PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
1.  RELATIVE HUMIDITY AND THE KILLING OF BACTERIA: THE SURVIVAL OF SERRATIA MARCESCENS DEHYDRATED BY CONCENTRATED GLYCEROL AND SUCROSE SOLUTIONS 
Journal of Bacteriology  1963;85(4):918-926.
Bateman, J. B. (U.S. Army Biological Laboratories, Fort Detrick, Frederick, Md.) and F. Elizabeth White. Effect of relative humidity on the survival of Serratia marcescens in concentrated glycerol and sucrose solutions. J. Bacteriol. 85:918–926. 1963.—The effects of sucrose and glycerol upon the ability of Serratia marcescens to grow when restored to a normal medium after exposure to solutions of these substances were examined, with special attention to the prevailing thermodynamic activity of water in these solutions as a factor of supposed primary importance in influencing survival or death of cells. The data were notable for the absence of any zones of instability such as those found when the water activity is changed by exposure of washed cells to water vapor at controlled relative humidities (RH). The cells survived indefinitely at room temperature in concentrated sucrose solutions; in glycerol solutions of equilibrium RH values from 20 to 90, the first-order decay constants were about 0.03 to 0.1 hr−1. These results, considered together with the contrasting phenomenon of narrow lethal humidity zones found in vapor-phrase equilibration experiments, were explained generally in terms of competitive interactions involving concentrated intrinsic and adventitious solutes, the cell water, and the organized structures of the cell, whose integrity was considered to depend ultimately upon the net effect of these various interactions.
PMCID: PMC278245  PMID: 14044963
2.  Glycosylation type Ic disorder: idiopathic intracranial hypertension and retinal degeneration 
doi:10.1136/bjo.2005.080648
PMCID: PMC1478164  PMID: 16361681
congenital disorders; glycosylation; retinopathy
5.  Relative Humidity and the Killing of Bacteria 
Applied Microbiology  1961;9(6):567-571.
The viability of washed moist cells of Serratia marcescens after storage has been measured in relation to variations in the prior treatment of the cells and in conditions of storage. The factors considered were: (i) water content during storage; (ii) method of arriving at water content (partial drying in vacuum or freeze-drying and addition of water); (iii) presence or absence of air during storage.
Increasingly rapid decay occurs as the water content at which the cells are stored is diminished from above 90% to 20 or 30% (“critical” water content). It occurs in presence or absence of air and it occurs whether the final water content is approached by removal of water from wet cells or by addition of water to freeze-dried cells.
The rate of decay during storage at 20 to 30% water is somewhat diminished by the presence of air (“protective” effect of air).
As the water content is further reduced to less than 10%, the stability of cells stored in a vacuum approaches that of wet cells. In presence of air the reverse is true: the stability decreases until at less than 1% water, the decay rate is about as great as at the “critical” water content (“toxic” effect of air).
Particularly rapid decay of S. marcescens at the “critical” water content has escaped attention in aerosol studies because accurate control of relative humidity (RH) in this region, RH 94 to 99%, is virtually impossible in such studies. On the other hand, values of decay rates referred to measured water contents are quite unreliable in the 20 to 80% RH zone because the corresponding variation of water content is too small to measure reliably. Thus data of the kind reported in this paper cannot be directly compared to the published results of studies of air-borne bacteria, although they are relevant to the practical question of air-borne infection in humid atmospheres.
PMCID: PMC1057789  PMID: 13865722
10.  Linkage analysis of Norrie disease with an X-chromosomal ornithine aminotransferase locus. 
Norrie disease is a rare disease of newborn males caused by prenatal or perinatal retinal detachment, which may be associated with mental retardation, psychosis, and/or hearing loss. DXS7 (L1.28) and MAO A and B loci have been linked to the ND locus on the short arm of the X chromosome. Sequences homologous to OAT also have been mapped to the short arm of the X chromosome. We performed linkage analyses between the ND locus and one of the OAT-like clusters of sequences on the X chromosome (OATL1), using a ScaI RFLP in a ND family, and increased the previously calculated lod score (z) to over 3 (3.38; theta = 0.05). Similarly, we calculated a lod score of 4.06 (theta = 0.01) between the OATL1 and DXS7 loci. Alone, the OATL1 ScaI RFLP system is expected to be informative in 48% of females. If this system were used in combination with the DXS7 TaqI polymorphism, 71% of females would be informative for at least one of the markers and 21% would be informative for both. Because the OATL1 ScaI RFLP is a relatively common polymorphism, this system should be useful for the identification of ND carriers and affected male fetuses and newborns.
PMCID: PMC1298472  PMID: 7908152
12.  Molecular genetics of retinitis pigmentosa. 
Western Journal of Medicine  1991;155(4):388-399.
Retinitis pigmentosa is a model for the study of genetic diseases. Its genetic heterogeneity is reflected in the different forms of inheritance (autosomal dominant, autosomal recessive, or X-linked) and, in a few families, in the presence of mutations in the visual pigment rhodopsin. Clinical and molecular genetic studies of these disorders are discussed. Animal models of retinal degeneration have been investigated for many years with the hope of gaining insight into the cause of photoreceptor cell death. Recently, the genes responsible for two of these animal disorders, the rds and rd mouse genes, have been isolated and characterized. The retinal degeneration of the rd mouse is presented in detail. The possible involvement of human analogues of these mouse genes in human retinal diseases is being investigated.
Images
PMCID: PMC1003020  PMID: 1771877

Results 1-12 (12)