PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (30)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
1.  Azole Affinity of Sterol 14α-Demethylase (CYP51) Enzymes from Candida albicans and Homo sapiens 
Candida albicans CYP51 (CaCYP51) (Erg11), full-length Homo sapiens CYP51 (HsCYP51), and truncated Δ60HsCYP51 were expressed in Escherichia coli and purified to homogeneity. CaCYP51 and both HsCYP51 enzymes bound lanosterol (Ks, 14 to 18 μM) and catalyzed the 14α-demethylation of lanosterol using Homo sapiens cytochrome P450 reductase and NADPH as redox partners. Both HsCYP51 enzymes bound clotrimazole, itraconazole, and ketoconazole tightly (dissociation constants [Kds], 42 to 131 nM) but bound fluconazole (Kd, ∼30,500 nM) and voriconazole (Kd, ∼2,300 nM) weakly, whereas CaCYP51 bound all five medical azole drugs tightly (Kds, 10 to 56 nM). Selectivity for CaCYP51 over HsCYP51 ranged from 2-fold (clotrimazole) to 540-fold (fluconazole) among the medical azoles. In contrast, selectivity for CaCYP51 over Δ60HsCYP51 with agricultural azoles ranged from 3-fold (tebuconazole) to 9-fold (propiconazole). Prothioconazole bound extremely weakly to CaCYP51 and Δ60HsCYP51, producing atypical type I UV-visible difference spectra (Kds, 6,100 and 910 nM, respectively), indicating that binding was not accomplished through direct coordination with the heme ferric ion. Prothioconazole-desthio (the intracellular derivative of prothioconazole) bound tightly to both CaCYP51 and Δ60HsCYP51 (Kd, ∼40 nM). These differences in binding affinities were reflected in the observed 50% inhibitory concentration (IC50) values, which were 9- to 2,000-fold higher for Δ60HsCYP51 than for CaCYP51, with the exception of tebuconazole, which strongly inhibited both CYP51 enzymes. In contrast, prothioconazole weakly inhibited CaCYP51 (IC50, ∼150 μM) and did not significantly inhibit Δ60HsCYP51.
doi:10.1128/AAC.02067-12
PMCID: PMC3591892  PMID: 23274672
2.  Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? 
The first eukaryote genome revealed three yeast cytochromes P450 (CYPs), hence the subsequent realization that some microbial fungal genomes encode these proteins in 1 per cent or more of all genes (greater than 100) has been surprising. They are unique biocatalysts undertaking a wide array of stereo- and regio-specific reactions and so hold promise in many applications. Based on ancestral activities that included 14α-demethylation during sterol biosynthesis, it is now seen that CYPs are part of the genes and metabolism of most eukaryotes. In contrast, Archaea and Eubacteria often do not contain CYPs, while those that do are frequently interesting as producers of natural products undertaking their oxidative tailoring. Apart from roles in primary and secondary metabolism, microbial CYPs are actual/potential targets of drugs/agrochemicals and CYP51 in sterol biosynthesis is exhibiting evolution to resistance in the clinic and the field. Other CYP applications include the first industrial biotransformation for corticosteroid production in the 1950s, the diversion into penicillin synthesis in early mutations in fungal strain improvement and bioremediation using bacteria and fungi. The vast untapped resource of orphan CYPs in numerous genomes is being probed and new methods for discovering function and for discovering desired activities are being investigated.
doi:10.1098/rstb.2012.0476
PMCID: PMC3538425  PMID: 23297358
microbes; biotechnology; cytochrome P450; bioactive; resistance
3.  S279 Point Mutations in Candida albicans Sterol 14-α Demethylase (CYP51) Reduce In Vitro Inhibition by Fluconazole 
The effects of S279F and S279Y point mutations in Candida albicans CYP51 (CaCYP51) on protein activity and on substrate (lanosterol) and azole antifungal binding were investigated. Both S279F and S279Y mutants bound lanosterol with 2-fold increased affinities (Ks, 7.1 and 8.0 μM, respectively) compared to the wild-type CaCYP51 protein (Ks, 13.5 μM). The S279F and S279Y mutants and the wild-type CaCYP51 protein bound fluconazole, voriconazole, and itraconazole tightly, producing typical type II binding spectra. However, the S279F and S279Y mutants had 4- to 5-fold lower affinities for fluconazole, 3.5-fold lower affinities for voriconazole, and 3.5- to 4-fold lower affinities for itraconazole than the wild-type CaCYP51 protein. The S279F and S279Y mutants gave 2.3- and 2.8-fold higher 50% inhibitory concentrations (IC50s) for fluconazole in a CYP51 reconstitution assay than the wild-type protein did. The increased fluconazole resistance conferred by the S279F and S279Y point mutations appeared to be mediated through a combination of a higher affinity for substrate and a lower affinity for fluconazole. In addition, lanosterol displaced fluconazole from the S279F and S279Y mutants but not from the wild-type protein. Molecular modeling of the wild-type protein indicated that the oxygen atom of S507 interacts with the second triazole ring of fluconazole, assisting in orientating fluconazole so that a more favorable binding conformation to heme is achieved. In contrast, in the two S279 mutant proteins, this S507-fluconazole interaction is absent, providing an explanation for the higher Kd values observed.
doi:10.1128/AAC.05389-11
PMCID: PMC3318376  PMID: 22252802
4.  Prothioconazole and Prothioconazole-Desthio Activities against Candida albicans Sterol 14-α-Demethylase 
Prothioconazole is a new triazolinthione fungicide used in agriculture. We have used Candida albicans CYP51 (CaCYP51) to investigate the in vitro activity of prothioconazole and to consider the use of such compounds in the medical arena. Treatment of C. albicans cells with prothioconazole, prothioconazole-desthio, and voriconazole resulted in CYP51 inhibition, as evidenced by the accumulation of 14α-methylated sterol substrates (lanosterol and eburicol) and the depletion of ergosterol. We then compared the inhibitor binding properties of prothioconazole, prothioconazole-desthio, and voriconazole with CaCYP51. We observed that prothioconazole-desthio and voriconazole bind noncompetitively to CaCYP51 in the expected manner of azole antifungals (with type II inhibitors binding to heme as the sixth ligand), while prothioconazole binds competitively and does not exhibit classic inhibitor binding spectra. Inhibition of CaCYP51 activity in a cell-free assay demonstrated that prothioconazole-desthio is active, whereas prothioconazole does not inhibit CYP51 activity. Extracts from C. albicans grown in the presence of prothioconazole were found to contain prothioconazole-desthio. We conclude that the antifungal action of prothioconazole can be attributed to prothioconazole-desthio.
doi:10.1128/AEM.03246-12
PMCID: PMC3591943  PMID: 23275516
5.  Two Clinical Isolates of Candida glabrata Exhibiting Reduced Sensitivity to Amphotericin B Both Harbor Mutations in ERG2 
Antimicrobial Agents and Chemotherapy  2012;56(12):6417-6421.
Two novel isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B (MIC, 8 μg ml−1) were found to be ERG2 mutants, wherein Δ8-sterol intermediates comprised >90% of the total cellular sterol fraction. Both harbored an alteration at Thr121 in ERG2; the corresponding residue (Thr119) in Saccharomyces cerevisiae is essential for sterol Δ8-Δ7 isomerization. This constitutes the first report of C. glabrata harboring mutations in ERG2 and exhibiting reduced sensitivity to amphotericin B.
doi:10.1128/AAC.01145-12
PMCID: PMC3497184  PMID: 23027188
6.  Facultative Sterol Uptake in an Ergosterol-Deficient Clinical Isolate of Candida glabrata Harboring a Missense Mutation in ERG11 and Exhibiting Cross-Resistance to Azoles and Amphotericin B 
We identified a clinical isolate of Candida glabrata (CG156) exhibiting flocculent growth and cross-resistance to fluconazole (FLC), voriconazole (VRC), and amphotericin B (AMB), with MICs of >256, >256, and 32 μg ml−1, respectively. Sterol analysis using gas chromatography-mass spectrometry (GC-MS) revealed that CG156 was a sterol 14α-demethylase (Erg11p) mutant, wherein 14α-methylated intermediates (lanosterol was >80% of the total) were the only detectable sterols. ERG11 sequencing indicated that CG156 harbored a single-amino-acid substitution (G315D) which nullified the function of native Erg11p. In heterologous expression studies using a doxycycline-regulatable Saccharomyces cerevisiae erg11 strain, wild-type C. glabrata Erg11p fully complemented the function of S. cerevisiae sterol 14α-demethylase, restoring growth and ergosterol synthesis in recombinant yeast; mutated CG156 Erg11p did not. CG156 was culturable using sterol-free, glucose-containing yeast minimal medium (glcYM). However, when grown on sterol-supplemented glcYM (with ergosta 7,22-dienol, ergosterol, cholestanol, cholesterol, Δ7-cholestenol, or desmosterol), CG156 cultures exhibited shorter lag phases, reached higher cell densities, and showed alterations in cellular sterol composition. Unlike comparator isolates (harboring wild-type ERG11) that became less sensitive to FLC and VRC when cultured on sterol-supplemented glcYM, facultative sterol uptake by CG156 did not affect its azole-resistant phenotype. Conversely, CG156 grown using glcYM with ergosterol (or with ergosta 7,22-dienol) showed increased sensitivity to AMB; CG156 grown using glcYM with cholesterol (or with cholestanol) became more resistant (MICs of 2 and >64 μg AMB ml−1, respectively). Our results provide insights into the consequences of sterol uptake and metabolism on growth and antifungal resistance in C. glabrata.
doi:10.1128/AAC.06253-11
PMCID: PMC3421581  PMID: 22615281
7.  An Enlarged, Adaptable Active Site in CYP164 Family P450 Enzymes, the Sole P450 in Mycobacterium leprae 
CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin “open” conformation of the enzyme (Kd [dissociation constant] of 0.1 μM), with binding to the low-spin “closed” form being significantly hindered (Kd of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy.
doi:10.1128/AAC.05227-11
PMCID: PMC3256051  PMID: 22037849
8.  Structural Analysis of Cytochrome P450 105N1 Involved in the Biosynthesis of the Zincophore, Coelibactin 
Coelibactin is a putative non-ribosomally synthesized peptide with predicted zincophore activity and which has been implicated in antibiotic regulation in Streptomyces coelicolor A3(2). The coelibactin biosynthetic pathway contains a stereo- and regio-specific monooxygenation step catalyzed by a cytochrome P450 enzyme (CYP105N1). We have determined the X-ray crystal structure of CYP105N1 at 2.9 Å and analyzed it in the context of the bacterial CYP105 family as a whole. The crystal structure reveals a channel between the α-helical domain and the β-sheet domain exposing the heme pocket and the long helix I to the solvent. This wide-open conformation of CYP105N1 may be related to the bulky substrate coelibactin. The ligand-free CYP105N1 structure has enough room in the substrate access channel to allow the coelibactin to enter into the active site. Analysis of typical siderophore ligands suggests that CYP105N1 may produce derivatives of coelibactin, which would then be able to chelate the zinc divalent cation.
doi:10.3390/ijms13078500
PMCID: PMC3430247  PMID: 22942716
cytochrome P450; CYP105N1; siderophore; Streptomyces coelicolor A3(2); zinc chelation
9.  Impact of Recently Emerged Sterol 14α-Demethylase (CYP51) Variants of Mycosphaerella graminicola on Azole Fungicide Sensitivity▿ 
Applied and Environmental Microbiology  2011;77(11):3830-3837.
The progressive decline in the effectiveness of some azole fungicides in controlling Mycosphaerella graminicola, causal agent of the damaging Septoria leaf blotch disease of wheat, has been correlated with the selection and spread in the pathogen population of specific mutations in the M. graminicola CYP51 (MgCYP51) gene encoding the azole target sterol 14α-demethylase. Recent studies have suggested that the emergence of novel MgCYP51 variants, often harboring substitution S524T, has contributed to a decrease in the efficacy of prothioconazole and epoxiconazole, the two currently most effective azole fungicides against M. graminicola. In this study, we establish which amino acid alterations in novel MgCYP51 variants have the greatest impact on azole sensitivity and protein function. We introduced individual and combinations of identified alterations by site-directed mutagenesis and functionally determined their impact on azole sensitivity by expression in a Saccharomyces cerevisiae mutant YUG37::erg11 carrying a regulatable promoter controlling native CYP51 expression. We demonstrate that substitution S524T confers decreased sensitivity to all azoles when introduced alone or in combination with Y461S. In addition, S524T restores the function in S. cerevisiae of MgCYP51 variants carrying the otherwise lethal alterations Y137F and V136A. Sensitivity tests of S. cerevisiae transformants expressing recently emerged MgCYP51 variants carrying combinations of alterations D134G, V136A, Y461S, and S524T reveal a substantial impact on sensitivity to the currently most widely used azoles, including epoxiconazole and prothioconazole. Finally, we exploit a recently developed model of the MgCYP51 protein to predict that the substantial structural changes caused by these novel combinations reduce azole interactions with critical residues in the binding cavity, thereby causing resistance.
doi:10.1128/AEM.00027-11
PMCID: PMC3127603  PMID: 21478305
10.  Mechanism of Binding of Prothioconazole to Mycosphaerella graminicola CYP51 Differs from That of Other Azole Antifungals ▿  
Prothioconazole is one of the most important commercially available demethylase inhibitors (DMIs) used to treat Mycosphaerella graminicola infection of wheat, but specific information regarding its mode of action is not available in the scientific literature. Treatment of wild-type M. graminicola (strain IPO323) with 5 μg of epoxiconazole, tebuconazole, triadimenol, or prothioconazole ml−1 resulted in inhibition of M. graminicola CYP51 (MgCYP51), as evidenced by the accumulation of 14α-methylated sterol substrates (lanosterol and eburicol) and the depletion of ergosterol in azole-treated cells. Successful expression of MgCYP51 in Escherichia coli enabled us to conduct spectrophotometric assays using purified 62-kDa MgCYP51 protein. Antifungal-binding studies revealed that epoxiconazole, tebuconazole, and triadimenol all bound tightly to MgCYP51, producing strong type II difference spectra (peak at 423 to 429 nm and trough at 406 to 409 nm) indicative of the formation of classical low-spin sixth-ligand complexes. Interaction of prothioconazole with MgCYP51 exhibited a novel spectrum with a peak and trough observed at 410 nm and 428 nm, respectively, indicating a different mechanism of inhibition. Prothioconazole bound to MgCYP51 with 840-fold less affinity than epoxiconazole and, unlike epoxiconazole, tebuconazole, and triadimenol, which are noncompetitive inhibitors, prothioconazole was found to be a competitive inhibitor of substrate binding. This represents the first study to validate the effect of prothioconazole on the sterol composition of M. graminicola and the first on the successful heterologous expression of active MgCYP51 protein. The binding affinity studies documented here provide novel insights into the interaction of MgCYP51 with DMIs, especially for the new triazolinethione derivative prothioconazole.
doi:10.1128/AEM.01332-10
PMCID: PMC3067226  PMID: 21169436
11.  Cyclization of a Cellular Dipentaenone by Streptomyces coelicolor Cytochrome P450 154A1 without Oxidation/Reduction 
Journal of the American Chemical Society  2010;132(43):15173-15175.
We report a comprehensive genetic, metabolomic, and biochemical study on the catalytic properties of Streptomyces coelicolor cytochrome P450 (P450) 154A1, known to have a unique heme orientation in its crystal structure. Deletion of the P450 154A1 gene compromised the long-term stability of the bacterial spores. A novel dipentaenone (1) with a high degree of conjugation was identified as an endogenous substrate of P450 154A1 using a metabolomics approach. The biotransformation of 1 by P450 154A1 was shown to be an unexpected intramolecular cyclization to a Paternò–Büchi-like product, without oxidation/reduction.
doi:10.1021/ja107801v
PMCID: PMC3118511  PMID: 20979426
12.  Complementation of a Saccharomyces cerevisiae ERG11/CYP51 (Sterol 14α-Demethylase) Doxycycline-Regulated Mutant and Screening of the Azole Sensitivity of Aspergillus fumigatus Isoenzymes CYP51A and CYP51B▿  
Antimicrobial Agents and Chemotherapy  2010;54(11):4920-4923.
Aspergillus fumigatus sterol 14α-demethylase isoenzymes CYP51A and CYP51B were heterologously expressed in a Saccharomyces cerevisiae mutant (YUG37-erg11), wherein native ERG11/CYP51 expression is controlled using a doxycycline-regulatable promoter. When cultured in the presence of doxycycline, recombinant YUG37-pcyp51A and YUG37-pcyp51B yeasts were able to synthesize ergosterol and grow; a control strain harboring reverse-oriented cyp51A could not. YUG37-pcyp51A and YUG37-pcyp51B constructs showed identical sensitivity to itraconazole, posaconazole, clotrimazole, and voriconazole. Conversely, YUG37-pcyp51A withstood 16-fold-higher concentrations of fluconazole than YUG37-pcyp51B (8 and 0.5 μg ml−1, respectively).
doi:10.1128/AAC.00349-10
PMCID: PMC2976139  PMID: 20733045
13.  Identification and Characterization of Four Azole-Resistant erg3 Mutants of Candida albicans▿  
Antimicrobial Agents and Chemotherapy  2010;54(11):4527-4533.
Sterol analysis identified four Candida albicans erg3 mutants in which ergosta 7,22-dienol, indicative of perturbations in sterol Δ5,6-desaturase (Erg3p) activity, comprised >5% of the total sterol fraction. The erg3 mutants (CA12, CA488, CA490, and CA1008) were all resistant to fluconazole, voriconazole, itraconazole, ketoconazole, and clotrimazole under standard CLSI assay conditions (MIC values, ≥256, 16, 16, 8, and 1 μg ml−1, respectively). Importantly, CA12 and CA1008 retained an azole-resistant phenotype even when assayed in the presence of FK506, a multidrug efflux inhibitor. Conversely, CA488, CA490, and three comparator isolates (CA6, CA14, and CA177, in which ergosterol comprised >80% of the total sterol fraction and ergosta 7,22-dienol was undetectable) all displayed azole-sensitive phenotypes under efflux-inhibited assay conditions. Owing to their ergosterol content, CA6, CA14, and CA177 were highly sensitive to amphotericin B (MIC values, <0.25 μg ml−1); CA1008, in which ergosterol comprised <2% of the total sterol fraction, was less sensitive (MIC, 1 μg ml−1). CA1008 harbored multiple amino acid substitutions in Erg3p but only a single conserved polymorphism (E266D) in sterol 14α-demethylase (Erg11p). CA12 harbored one substitution (W332R) in Erg3p and no residue changes in Erg11p. CA488 and CA490 were found to harbor multiple residue changes in both Erg3p and Erg11p. The results suggest that missense mutations in ERG3 might arise in C. albicans more frequently than currently supposed and that the clinical significance of erg3 mutants, including those in which additional mechanisms also contribute to resistance, should not be discounted.
doi:10.1128/AAC.00348-10
PMCID: PMC2976150  PMID: 20733039
14.  Azole Binding Properties of Candida albicans Sterol 14-α Demethylase (CaCYP51)▿  
Antimicrobial Agents and Chemotherapy  2010;54(10):4235-4245.
Purified Candida albicans sterol 14-α demethylase (CaCYP51) bound the CYP51 substrates lanosterol and eburicol, producing type I binding spectra with Ks values of 11 and 25 μM, respectively, and a Km value of 6 μM for lanosterol. Azole binding to CaCYP51 was “tight” with both the type II spectral intensity (ΔAmax) and the azole concentration required to obtain a half-ΔAmax being proportional to the CaCYP51 concentration. Tight binding of fluconazole and itraconazole was confirmed by 50% inhibitory concentration determinations from CYP51 reconstitution assays. CaCYP51 had similar affinities for clotrimazole, econazole, itraconazole, ketoconazole, miconazole, and voriconazole, with Kd values of 10 to 26 μM under oxidative conditions, compared with 47 μM for fluconazole. The affinities of CaCYP51 for fluconazole and itraconazole appeared to be 4- and 2-fold lower based on CO displacement studies than those when using direct ligand binding under oxidative conditions. Econazole and miconazole were most readily displaced by carbon monoxide, followed by clotrimazole, ketoconazole, and fluconazole, and then voriconazole (7.8 pmol min−1), but itraconzole could not be displaced by carbon monoxide. This work reports in depth the characterization of the azole binding properties of wild-type C. albicans CYP51, including that of voriconazole, and will contribute to effective screening of new therapeutic azole antifungal agents. Preliminary comparative studies with the I471T CaCYP51 protein suggested that fluconazole resistance conferred by this mutation was through a combination of increased turnover, increased affinity for substrate, and a reduced affinity for fluconazole in the presence of substrate, allowing the enzyme to remain functionally active, albeit at reduced velocity, at higher fluconazole concentrations.
doi:10.1128/AAC.00587-10
PMCID: PMC2944560  PMID: 20625155
15.  Expression, Purification, and Characterization of Aspergillus fumigatus Sterol 14-α Demethylase (CYP51) Isoenzymes A and B▿  
Antimicrobial Agents and Chemotherapy  2010;54(10):4225-4234.
Aspergillus fumigatus sterol 14-α demethylase (CYP51) isoenzymes A (AF51A) and B (AF51B) were expressed in Escherichia coli and purified. The dithionite-reduced CO-P450 complex for AF51A was unstable, rapidly denaturing to inactive P420, in marked contrast to AF51B, where the CO-P450 complex was stable. Type I substrate binding spectra were obtained with purified AF51B using lanosterol (Ks, 8.6 μM) and eburicol (Ks, 22.6 μM). Membrane suspensions of AF51A bound to both lanosterol (Ks, 3.1 μM) and eburicol (Ks, 4.1 μM). The binding of azoles, with the exception of fluconazole, to AF51B was tight, with the Kd (dissociation constant) values for clotrimazole, itraconazole, posaconazole, and voriconazole being 0.21, 0.06, 0.12, and 0.42 μM, respectively, in comparison with a Kd value of 4 μM for fluconazole. Characteristic type II azole binding spectra were obtained with AF51B, whereas an additional trough and a blue-shifted spectral peak were present in AF51A binding spectra for all azoles except clotrimazole. This suggests two distinct azole binding conformations within the heme prosthetic group of AF51A. All five azoles bound relatively weakly to AF51A, with Kd values ranging from 1 μM for itraconazole to 11.9 μM for fluconazole. The azole binding properties of purified AF51A and AF51B suggest an explanation for the intrinsic azole (fluconazole) resistance observed in Aspergillus fumigatus.
doi:10.1128/AAC.00316-10
PMCID: PMC2944604  PMID: 20660663
16.  A Clinical Isolate of Candida albicans with Mutations in ERG11 (Encoding Sterol 14α-Demethylase) and ERG5 (Encoding C22 Desaturase) Is Cross Resistant to Azoles and Amphotericin B▿  
A clinical isolate of Candida albicans was identified as an erg5 (encoding sterol C22 desaturase) mutant in which ergosterol was not detectable and ergosta 5,7-dienol comprised >80% of the total sterol fraction. The mutant isolate (CA108) was resistant to fluconazole, voriconazole, itraconazole, ketoconazole, and clotrimazole (MIC values, 64, 8, 2, 1, and 2 μg ml−1, respectively); azole resistance could not be fully explained by the activity of multidrug resistance pumps. When susceptibility tests were performed in the presence of a multidrug efflux inhibitor (tacrolimus; FK506), CA108 remained resistant to azole concentrations higher than suggested clinical breakpoints for C. albicans (efflux-inhibited MIC values, 16 and 4 μg ml−1 for fluconazole and voriconazole, respectively). Gene sequencing revealed that CA108 was an erg11 erg5 double mutant harboring a single amino acid substitution (A114S) in sterol 14α-demethylase (Erg11p) and sequence repetition (10 duplicated amino acids), which nullified C22 desaturase (Erg5p) function. Owing to a lack of ergosterol, CA108 was also resistant to amphotericin B (MIC, 2 μg ml−1). This constitutes the first report of a C. albicans erg5 mutant isolated from the clinic.
doi:10.1128/AAC.00303-10
PMCID: PMC2934972  PMID: 20547793
17.  Streptomyces coelicolor A3(2) CYP102 Protein, a Novel Fatty Acid Hydroxylase Encoded as a Heme Domain without an N-Terminal Redox Partner▿  
The gene from Streptomyces coelicolor A3(2) encoding CYP102B1, a recently discovered CYP102 subfamily which exists solely as a single P450 heme domain, has been cloned, expressed in Escherichia coli, purified, characterized, and compared to its fusion protein family members. Purified reconstitution metabolism experiments with spinach ferredoxin, ferredoxin reductase, and NADPH revealed differences in the regio- and stereoselective metabolism of arachidonic acid compared to that of CYP102A1, exclusively producing 11,12-epoxyeicosa-5,8,14-trienoic acid in addition to the shared metabolites 18-hydroxy arachidonic acid and 14,15-epoxyeicosa-5,8,11-trienoic acid. Consequently, in order to elucidate the physiological function of CYP102B1, transposon mutagenesis was used to generate an S. coelicolor A3(2) strain lacking CYP102B1 activity and the phenotype was assessed.
doi:10.1128/AEM.03000-09
PMCID: PMC2838009  PMID: 20097805
18.  The First Virally Encoded Cytochrome P450▿  
Journal of Virology  2009;83(16):8266-8269.
The genome sequence of the giant virus Acanthamoeba polyphaga mimivirus revealed the presence of two putative cytochrome P450 (CYP) genes. The product of one of the two predicted CYP genes (YP_143162) showed low-level homology to sterol 14-demethylase (CYP51) and contained a C-terminal polypeptide domain of unknown function. YP_143162 expression (without an N-terminal membrane binding domain) in Escherichia coli yields a CYP protein which gives a reduced CO difference maximum at 448 nm and was formally demonstrated as the first viral cytochrome P450. Analysis of binding of lipid and sterol substrates indicated no perturbation in CYP heme environment, and an absence of activity was seen when 14-methyl sterols were used as a substrate. The function of the CYP protein and its C-terminal domain remain unknown.
doi:10.1128/JVI.00289-09
PMCID: PMC2715754  PMID: 19515774
19.  Identification, Characterization, and Azole-Binding Properties of Mycobacterium smegmatis CYP164A2, a Homolog of ML2088, the Sole Cytochrome P450 Gene of Mycobacterium leprae▿  
The genome sequence of Mycobacterium leprae revealed a single open reading frame, ML2088 (CYP164A1), encoding a putative full-length cytochrome P450 monooxygenase and 12 pseudogenes. We have identified a homolog of ML2088 in Mycobacterium smegmatis and report here the cloning, expression, purification, and azole-binding characteristics of this cytochrome P450 (CYP164A2). CYP164A2 is 1,245 bp long and encodes a protein of 414 amino acids and molecular mass of 45 kDa. CYP164A2 has 60% identity with Mycobacterium leprae CYP161A1 and 66 to 69% identity with eight other mycobacterial CYP164A1 homologs, with three identified highly conserved motifs. Recombinant CYP164A2 has the typical spectral characteristics of a cytochrome P450 monooxygenase, predominantly in the ferric low-spin state. Unusually, the spin state was readily modulated by increasing ionic strength at pH 7.5, with 50% high-spin occupancy achieved with 0.14 M NaCl. CYP164A2 bound clotrimazole, econazole, and miconazole strongly (Kd, 1.2 to 2.5 μM); however, strong binding with itraconazole, ketoconazole, and voriconazole was only observed in the presence of 0.5 M NaCl. Fluconazole did not bind to CYP164A2 at pH 7.5 and no discernible type II binding spectrum was observed.
doi:10.1128/AAC.01237-08
PMCID: PMC2650583  PMID: 19075057
20.  Reduced Azole Susceptibility in Genotype 3 Candida dubliniensis Isolates Associated with Increased CdCDR1 and CdCDR2 Expression 
Candida dubliniensis is a recently identified yeast species primarily associated with oral carriage and infection in individuals infected with the human immunodeficiency virus. The species can be divided into at least four genotypes on the basis of the nucleotide sequence of the internal transcribed spacer region of the rRNA operon. Previous studies have shown that a small number of clinical isolates belonging to genotype 1 are resistant to the commonly used antifungal drug fluconazole. The aim of the present study was to investigate the molecular mechanisms responsible for reduced susceptibility to azole drugs in C. dubliniensis genotype 3 isolates obtained from a patient with fluconazole-recalcitrant oral candidiasis. Four isolates from a single clinical sample, one susceptible, the other three exhibiting reduced susceptibilities to fluconazole, itraconazole, ketoconazole, voriconazole, and posaconazole, were examined. Results showed that reduced susceptibility to azole drugs was associated with an increase in the expression of the multidrug transporters CdCDR1 and CdCDR2 which correlated with reduced intracellular accumulation of radiolabeled fluconazole and an increase in the activity of energy-dependent efflux mechanisms. In contrast to observations made in previous studies, overexpression of the multidrug transporter CdMDR1 was not observed. Despite a thorough investigation of all commonly encountered mechanisms of azole resistance, no other mechanism could be associated with reduced susceptibility to azole drugs in the clinical isolates studied. This is the first report of CdCDR2 involvement in azole resistance in C. dubliniensis.
doi:10.1128/AAC.49.4.1312-1318.2005
PMCID: PMC1068639  PMID: 15793103
21.  Restriction Fragment Length Polymorphism Analysis of Ribosomal DNA Intergenic Regions Is Useful for Differentiating Strains of Trichophyton mentagrophytes 
Journal of Clinical Microbiology  2003;41(10):4583-4588.
Twenty isolates of Tricophyton mentagrophytes var. mentagrophytes and 47 isolates of T. mentagrophytes var. interdigitale, identified by morphological characteristics, were screened by restriction fragment length polymorphism (RFLP) analysis of the PCR-amplified internal transcribed spacer (ITS) region of ribosomal DNA (rDNA). Sixty isolates (14 of 20 T. mentagrophytes var. mentagrophytes isolates and 46 of 47 T. mentagrophytes var. interdigitale isolates) shared an identical ITS RFLP profile and were further investigated by using a probe targeted to the rDNA nontranscribed spacer (NTS) region. Polymorphisms were observed in the NTS regions of both T. mentagrophytes var. mentagrophytes and T. mentagrophytes var. interdigitale isolates. Twenty-three individual RFLP patterns (DNA types P-1 to P-12 and A-1 to A-11) were recognized and divided into two groups depending on the presence (P) or absence (A) of a 2.5-kb band, which correlated to a large extent with the morphological variety. Eleven of 14 T. metagrophytes var. mentagrophytes isolates were A types, and all of the 46 T. mentagrophytes var. interdigitale isolates were P types. A majority of strains (23 of 60 [38.3%]) were characterized by one RFLP pattern (pattern P-1), and eight types (P-1 to P-6, P-8, and P-9) accounted for 75% (45 of 60) of all strains, including all of the T. mentagrophytes var. interdigitale isolates. The remaining 15 types were represented by one only isolate and included all of the T. mentagrophytes var. mentagrophytes isolates. We conclude that RFLP analysis of the rDNA NTS region is a valuable technique for differentiation of T. mentagrophytes strains. Furthermore, by use of this method, there appears to be a greater degree of diversity among T. mentagrophytes var. mentagrophytes isolates than among T. mentagrophytes var. interdigitale isolates.
doi:10.1128/JCM.41.10.4583-4588.2003
PMCID: PMC254373  PMID: 14532186
22.  Molecular Mechanisms of Itraconazole Resistance in Candida dubliniensis 
It has previously been shown that overexpression of the CdMDR1 gene is a major contributor to resistance in fluconazole-resistant isolates of Candida dubliniensis. However, since CdMdr1p does not mediate transport of other azole drugs such as itraconazole, we investigated the molecular mechanisms of stable resistance to itraconazole obtained in three strains of C. dubliniensis (two with nonfunctional CdCDR1 genes and one with functional CdCDR1 genes) by serial exposure to this antifungal agent in vitro. Seven derivatives that were able to grow on agar medium containing 64 μg of itraconazole per ml were selected for detailed analysis. These derivatives were resistant to itraconazole, fluconazole, and ketoconazole but were not cross resistant to inhibitors. CdMDR1 expression was unchanged in the seven resistant derivatives and their parental isolates; however, all seven derivatives exhibited increased levels of CdERG11 expression, and six of the seven derivatives exhibited increased levels of CdCDR1 expression compared to the levels of expression by their respective parental isolates. Except for one derivative, the level of rhodamine 6G efflux was decreased in the itraconazole-resistant derivatives compared to the level of efflux in their parental isolates, suggesting altered membrane properties in these derivatives. Analysis of their membrane sterol contents was consistent with a defective sterol C5,6-desaturase enzyme (CdErg3p), which was confirmed by the identification of mutations in the alleles (CdERG3) encoding this enzyme and their lack of functional complementation in a Saccharomyces cerevisiae erg3 mutant. The results of this study show that the loss of function of CdErg3p was the primary mechanism of in vitro-generated itraconazole resistance in six of the seven the C. dubliniensis derivatives. However, the mechanism(s) of itraconazole resistance in the remaining seventh derivative has yet to be determined.
doi:10.1128/AAC.47.8.2424-2437.2003
PMCID: PMC166077  PMID: 12878500
23.  Genome-Wide Generation of Yeast Gene Deletion Strains 
In the year 2001 a collection of yeast strains will be completed that are deleted in the 6000 open reading frames selected as putative genes by the initial bioinformatic analysis of the Saccharomyces cerevisiae genome. The collection was produced by the transatlantic yeast gene deletion project, a collaboration involving researchers in the USA, Canada and Europe. The European effort was part of EUROFAN (European Functional Analysis Network) where some of the strains could feed into various functional analysis nodes dealing with specific areas of cell biology. With approximately 40% of human genes involved in heritable disease having a homologue in yeast and with the use of yeast in various drug discovery strategies, not least due to the dramatic increase in fungal infections, these strains will be valuable in trans-genomic studies and in specialised interest studies in individual laboratories. A detailed analysis of the project by the consortium is in preparation, here we discuss the yeast strains, reported findings and approaches to using this resource.
doi:10.1002/cfg.95
PMCID: PMC2447215  PMID: 18628917
24.  Export of Cytochrome P450 105D1 to the Periplasmic Space of Escherichia coli 
CYP105D1, a cytochrome P450 from Streptomyces griseus, was appended at its amino terminus to the secretory signal of Escherichia coli alkaline phosphatase and placed under the transcriptional control of the native phoA promoter. Heterologous expression in E. coli phosphate-limited medium resulted in abundant synthesis of recombinant CYP105D1 that was translocated across the bacterial inner membrane and processed to yield authentic, heme-incorporated P450 within the periplasmic space. Cell extract and whole-cell activity studies showed that the periplasmically located CYP105D1 competently catalyzed NADH-dependent oxidation of the xenobiotic compounds benzo[a]pyrene and erythromycin, further revealing the presence in the E. coli periplasm of endogenous functional redox partners. This system offers substantial advantages for the application of P450 enzymes to whole-cell biotransformation strategies, where the ability of cells to take up substrates or discard products may be limited.
doi:10.1128/AEM.67.5.2136-2138.2001
PMCID: PMC92847  PMID: 11319092
25.  Strain Identification of Trichophyton rubrum by Specific Amplification of Subrepeat Elements in the Ribosomal DNA Nontranscribed Spacer 
Journal of Clinical Microbiology  2000;38(12):4527-4534.
Trichophyton rubrum is the commonest cause of dermatophytosis of skin and nail tissue. Molecular characterization of the T. rubrum ribosomal DNA nontranscribed-spacer region revealed two novel tandemly repetitive subelements (TRSs): TRS-1, containing a 27-bp palindromic sequence, and TRS-2. Specific amplification of TRS-1 produced strain-characteristic banding patterns (PCR types), with 21 TRS-1 PCR types recognized from 101 clinical isolates. Four simple patterns representing 1 to 4 copies of TRS-1 accounted for 75 (75%) of all 101 strains, whereas more complex patterns were observed for 21 (20%) of the 101 isolates. The copy number of TRS-2 was 0 to 3 repeats per cistron, with a majority of isolates having two copies of this element. Eleven isolates were polymorphic for TRS-2, and in combination, 23 separate PCR types were recognized by amplification of both TRS-1 and TRS-2. The PCR patterns from both elements were stable and reproducible. Elements with homology to TRS-1 were present in three phylogenetically related species, Trichophyton violaceum, Trichophyton gourvilii, and Trichophyton soudanense, but these elements were not identified in other dermatophyte taxa. There was no clear correlation of PCR type with specimen (skin or nail tissue), but certain PCR types appeared to show a bias in geographic distribution. This new method of typing T. rubrum will enable important questions about pathogenesis and epidemiology of this fungus to be addressed.
PMCID: PMC87632  PMID: 11101591

Results 1-25 (30)