Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy 
Nature Medicine  2011;17(5):589-595.
Hepatitis C virus (HCV) is a major cause of liver disease. Therapeutic options are limited and preventive strategies are absent. Entry is the first step of infection and requires the cooperative interaction of several host cell factors. Using a functional RNAi kinase screen we identified epidermal growth factor receptor and ephrin receptor A2 as host co-factors for HCV entry. Blocking of kinase function by approved inhibitors broadly inhibited HCV infection of all major HCV genotypes and viral escape variants in cell culture and an animal model in vivo. Receptor tyrosine kinases (RTKs) mediate HCV entry by regulating CD81-claudin-1 co-receptor associations and membrane fusion. These results identify RTKs as novel HCV entry co-factors and uncover that kinase inhibitors have significant antiviral activity. Inhibition of RTK function may constitute a novel approach for prevention and treatment of HCV infection.
PMCID: PMC3938446  PMID: 21516087
Animals; Antigens, CD; physiology; Antigens, CD81; Antiviral Agents; pharmacology; Base Sequence; Cell Line; Claudin-1; Hepacivirus; drug effects; physiology; Hepatitis C; physiopathology; prevention & control; therapy; virology; Host-Pathogen Interactions; physiology; Humans; Ligands; Membrane Proteins; physiology; Mice; Protein Kinase Inhibitors; pharmacology; Quinazolines; pharmacology; RNA Interference; RNA, Small Interfering; genetics; Receptor, EphA2; antagonists & inhibitors; genetics; physiology; Receptor, Epidermal Growth Factor; antagonists & inhibitors; genetics; physiology; Virus Internalization; drug effects; Antiviral / Cell-cell transmission / Liver / Phosphotyrosine kinase / HCV escape variants
2.  A dual role for hypoxia inducible factor-1α in the hepatitis C virus lifecycle and hepatoma migration 
Journal of Hepatology  2012;56(4):803-809.
Background & Aims
Hepatitis C virus (HCV) causes progressive liver disease and is a major risk factor for the development of hepatocellular carcinoma (HCC). However, the role of infection in HCC pathogenesis is poorly understood. We investigated the effect(s) of HCV infection and viral glycoprotein expression on hepatoma biology to gain insights into the development of HCV associated HCC.
We assessed the effect(s) of HCV and viral glycoprotein expression on hepatoma polarity, migration and invasion.
HCV glycoproteins perturb tight and adherens junction protein expression, and increase hepatoma migration and expression of epithelial to mesenchymal transition markers Snail and Twist via stabilizing hypoxia inducible factor-1α (HIF-1α). HIF-1α regulates many genes involved in tumor growth and metastasis, including vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β). Neutralization of both growth factors shows different roles for VEGF and TGFβ in regulating hepatoma polarity and migration, respectively. Importantly, we confirmed these observations in virus infected hepatoma and primary human hepatocytes. Inhibition of HIF-1α reversed the effect(s) of infection and glycoprotein expression on hepatoma permeability and migration and significantly reduced HCV replication, demonstrating a dual role for HIF-1α in the cellular processes that are deregulated in many human cancers and in the viral life cycle.
These data provide new insights into the cancer-promoting effects of HCV infection on HCC migration and offer new approaches for treatment.
PMCID: PMC3343261  PMID: 22178269
BC, bile canaliculi; CMFDA, 5-chloromethylfluorescein diacetate; HCC, hepatocellular carcinoma; EMT, epithelial to mesenchymal transition; HCVcc, hepatitis C virus cell culture; HIF-1α, hypoxia inducible factor 1 alpha; JFH-1, Japanese fulminant hepatitis-1; MRP-2, multidrug resistant protein-2; PHH, primary human hepatocytes; SR-BI, scavenger receptor class B member 1; TGFβ, transforming growth factor-beta; TNFα, tumor necrosis factor alpha; VEGF, vascular endothelial growth factor; VSV-G, vesicular stomatitis virus glycoprotein; Hepatitis C; Hypoxia; Invasion
3.  Hepatoma Cell Density Promotes Claudin-1 and Scavenger Receptor BI Expression and Hepatitis C Virus Internalization▿  
Journal of Virology  2009;83(23):12407-12414.
Hepatitis C virus (HCV) entry occurs via a pH- and clathrin-dependent endocytic pathway and requires a number of cellular factors, including CD81, the tight-junction proteins claudin 1 (CLDN1) and occludin, and scavenger receptor class B member I (SR-BI). HCV tropism is restricted to the liver, where hepatocytes are tightly packed. Here, we demonstrate that SR-BI and CLDN1 expression is modulated in confluent human hepatoma cells, with both receptors being enriched at cell-cell junctions. Cellular contact increased HCV pseudoparticle (HCVpp) and HCV particle (HCVcc) infection and accelerated the internalization of cell-bound HCVcc, suggesting that the cell contact modulation of receptor levels may facilitate the assembly of receptor complexes required for virus internalization. CLDN1 overexpression in subconfluent cells was unable to recapitulate this effect, whereas increased SR-BI expression enhanced HCVpp entry and HCVcc internalization, demonstrating a rate-limiting role for SR-BI in HCV internalization.
PMCID: PMC2786758  PMID: 19776133
4.  Claudin Association with CD81 Defines Hepatitis C Virus Entry 
The Journal of Biological Chemistry  2010;285(27):21092-21102.
Viruses initiate infection by attaching to molecules or receptors at the cell surface. Hepatitis C virus (HCV) enters cells via a multistep process involving tetraspanin CD81, scavenger receptor class B member I, and the tight junction proteins Claudin-1 and Occludin. CD81 and scavenger receptor class B member I interact with HCV-encoded glycoproteins, suggesting an initial role in mediating virus attachment. In contrast, there are minimal data supporting Claudin-1 association with HCV particles, raising questions as to its role in the virus internalization process. In the present study we demonstrate a relationship between receptor active Claudins and their association and organization with CD81 at the plasma membrane by fluorescence resonance energy transfer and stoichiometric imaging methodologies. Mutation of residues 32 and 48 in the Claudin-1 first extracellular loop ablates CD81 association and HCV receptor activity. Furthermore, mutation of the same residues in the receptor-inactive Claudin-7 molecule enabled CD81 complex formation and virus entry, demonstrating an essential role for Claudin-CD81 complexes in HCV infection. Importantly, Claudin-1 associated with CD81 at the basolateral membrane of polarized HepG2 cells, whereas tight junction-associated pools of Claudin-1 demonstrated a minimal association with CD81. In summary, we demonstrate an essential role for Claudin-CD81 complexes in HCV infection and their localization at the basolateral surface of polarized hepatoma cells, consistent with virus entry into the liver via the sinusoidal blood and association with basal expressed forms of the receptors.
PMCID: PMC2898367  PMID: 20375010
Fluorescence Resonance Energy Transfer (FRET); Receptor Structure-Function; Receptors; Tight Junction; Virus Entry
5.  Polarization Restricts Hepatitis C Virus Entry into HepG2 Hepatoma Cells▿  
Journal of Virology  2009;83(12):6211-6221.
The primary reservoir for hepatitis C virus (HCV) replication is believed to be hepatocytes, which are highly polarized with tight junctions (TJ) separating their basolateral and apical domains. HepG2 cells develop polarity over time, resulting in the formation and remodeling of bile canalicular (BC) structures. HepG2 cells expressing CD81 provide a model system to study the effects of hepatic polarity on HCV infection. We found an inverse association between HepG2-CD81 polarization and HCV pseudoparticle entry. As HepG2 cells polarize, discrete pools of claudin-1 (CLDN1) at the TJ and basal/lateral membranes develop, consistent with the pattern of receptor staining observed in liver tissue. The TJ and nonjunctional pools of CLDN1 show an altered association with CD81 and localization in response to the PKA antagonist Rp-8-Br-cyclic AMPs (cAMPs). Rp-8-Br-cAMPs reduced CLDN1 expression at the basal membrane and inhibited HCV infection, supporting a model where the nonjunctional pools of CLDN1 have a role in HCV entry. Treatment of HepG2 cells with proinflammatory cytokines, tumor necrosis factor alpha and gamma interferon, perturbed TJ integrity but had minimal effect(s) on cellular polarity and HCV infection, suggesting that TJ integrity does not limit HCV entry into polarized HepG2 cells. In contrast, activation of PKC with phorbol ester reduced TJ integrity, ablated HepG2 polarity, and stimulated HCV entry. Overall, these data show that complex hepatocyte-like polarity alters CLDN1 localization and limits HCV entry, suggesting that agents which disrupt hepatocyte polarity may promote HCV infection and transmission within the liver.
PMCID: PMC2687400  PMID: 19357163
6.  Protein Kinase A-Dependent Step(s) in Hepatitis C Virus Entry and Infectivity▿  
Journal of Virology  2008;82(17):8797-8811.
Viruses exploit signaling pathways to their advantage during multiple stages of their life cycle. We demonstrate a role for protein kinase A (PKA) in the hepatitis C virus (HCV) life cycle. The inhibition of PKA with H89, cyclic AMP (cAMP) antagonists, or the protein kinase inhibitor peptide reduced HCV entry into Huh-7.5 hepatoma cells. Bioluminescence resonance energy transfer methodology allowed us to investigate the PKA isoform specificity of the cAMP antagonists in Huh-7.5 cells, suggesting a role for PKA type II in HCV internalization. Since viral entry is dependent on the host cell expression of CD81, scavenger receptor BI, and claudin-1 (CLDN1), we studied the role of PKA in regulating viral receptor localization by confocal imaging and fluorescence resonance energy transfer (FRET) analysis. Inhibiting PKA activity in Huh-7.5 cells induced a reorganization of CLDN1 from the plasma membrane to an intracellular vesicular location(s) and disrupted FRET between CLDN1 and CD81, demonstrating the importance of CLDN1 expression at the plasma membrane for viral receptor activity. Inhibiting PKA activity in Huh-7.5 cells reduced the infectivity of extracellular virus without modulating the level of cell-free HCV RNA, suggesting that particle secretion was not affected but that specific infectivity was reduced. Viral particles released from H89-treated cells displayed the same range of buoyant densities as did those from control cells, suggesting that viral protein association with lipoproteins is not regulated by PKA. HCV infection of Huh-7.5 cells increased cAMP levels and phosphorylated PKA substrates, supporting a model where infection activates PKA in a cAMP-dependent manner to promote virus release and transmission.
PMCID: PMC2519651  PMID: 18579596
7.  CD81 and Claudin 1 Coreceptor Association: Role in Hepatitis C Virus Entry▿ †  
Journal of Virology  2008;82(10):5007-5020.
Hepatitis C virus (HCV) is an enveloped positive-stranded RNA hepatotropic virus. HCV pseudoparticles infect liver-derived cells, supporting a model in which liver-specific molecules define HCV internalization. Three host cell molecules have been reported to be important entry factors or receptors for HCV internalization: scavenger receptor BI, the tetraspanin CD81, and the tight junction protein claudin-1 (CLDN1). None of the receptors are uniquely expressed within the liver, leading us to hypothesize that their organization within hepatocytes may explain receptor activity. Since CD81 and CLDN1 act as coreceptors during late stages in the entry process, we investigated their association in a variety of cell lines and human liver tissue. Imaging techniques that take advantage of fluorescence resonance energy transfer (FRET) to study protein-protein interactions have been developed. Aequorea coerulescens green fluorescent protein- and Discosoma sp. red-monomer fluorescent protein-tagged forms of CD81 and CLDN1 colocalized, and FRET occurred between the tagged coreceptors at comparable frequencies in permissive and nonpermissive cells, consistent with the formation of coreceptor complexes. FRET occurred between antibodies specific for CD81 and CLDN1 bound to human liver tissue, suggesting the presence of coreceptor complexes in liver tissue. HCV infection and treatment of Huh-7.5 cells with recombinant HCV E1-E2 glycoproteins and anti-CD81 monoclonal antibody modulated homotypic (CD81-CD81) and heterotypic (CD81-CLDN1) coreceptor protein association(s) at specific cellular locations, suggesting distinct roles in the viral entry process.
PMCID: PMC2346731  PMID: 18337570
8.  Effect of Cell Polarization on Hepatitis C Virus Entry▿  
Journal of Virology  2007;82(1):461-470.
The primary reservoir for hepatitis C virus (HCV) replication in vivo is believed to be hepatocytes within the liver. Three host cell molecules have been reported to be important entry factors for receptors for HCV: the tetraspanin CD81, scavenger receptor BI (SR-BI), and the tight-junction (TJ) protein claudin 1 (CLDN1). The recent discovery of a TJ protein as a critical coreceptor highlighted the importance of studying the effect(s) of TJ formation and cell polarization on HCV entry. The colorectal adenocarcinoma Caco-2 cell line forms polarized monolayers containing functional TJs and was found to express the CD81, SR-BI, and CLDN1 proteins. Viral receptor expression levels increased upon polarization, and CLDN1 relocalized from the apical pole of the lateral cell membrane to the lateral cell-cell junction and basolateral domains. In contrast, expression and localization of the TJ proteins ZO-1 and occludin 1 were unchanged upon polarization. HCV infected polarized and nonpolarized Caco-2 cells to comparable levels, and entry was neutralized by anti-E2 monoclonal antibodies, demonstrating glycoprotein-dependent entry. HCV pseudoparticle infection and recombinant HCV E1E2 glycoprotein interaction with polarized Caco-2 cells occurred predominantly at the apical surface. Disruption of TJs significantly increased HCV entry. These data support a model where TJs provide a physical barrier for viral access to receptors expressed on lateral and basolateral cellular domains.
PMCID: PMC2224355  PMID: 17959672
9.  The homeobox transcription factor Even-skipped regulates acquisition of electrical properties in Drosophila neurons 
Neural Development  2006;1:3.
While developmental processes such as axon pathfinding and synapse formation have been characterized in detail, comparatively less is known of the intrinsic developmental mechanisms that regulate transcription of ion channel genes in embryonic neurons. Early decisions, including motoneuron axon targeting, are orchestrated by a cohort of transcription factors that act together in a combinatorial manner. These transcription factors include Even-skipped (Eve), islet and Lim3. The perdurance of these factors in late embryonic neurons is, however, indicative that they might also regulate additional aspects of neuron development, including the acquisition of electrical properties.
To test the hypothesis that a combinatorial code transcription factor is also able to influence the acquisition of electrical properties in embryonic neurons we utilized the molecular genetics of Drosophila to manipulate the expression of Eve in identified motoneurons. We show that increasing expression of this transcription factor, in two Eve-positive motoneurons (aCC and RP2), is indeed sufficient to affect the electrical properties of these neurons in early first instar larvae. Specifically, we observed a decrease in both the fast K+ conductance (IKfast) and amplitude of quantal cholinergic synaptic input. We used charybdotoxin to pharmacologically separate the individual components of IKfast to show that increased Eve specifically down regulates the Slowpoke (a BK Ca2+-gated potassium channel), but not Shal, component of this current. Identification of target genes for Eve, using DNA adenine methyltransferase identification, revealed strong binding sites in slowpoke and nAcRα-96Aa (a nicotinic acetylcholine receptor subunit). Verification using real-time PCR shows that pan-neuronal expression of eve is sufficient to repress transcripts for both slo and nAcRα-96Aa.
Taken together, our findings demonstrate, for the first time, that Eve is sufficient to regulate both voltage- and ligand-gated currents in motoneurons, extending its known repertoire of action beyond its already characterized role in axon guidance. Our data are also consistent with a common developmental program that utilizes a defined set of transcription factors to determine both morphological and functional neuronal properties.
PMCID: PMC1679800  PMID: 17147779

Results 1-9 (9)