as an instrumental variable.
Results
PLA2G2A rs11573156 C allele associated with lower circulating sPLA2-IIA mass (38% to 44%) and sPLA2 enzyme activity (3% to 23%) per C allele. The odds ratio (OR) for MVE per rs11573156 C allele was 1.02 (95% confidence interval [CI]: 0.98 to 1.06) in general populations and 0.96 (95% CI: 0.90 to 1.03) in ACS cohorts. In the general population studies, the OR derived from the genetic instrumental variable analysis for MVE for a 1-log unit lower sPLA2-IIA mass was 1.04 (95% CI: 0.96 to 1.13), and differed from the non-genetic observational estimate (OR: 0.69; 95% CI: 0.61 to 0.79). In the ACS cohorts, both the genetic instrumental variable and observational ORs showed a null association with MVE. Instrumental variable analysis failed to show associations between sPLA2 enzyme activity and MVE.
Conclusions
Reducing sPLA2-IIA mass is unlikely to be a useful therapeutic goal for preventing cardiovascular events.
doi:10.1016/j.jacc.2013.06.044
PMCID: PMC3826105  PMID: 23916927
cardiovascular diseases; drug development; epidemiology; genetics; Mendelian randomization; ACS, acute coronary syndrome(s); CI, confidence interval; LDL-C, low-density lipoprotein cholesterol; MI, myocardial infarction; MVE, major vascular events; OR, odds ratio; RCT, randomized clinical trial; SNP, single-nucleotide polymorphism; sPLA2, secretory phospholipase A2
12.  The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis 
Fall, Tove | Hägg, Sara | Mägi, Reedik | Ploner, Alexander | Fischer, Krista | Horikoshi, Momoko | Sarin, Antti-Pekka | Thorleifsson, Gudmar | Ladenvall, Claes | Kals, Mart | Kuningas, Maris | Draisma, Harmen H. M. | Ried, Janina S. | van Zuydam, Natalie R. | Huikari, Ville | Mangino, Massimo | Sonestedt, Emily | Benyamin, Beben | Nelson, Christopher P. | Rivera, Natalia V. | Kristiansson, Kati | Shen, Huei-yi | Havulinna, Aki S. | Dehghan, Abbas | Donnelly, Louise A. | Kaakinen, Marika | Nuotio, Marja-Liisa | Robertson, Neil | de Bruijn, Renée F. A. G. | Ikram, M. Arfan | Amin, Najaf | Balmforth, Anthony J. | Braund, Peter S. | Doney, Alexander S. F. | Döring, Angela | Elliott, Paul | Esko, Tõnu | Franco, Oscar H. | Gretarsdottir, Solveig | Hartikainen, Anna-Liisa | Heikkilä, Kauko | Herzig, Karl-Heinz | Holm, Hilma | Hottenga, Jouke Jan | Hyppönen, Elina | Illig, Thomas | Isaacs, Aaron | Isomaa, Bo | Karssen, Lennart C. | Kettunen, Johannes | Koenig, Wolfgang | Kuulasmaa, Kari | Laatikainen, Tiina | Laitinen, Jaana | Lindgren, Cecilia | Lyssenko, Valeriya | Läärä, Esa | Rayner, Nigel W. | Männistö, Satu | Pouta, Anneli | Rathmann, Wolfgang | Rivadeneira, Fernando | Ruokonen, Aimo | Savolainen, Markku J. | Sijbrands, Eric J. G. | Small, Kerrin S. | Smit, Jan H. | Steinthorsdottir, Valgerdur | Syvänen, Ann-Christine | Taanila, Anja | Tobin, Martin D. | Uitterlinden, Andre G. | Willems, Sara M. | Willemsen, Gonneke | Witteman, Jacqueline | Perola, Markus | Evans, Alun | Ferrières, Jean | Virtamo, Jarmo | Kee, Frank | Tregouet, David-Alexandre | Arveiler, Dominique | Amouyel, Philippe | Ferrario, Marco M. | Brambilla, Paolo | Hall, Alistair S. | Heath, Andrew C. | Madden, Pamela A. F. | Martin, Nicholas G. | Montgomery, Grant W. | Whitfield, John B. | Jula, Antti | Knekt, Paul | Oostra, Ben | van Duijn, Cornelia M. | Penninx, Brenda W. J. H. | Davey Smith, George | Kaprio, Jaakko | Samani, Nilesh J. | Gieger, Christian | Peters, Annette | Wichmann, H.-Erich | Boomsma, Dorret I. | de Geus, Eco J. C. | Tuomi, TiinaMaija | Power, Chris | Hammond, Christopher J. | Spector, Tim D. | Lind, Lars | Orho-Melander, Marju | Palmer, Colin Neil Alexander | Morris, Andrew D. | Groop, Leif | Järvelin, Marjo-Riitta | Salomaa, Veikko | Vartiainen, Erkki | Hofman, Albert | Ripatti, Samuli | Metspalu, Andres | Thorsteinsdottir, Unnur | Stefansson, Kari | Pedersen, Nancy L. | McCarthy, Mark I. | Ingelsson, Erik | Prokopenko, Inga | Minelli, Cosetta
PLoS Medicine  2013;10(6):e1001474.
In this study, Prokopenko and colleagues provide novel evidence for causal relationship between adiposity and heart failure and increased liver enzymes using a Mendelian randomization study design.
Please see later in the article for the Editors' Summary
Background
The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach.
Methods and Findings
We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses.
Age- and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI–trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03–1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1–1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001).
Conclusions
We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes.
Please see later in the article for the Editors' Summary
Editors' Summary
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a major cause of illness and death worldwide. In the US, for example, coronary heart disease—a CVD in which narrowing of the heart's blood vessels by fatty deposits slows the blood supply to the heart and may eventually cause a heart attack—is the leading cause of death, and stroke—a CVD in which the brain's blood supply is interrupted—is the fourth leading cause of death. Globally, both the incidence of CVD (the number of new cases in a population every year) and its prevalence (the proportion of the population with CVD) are increasing, particularly in low- and middle-income countries. This increasing burden of CVD is occurring in parallel with a global increase in the incidence and prevalence of obesity—having an unhealthy amount of body fat (adiposity)—and of metabolic diseases—conditions such as diabetes in which metabolism (the processes that the body uses to make energy from food) is disrupted, with resulting high blood sugar and damage to the blood vessels.
Why Was This Study Done?
Epidemiological studies—investigations that record the patterns and causes of disease in populations—have reported an association between adiposity (indicated by an increased body mass index [BMI], which is calculated by dividing body weight in kilograms by height in meters squared) and cardiometabolic traits such as coronary heart disease, stroke, heart failure (a condition in which the heart is incapable of pumping sufficient amounts of blood around the body), diabetes, high blood pressure (hypertension), and high blood cholesterol (dyslipidemia). However, observational studies cannot prove that adiposity causes any particular cardiometabolic trait because overweight individuals may share other characteristics (confounding factors) that are the real causes of both obesity and the cardiometabolic disease. Moreover, it is possible that having CVD or a metabolic disease causes obesity (reverse causation). For example, individuals with heart failure cannot do much exercise, so heart failure may cause obesity rather than vice versa. Here, the researchers use “Mendelian randomization” to examine whether adiposity is causally related to various cardiometabolic traits. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. It is known that a genetic variant (rs9939609) within the genome region that encodes the fat-mass- and obesity-associated gene (FTO) is associated with increased BMI. Thus, an investigation of the associations between rs9939609 and cardiometabolic traits can indicate whether obesity is causally related to these traits.
What Did the Researchers Do and Find?
The researchers analyzed the association between rs9939609 (the “instrumental variable,” or IV) and BMI, between rs9939609 and 24 cardiometabolic traits, and between BMI and the same traits using genetic and health data collected in 36 population-based studies of nearly 200,000 individuals of European descent. They then quantified the strength of the causal association between BMI and the cardiometabolic traits by calculating “IV estimators.” Higher BMI showed a causal relationship with heart failure, metabolic syndrome (a combination of medical disorders that increases the risk of developing CVD), type 2 diabetes, dyslipidemia, hypertension, increased blood levels of liver enzymes (an indicator of liver damage; some metabolic disorders involve liver damage), and several other cardiometabolic traits. All the IV estimators were similar to the BMI–cardiovascular trait associations (observational estimates) derived from the same individuals, with the exception of diabetes, where the causal estimate was higher than the observational estimate, probably because the observational estimate is based on a single BMI measurement, whereas the causal estimate considers lifetime changes in BMI.
What Do These Findings Mean?
Like all Mendelian randomization studies, the reliability of the causal associations reported here depends on several assumptions made by the researchers. Nevertheless, these findings provide support for many previously suspected and biologically plausible causal relationships, such as that between adiposity and hypertension. They also provide new insights into the causal effect of obesity on liver enzyme levels and on heart failure. In the latter case, these findings suggest that a one-unit increase in BMI might increase the incidence of heart failure by 17%. In the US, this corresponds to 113,000 additional cases of heart failure for every unit increase in BMI at the population level. Although additional studies are needed to confirm and extend these findings, these results suggest that global efforts to reduce the burden of obesity will likely also reduce the occurrence of CVD and metabolic disorders.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001474.
The American Heart Association provides information on all aspects of cardiovascular disease and tips on keeping the heart healthy, including weight management (in several languages); its website includes personal stories about stroke and heart attacks
The US Centers for Disease Control and Prevention has information on heart disease, stroke, and all aspects of overweight and obesity (in English and Spanish)
The UK National Health Service Choices website provides information about cardiovascular disease and obesity, including a personal story about losing weight
The World Health Organization provides information on obesity (in several languages)
The International Obesity Taskforce provides information about the global obesity epidemic
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
MedlinePlus provides links to other sources of information on heart disease, on vascular disease, on obesity, and on metabolic disorders (in English and Spanish)
The International Association for the Study of Obesity provides maps and information about obesity worldwide
The International Diabetes Federation has a web page that describes types, complications, and risk factors of diabetes
doi:10.1371/journal.pmed.1001474
PMCID: PMC3692470  PMID: 23824655
13.  Hypothesis-Based Analysis of Gene-Gene Interactions and Risk of Myocardial Infarction 
PLoS ONE  2012;7(8):e41730.
The genetic loci that have been found by genome-wide association studies to modulate risk of coronary heart disease explain only a fraction of its total variance, and gene-gene interactions have been proposed as a potential source of the remaining heritability. Given the potentially large testing burden, we sought to enrich our search space with real interactions by analyzing variants that may be more likely to interact on the basis of two distinct hypotheses: a biological hypothesis, under which MI risk is modulated by interactions between variants that are known to be relevant for its risk factors; and a statistical hypothesis, under which interacting variants individually show weak marginal association with MI. In a discovery sample of 2,967 cases of early-onset myocardial infarction (MI) and 3,075 controls from the MIGen study, we performed pair-wise SNP interaction testing using a logistic regression framework. Despite having reasonable power to detect interaction effects of plausible magnitudes, we observed no statistically significant evidence of interaction under these hypotheses, and no clear consistency between the top results in our discovery sample and those in a large validation sample of 1,766 cases of coronary heart disease and 2,938 controls from the Wellcome Trust Case-Control Consortium. Our results do not support the existence of strong interaction effects as a common risk factor for MI. Within the scope of the hypotheses we have explored, this study places a modest upper limit on the magnitude that epistatic risk effects are likely to have at the population level (odds ratio for MI risk 1.3–2.0, depending on allele frequency and interaction model).
doi:10.1371/journal.pone.0041730
PMCID: PMC3410908  PMID: 22876292
14.  R1: The relationship between plasma Angiopoietin-like protein 4 (Angptl4) levels, ANGPTL4 genotype and coronary heart disease risk 
Objective
To investigate the relationship between Angiopoietin-like protein 4 (Angptl4) levels, CHD biomarkers and ANGPTL4 variants.
Methods and Results
Plasma Angptl4 was quantified in 666 subjects of the Northwick Park Heart Study II using a validated ELISA. Seven ANGPTL4 SNPs were genotyped and CHD biomarkers assessed in the whole cohort (n=2775). Weighted mean (±SD) plasma Angptl4 levels were 10.0(±11.0) ng/ml. Plasma Angptl4 concentration correlated positively with age (r=0.15, P<0.001), body fat mass (r=0.19, P=0.003) but negatively with plasma HDL-cholesterol (r=−0.13, P=0.01). No correlation with triglycerides was observed. T266M was independently associated with plasma Angptl4 levels (P<0.001), but not associated with triglycerides or with CHD risk in the meta-analysis of five studies (4,061 cases/15,395 controls). E40K showed no independent association with plasma Angptl4 levels. In HEK293 and Huh7 cells compared to wild-type, E40K and T266M showed significantly altered synthesis and secretion, respectively.
Conclusions
These data suggest that circulating Angptl4 levels do not influence triglyceride levels or CHD risk since (1) Angptl4 levels were not correlated with triglycerides, (2) T266M, although associated with Angptl4 levels, showed no association with plasma triglycerides (3) Triglyceride-lowering E40K did not influence Angptl4 levels. These results provide new insights into the role of Angptl4 in triglyceride metabolism.
doi:10.1161/ATVBAHA.110.212209
PMCID: PMC3319296  PMID: 20829508
Angplt4; E40K; T266M; cardiovascular disease; LPL
15.  Genome-Wide Association Study Identifies Novel Loci Associated with Circulating Phospho- and Sphingolipid Concentrations 
PLoS Genetics  2012;8(2):e1002490.
Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER), 57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 16 PE-based plasmalogens (PLPE), as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for phospholipids (smallest P-value = 9.88×10−204) and 10 loci for sphingolipids (smallest P-value = 3.10×10−57). After a correction for multiple comparisons (P-value<2.2×10−9), we observed four novel loci significantly associated with phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1) and two with sphingolipids (PLD2 and APOE) explaining up to 3.1% of the variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci for phospholipids (PNLIPRP2, PCDH20, and ABDH3) suggesting their involvement in either fatty acid elongation/saturation processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3, DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE) mapped into the glycerophospholipid and 12 loci (ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2) to the sphingolipid pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2 diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our study identified nine novel phospho- and sphingolipid loci, substantially increasing our knowledge of the genetic basis for these traits.
Author Summary
Phospho- and sphingolipids are integral to membrane formation and are involved in crucial cellular functions such as signalling, membrane fluidity, membrane protein trafficking, neurotransmission, and receptor trafficking. In addition to severe monogenic diseases resulting from defective phospho- and sphingolipid function and metabolism, the evidence suggests that variations in these lipid levels at the population level are involved in the determination of cardiovascular and neurologic traits and subsequent disease. We took advantage of modern laboratory methods, including microarray-based genotyping and electrospray ionization tandem mass spectrometry, to hunt for genetic variation influencing the levels of more than 350 phospho- and sphingolipid phenotypes. We identified nine novel loci, in addition to confirming a number of previously described loci. Several other genetic regions provided substantial evidence of their involvement in these traits. All of these loci are strong candidates for further research in the field of lipid biology and are likely to yield considerable insights into the complex metabolic pathways underlying circulating phospho- and sphingolipid levels. Understanding these mechanisms might help to illuminate factors leading to the development of common cardiovascular and neurological diseases and might provide molecular targets for the development of new therapies.
doi:10.1371/journal.pgen.1002490
PMCID: PMC3280968  PMID: 22359512
16.  Design of the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Study 
Background
Recent genome-wide association studies (GWAS) of myocardial infarction (MI) and other forms of coronary artery disease (CAD) have led to the discovery of at least 13 genetic loci. In addition to the effect size, power to detect associations is largely driven by sample size. Therefore, to maximize the chance of finding novel susceptibility loci for CAD and MI, the Coronary ARtery DIsease Genome-wide Replication And Meta-analysis (CARDIoGRAM) consortium was formed.
Methods and Results
CARDIoGRAM combines data from all published and several unpublished GWAS in individuals with European ancestry; includes >22 000 cases with CAD, MI, or both and >60 000 controls; and unifies samples from the Atherosclerotic Disease VAscular functioN and genetiC Epidemiology study, CADomics, Cohorts for Heart and Aging Research in Genomic Epidemiology, deCODE, the German Myocardial Infarction Family Studies I, II, and III, Ludwigshafen Risk and Cardiovascular Heath Study/AtheroRemo, MedStar, Myocardial Infarction Genetics Consortium, Ottawa Heart Genomics Study, PennCath, and the Wellcome Trust Case Control Consortium. Genotyping was carried out on Affymetrix or Illumina platforms followed by imputation of genotypes in most studies. On average, 2.2 million single nucleotide polymorphisms were generated per study. The results from each study are combined using meta-analysis. As proof of principle, we meta-analyzed risk variants at 9p21 and found that rs1333049 confers a 29% increase in risk for MI per copy (P=2×10−20).
Conclusion
CARDIoGRAM is poised to contribute to our understanding of the role of common genetic variation on risk for CAD and MI.
doi:10.1161/CIRCGENETICS.109.899443
PMCID: PMC3070269  PMID: 20923989
coronary artery disease; myocardial infarction; meta-analysis; genetics

Results 1-16 (16)