PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
1.  The Transcriptional Targets of Mutant FOXL2 in Granulosa Cell Tumours 
PLoS ONE  2012;7(9):e46270.
Background
Despite their distinct biology, granulosa cell tumours (GCTs) are treated the same as other ovarian tumours. Intriguingly, a recurring somatic mutation in the transcription factor Forkhead Box L2 (FOXL2) 402C>G has been found in nearly all GCTs examined. This investigation aims to identify the pathogenicity of mutant FOXL2 by studying its altered transcriptional targets.
Methods
The expression of mutant FOXL2 was reduced in the GCT cell line KGN, and wildtype and mutant FOXL2 were overexpressed in the GCT cell line COV434. Total RNA was hybridised to Affymetrix U133 Plus 2 microarrays. Comparisons were made between the transcriptomes of control cells and cells altered by FOXL2 knockdown and overexpression, to detect potential transcriptional targets of mutant FOXL2.
Results
The overexpression of wildtype and mutant FOXL2 in COV434, and the silencing of mutant FOXL2 expression in KGN, has shown that mutant FOXL2 is able to differentially regulate the expression of many genes, including two well known FOXL2 targets, StAR and CYP19A. We have shown that many of the genes regulated by mutant FOXL2 are clustered into functional annotations of cell death, proliferation, and tumourigenesis. Furthermore, TGF-β signalling was found to be enriched when using the gene annotation tools GATHER and GeneSetDB. This enrichment was still significant after performing a robust permutation analysis.
Conclusion
Given that many of the transcriptional targets of mutant FOXL2 are known TGF-β signalling genes, we suggest that deregulation of this key antiproliferative pathway is one way mutant FOXL2 contributes to the pathogenesis of adult-type GCTs. We believe this pathway should be a target for future therapeutic interventions, if outcomes for women with GCTs are to improve.
doi:10.1371/journal.pone.0046270
PMCID: PMC3460904  PMID: 23029457
2.  Comparison of growth factor signalling pathway utilisation in cultured normal melanocytes and melanoma cell lines 
BMC Cancer  2012;12:141.
Background
The phosphatidylinositol-3-kinase (PI3K-PKB), mitogen activated protein kinase (MEK-ERK) and the mammalian target of rapamycin (mTOR- p70S6K), are thought to regulate many aspects of tumour cell proliferation and survival. We have examined the utilisation of these three signalling pathways in a number of cell lines derived from patients with metastatic malignant melanoma of known PIK3CA, PTEN, NRAS and BRAF mutational status.
Methods
Western blotting was used to compare the phosphorylation status of components of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways, as indices of pathway utilisation.
Results
Normal melanocytes could not be distinguished from melanoma cells on the basis of pathway utilisation when grown in the presence of serum, but could be distinguished upon serum starvation, where signalling protein phosphorylation was generally abrogated. Surprisingly, the differential utilisation of individual pathways was not consistently associated with the presence of an oncogenic or tumour suppressor mutation of genes in these pathways.
Conclusion
Utilisation of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways in melanoma, as determined by phosphorylation of signalling components, varies widely across a series of cell lines, and does not directly reflect mutation of genes coding these components. The main difference between cultured normal melanocytes and melanoma cells is not the pathway utilisation itself, but rather in the serum dependence of pathway utilisation.
doi:10.1186/1471-2407-12-141
PMCID: PMC3352269  PMID: 22475322
Phosphatidylinositol-3-kinase; ERK; mTOR; Phosphorylation; Melanoma and Melanocyte
3.  In Vivo Testing of MicroRNA-Mediated Gene Knockdown in Zebrafish 
The zebrafish (Danio rerio) has become an attractive model for human disease modeling as there are a large number of orthologous genes that encode similar proteins to those found in humans. The number of tools available to manipulate the zebrafish genome is limited and many currently used techniques are only effective during early development (such as morpholino-based antisense technology) or it is phenotypically driven and does not offer targeted gene knockdown (such as chemical mutagenesis). The use of RNA interference has been met with controversy as off-target effects can make interpreting phenotypic outcomes difficult; however, this has been resolved by creating zebrafish lines that contain stably integrated miRNA constructs that target the desired gene of interest. In this study, we show that a commercially available miRNA vector system with a mouse-derived miRNA backbone is functional in zebrafish and is effective in causing eGFP knockdown in a transient in vivo eGFP sensor assay system. We chose to apply this system to the knockdown of transcripts that are implicated in the human cardiac disorder, Long QT syndrome.
doi:10.1155/2012/350352
PMCID: PMC3303736  PMID: 22500088
5.  Hereditary ovarian carcinoma 
BMJ : British Medical Journal  1999;318(7186):786-789.
PMCID: PMC1115218  PMID: 10082707

Results 1-5 (5)