PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (29)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Genotype-phenotype correlation in Pompe disease, a step forward 
Background
Pompe’s disease is a progressive myopathy caused by mutations in the lysosomal enzyme acid alphaglucosidase gene (GAA). A wide clinical variability occurs also in patients sharing the same GAA mutations, even within the same family.
Methods
For a large series of GSDII patients we collected some clinical data as age of onset of the disease, presence or absence of muscular pain, Walton score, 6-Minute Walking Test, Vital Capacity, and Creatine Kinase. DNA was extracted and tested for GAA mutations and some genetic polymorphisms able to influence muscle properties (ACE, ACTN3, AGT and PPARα genes).
We compared the polymorphisms analyzed in groups of patients with Pompe disease clustered for their homogeneous genotype.
Results
We have been able to identify four subgroups of patients completely homogeneous for their genotype, and two groups homogeneous as far as the second mutation is defined “very severe” or “potentially less severe”. When disease free life was studied we observed a high significant difference between groups. The DD genotype in the ACE gene and the XX genotype in the ACTN3 gene were significantly associated to an earlier age of onset of the disease. The ACE DD genotype was also associated to the presence of muscle pain.
Conclusions
We demonstrate that ACE and ACTN3 polymorphisms are genetic factors able to modulate the clinical phenotype of patients affected with Pompe disease.
Electronic supplementary material
The online version of this article (doi:10.1186/s13023-014-0102-z) contains supplementary material, which is available to authorized users.
doi:10.1186/s13023-014-0102-z
PMCID: PMC4249737  PMID: 25103075
Glycogen storage disease type II; Genetic polymorphisms; Modifier genes; GAA; ACE; ACTN3
2.  Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease 
Escott-Price, Valentina | Bellenguez, Céline | Wang, Li-San | Choi, Seung-Hoan | Harold, Denise | Jones, Lesley | Holmans, Peter | Gerrish, Amy | Vedernikov, Alexey | Richards, Alexander | DeStefano, Anita L. | Lambert, Jean-Charles | Ibrahim-Verbaas, Carla A. | Naj, Adam C. | Sims, Rebecca | Jun, Gyungah | Bis, Joshua C. | Beecham, Gary W. | Grenier-Boley, Benjamin | Russo, Giancarlo | Thornton-Wells, Tricia A. | Denning, Nicola | Smith, Albert V. | Chouraki, Vincent | Thomas, Charlene | Ikram, M. Arfan | Zelenika, Diana | Vardarajan, Badri N. | Kamatani, Yoichiro | Lin, Chiao-Feng | Schmidt, Helena | Kunkle, Brian | Dunstan, Melanie L. | Vronskaya, Maria | Johnson, Andrew D. | Ruiz, Agustin | Bihoreau, Marie-Thérèse | Reitz, Christiane | Pasquier, Florence | Hollingworth, Paul | Hanon, Olivier | Fitzpatrick, Annette L. | Buxbaum, Joseph D. | Campion, Dominique | Crane, Paul K. | Baldwin, Clinton | Becker, Tim | Gudnason, Vilmundur | Cruchaga, Carlos | Craig, David | Amin, Najaf | Berr, Claudine | Lopez, Oscar L. | De Jager, Philip L. | Deramecourt, Vincent | Johnston, Janet A. | Evans, Denis | Lovestone, Simon | Letenneur, Luc | Hernández, Isabel | Rubinsztein, David C. | Eiriksdottir, Gudny | Sleegers, Kristel | Goate, Alison M. | Fiévet, Nathalie | Huentelman, Matthew J. | Gill, Michael | Brown, Kristelle | Kamboh, M. Ilyas | Keller, Lina | Barberger-Gateau, Pascale | McGuinness, Bernadette | Larson, Eric B. | Myers, Amanda J. | Dufouil, Carole | Todd, Stephen | Wallon, David | Love, Seth | Rogaeva, Ekaterina | Gallacher, John | George-Hyslop, Peter St | Clarimon, Jordi | Lleo, Alberto | Bayer, Anthony | Tsuang, Debby W. | Yu, Lei | Tsolaki, Magda | Bossù, Paola | Spalletta, Gianfranco | Proitsi, Petra | Collinge, John | Sorbi, Sandro | Garcia, Florentino Sanchez | Fox, Nick C. | Hardy, John | Naranjo, Maria Candida Deniz | Bosco, Paolo | Clarke, Robert | Brayne, Carol | Galimberti, Daniela | Scarpini, Elio | Bonuccelli, Ubaldo | Mancuso, Michelangelo | Siciliano, Gabriele | Moebus, Susanne | Mecocci, Patrizia | Zompo, Maria Del | Maier, Wolfgang | Hampel, Harald | Pilotto, Alberto | Frank-García, Ana | Panza, Francesco | Solfrizzi, Vincenzo | Caffarra, Paolo | Nacmias, Benedetta | Perry, William | Mayhaus, Manuel | Lannfelt, Lars | Hakonarson, Hakon | Pichler, Sabrina | Carrasquillo, Minerva M. | Ingelsson, Martin | Beekly, Duane | Alvarez, Victoria | Zou, Fanggeng | Valladares, Otto | Younkin, Steven G. | Coto, Eliecer | Hamilton-Nelson, Kara L. | Gu, Wei | Razquin, Cristina | Pastor, Pau | Mateo, Ignacio | Owen, Michael J. | Faber, Kelley M. | Jonsson, Palmi V. | Combarros, Onofre | O'Donovan, Michael C. | Cantwell, Laura B. | Soininen, Hilkka | Blacker, Deborah | Mead, Simon | Mosley, Thomas H. | Bennett, David A. | Harris, Tamara B. | Fratiglioni, Laura | Holmes, Clive | de Bruijn, Renee F. A. G. | Passmore, Peter | Montine, Thomas J. | Bettens, Karolien | Rotter, Jerome I. | Brice, Alexis | Morgan, Kevin | Foroud, Tatiana M. | Kukull, Walter A. | Hannequin, Didier | Powell, John F. | Nalls, Michael A. | Ritchie, Karen | Lunetta, Kathryn L. | Kauwe, John S. K. | Boerwinkle, Eric | Riemenschneider, Matthias | Boada, Mercè | Hiltunen, Mikko | Martin, Eden R. | Schmidt, Reinhold | Rujescu, Dan | Dartigues, Jean-François | Mayeux, Richard | Tzourio, Christophe | Hofman, Albert | Nöthen, Markus M. | Graff, Caroline | Psaty, Bruce M. | Haines, Jonathan L. | Lathrop, Mark | Pericak-Vance, Margaret A. | Launer, Lenore J. | Van Broeckhoven, Christine | Farrer, Lindsay A. | van Duijn, Cornelia M. | Ramirez, Alfredo | Seshadri, Sudha | Schellenberg, Gerard D. | Amouyel, Philippe | Williams, Julie
PLoS ONE  2014;9(6):e94661.
Background
Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls.
Principal Findings
In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10−6) and 14 (IGHV1-67 p = 7.9×10−8) which indexed novel susceptibility loci.
Significance
The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.
doi:10.1371/journal.pone.0094661
PMCID: PMC4055488  PMID: 24922517
3.  A Pilot Study Evaluating the Contribution of SLC19A1 (RFC-1) 80G>A Polymorphism to Alzheimer's Disease in Italian Caucasians 
BioMed Research International  2014;2014:608104.
Alzheimer's disease (AD) is the most common neurodegenerative disorder and the primary form of dementia in the elderly. Polymorphisms of genes involved in folate metabolism have been frequently suggested as risk factors for sporadic AD. A common c.80G>A polymorphism (rs1051266) in the gene coding for the reduced folate carrier (SLC19A1 gene, commonly known as RFC-1 gene) was investigated as AD risk factor in Asian populations, yielding conflicting results. We screened a Caucasian population of Italian origin composed of 192 sporadic AD patients and 186 healthy matched controls, for the presence of the RFC-1 c.80G>A polymorphism, and searched for correlation with circulating levels of folate, homocysteine, and vitamin B12. No difference in the distribution of allele and genotype frequencies was observed between AD patients and controls. No correlation was observed among the genotypes generated by the RFC-1 c.80G>A polymorphism and circulating levels of folate, homocysteine, and vitamin B12 either in the whole cohort of subjects or after stratification into clinical subtypes. Present results do not support a role for the RFC-1 c.80G>A polymorphism as independent risk factor for sporadic AD in Italian Caucasians.
doi:10.1155/2014/608104
PMCID: PMC4068058  PMID: 24995314
4.  Evaluating the levels of interleukin-1 family cytokines in sporadic amyotrophic lateral sclerosis 
Background
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease leading to the death of affected individuals within years. The involvement of inflammation in the pathogenesis of neurodegenerative diseases, including ALS, is increasingly recognized but still not well understood. The aim of this study is to evaluate the levels of inflammation-related IL-1 family cytokines (IL-1β, IL-18, IL-33, IL-37) and their endogenous inhibitors (IL-1Ra, sIL-1R2, IL-18BP, sIL-1R4) in patients with sporadic ALS (sALS),
Methods
Sera were collected from 144 patients (125 patients were characterized by disease form, duration, and disability, using the revised ALS functional rating scale (ALSFRS-R) and from 40 matched controls. Cerebrospinal fluid (CSF) was collected from 54 patients with sALS and 65 patients with other non-infectious non-oncogenic diseases as controls. Cytokines and inhibitors were measured by commercial ELISA.
Results
Among the IL-1 family cytokines tested total IL-18, its endogenous inhibitor IL-18BP, and the active form of the cytokine (free IL-18) were significantly higher in the sALS sera than in controls. No correlation between these soluble mediators and different clinical forms of sALS or the clinical setting of the disease was found. IL-18BP was the only mediator detectable in the CSF of patients.
Conclusions
Among the IL-1 family cytokines, only IL-18 correlates with this disease and may therefore have a pathological role in sALS. The increase of total IL-18 suggests the activation of IL-18-cleaving inflammasome. Whether IL-18 upregulation in circulation of sALS patients is a consequence of inflammation or one of the causes of the pathology still needs to be addressed.
doi:10.1186/1742-2094-11-94
PMCID: PMC4039322  PMID: 24884937
ALS; Inflammation; IL-1 family; IL-18
5.  Screening of the PFN1 gene in sporadic ALS and in FTD 
Neurobiology of aging  2012;34(5):1517.e9-1517.e10.
Mutations in the profilin 1 (PFN1) gene, encoding a protein regulating filamentous actin growth through its binding to monomeric G-actin, have been recently identified in familial amyotrophic lateral sclerosis (ALS). Functional studies performed on ALS-associated PFN1 mutants demonstrated aggregation propensity, alterations in growth cone and cytoskeletal dynamics. Previous screening of PFN1 gene in sporadic ALS (SALS) cases led to the identification of the p.E117G mutation, which is likely to represent a less pathogenic variant according to both frequency data in controls/cases and functional experiments. To determine the effective contribution of PFN1 mutations in SALS, we analyzed a large cohort of 1168 Italian SALS patients and also included 203 FTD (Frontotemporal Dementia) cases given the great overlap between these two neurodegenerative diseases. We detected the p.E117G variant in 1 SALS and the novel synonymous change p.G15G in another patient, but none in a panel of 1512 controls. Our results suggest that PFN1 mutations in sporadic ALS and in FTD are rare, at least in the Italian population.
doi:10.1016/j.neurobiolaging.2012.09.016
PMCID: PMC3548975  PMID: 23063648
amyotrophic lateral sclerosis; frontotemporal dementia; profilin 1; mutation analysis
6.  Plastic Changes in the Spinal Cord in Motor Neuron Disease 
BioMed Research International  2014;2014:670756.
In the present paper, we analyze the cell number within lamina X at the end stage of disease in a G93A mouse model of ALS; the effects induced by lithium; the stem-cell like phenotype of lamina X cells during ALS; the differentiation of these cells towards either a glial or neuronal phenotype. In summary we found that G93A mouse model of ALS produces an increase in lamina X cells which is further augmented by lithium administration. In the absence of lithium these nestin positive stem-like cells preferentially differentiate into glia (GFAP positive), while in the presence of lithium these cells differentiate towards a neuron-like phenotype (βIII-tubulin, NeuN, and calbindin-D28K positive). These effects of lithium are observed concomitantly with attenuation in disease progression and are reminiscent of neurogenetic effects induced by lithium in the subependymal ventricular zone of the hippocampus.
doi:10.1155/2014/670756
PMCID: PMC4009217  PMID: 24829911
7.  Lack of Association between Nuclear Factor Erythroid-Derived 2-Like 2 Promoter Gene Polymorphisms and Oxidative Stress Biomarkers in Amyotrophic Lateral Sclerosis Patients 
Oxidative stress involvement has been strongly hypothesized among the possible pathogenic mechanisms of motor neuron degeneration in amyotrophic lateral sclerosis (ALS). The intracellular redox balance is finely modulated by numerous complex mechanisms critical for cellular functions, among which the nuclear factor erythroid-derived 2-like 2 (NFE2L2/Nrf2) pathways. We genotyped, in a cohort of ALS patients (n = 145) and healthy controls (n = 168), three SNPs in Nrf2 gene promoter: −653 A/G, −651 G/A, and −617 C/A and evaluated, in a subset (n = 73) of patients, advanced oxidation protein products (AOPP), iron-reducing ability of plasma (FRAP), and plasma thiols (-SH) as oxidative damage peripheral biomarkers. Nrf2 polymorphisms were not different among patients and controls. Increased levels of AOPP (P < 0.05) and decreased levels of FRAP (P < 0.001) have been observed in ALS patients compared with controls, but no difference in -SH values was found. Furthermore, no association was found between biochemical markers of redox balance and Nrf2 polymorphisms. These data confirm an altered redox balance in ALS and indicate that, while being abnormally modified compared to controls, the oxidative stress biomarkers assessed in this study are independent from the −653 A/G, −651 G/A, and −617 C/A Nrf2 SNPs in ALS patients.
doi:10.1155/2014/432626
PMCID: PMC3941162  PMID: 24672634
8.  Large scale genotype–phenotype analyses indicate that novel prognostic tools are required for families with facioscapulohumeral muscular dystrophy 
Brain  2013;136(11):3408-3417.
Facioscapulohumeral muscular dystrophy has been genetically linked to reduced numbers (≤8) of D4Z4 repeats at 4q35 combined with 4A(159/161/168) DUX4 polyadenylation signal haplotype. However, we have recently reported that 1.3% of healthy individuals carry this molecular signature and 19% of subjects affected by facioscapulohumeral muscular dystrophy do not carry alleles with eight or fewer D4Z4 repeats. Therefore, prognosis for subjects carrying or at risk of carrying D4Z4 reduced alleles has become more complicated. To test for additional prognostic factors, we measured the degree of motor impairment in a large group of patients affected by facioscapulohumeral muscular dystrophy and their relatives who are carrying D4Z4 reduced alleles. The clinical expression of motor impairment was assessed in 530 subjects, 163 probands and 367 relatives, from 176 unrelated families according to a standardized clinical score. The associations between clinical severity and size of D4Z4 allele, degree of kinship, gender, age and 4q haplotype were evaluated. Overall, 32.2% of relatives did not display any muscle functional impairment. This phenotype was influenced by the degree of relation with proband, because 47.1% of second- through fifth-degree relatives were unaffected, whereas only 27.5% of first-degree family members did not show motor impairment. The estimated risk of developing motor impairment by age 50 for relatives carrying a D4Z4 reduced allele with 1–3 repeats or 4–8 repeats was 88.7% and 55%, respectively. Male relatives had a mean score significantly higher than females (5.4 versus 4.0, P = 0.003). No 4q haplotype was exclusively associated with the presence of disease. In 13% of families in which D4Z4 alleles with 4–8 repeats segregate, the diagnosis of facioscapulohumeral muscular dystrophy was reported only in one generation. In conclusion, this large-scale analysis provides further information that should be taken into account when counselling families in which a reduced allele with 4–8 D4Z4 repeats segregates. In addition, the reduced expression of disease observed in distant relatives suggests that a family’s genetic background plays a role in the occurrence of facioscapulohumeral muscular dystrophy. These results indicate that the identification of new susceptibility factors for this disease will require an accurate classification of families.
doi:10.1093/brain/awt226
PMCID: PMC3808686  PMID: 24030947
facioscapulohumeral muscular dystrophy; D4Z4 reduced allele; genotype–phenotype correlations; penetrance; disease expression
9.  Mapping Cortical Degeneration in ALS with Magnetization Transfer Ratio and Voxel-Based Morphometry 
PLoS ONE  2013;8(7):e68279.
Pathological and imaging data indicate that amyotrophic lateral sclerosis (ALS) is a multisystem disease involving several cerebral cortical areas. Advanced quantitative magnetic resonance imaging (MRI) techniques enable to explore in vivo the volume and microstructure of the cerebral cortex in ALS. We studied with a combined voxel-based morphometry (VBM) and magnetization transfer (MT) imaging approach the capability of MRI to identify the cortical areas affected by neurodegeneration in ALS patients. Eighteen ALS patients and 18 age-matched healthy controls were examined on a 1.5T scanner using a high-resolution 3D T1 weighted spoiled gradient recalled sequence with and without MT saturation pulse. A voxel-based analysis (VBA) was adopted in order to automatically compute the regional atrophy and MT ratio (MTr) changes of the entire cerebral cortex. By using a multimodal image analysis MTr was adjusted for local gray matter (GM) atrophy to investigate if MTr changes can be independent of atrophy of the cerebral cortex. VBA revealed several clusters of combined GM atrophy and MTr decrease in motor-related areas and extra-motor frontotemporal cortex. The multimodal image analysis identified areas of isolated MTr decrease in premotor and extra-motor frontotemporal areas. VBM and MTr are capable to detect the distribution of neurodegenerative alterations in the cortical GM of ALS patients, supporting the hypothesis of a multi-systemic involvement in ALS. MT imaging changes exist beyond volume loss in frontotemporal cortices.
doi:10.1371/journal.pone.0068279
PMCID: PMC3706610  PMID: 23874570
10.  Next-Generation Sequencing Identifies Transportin 3 as the Causative Gene for LGMD1F 
PLoS ONE  2013;8(5):e63536.
Limb-girdle muscular dystrophies (LGMD) are genetically and clinically heterogeneous conditions. We investigated a large family with autosomal dominant transmission pattern, previously classified as LGMD1F and mapped to chromosome 7q32. Affected members are characterized by muscle weakness affecting earlier the pelvic girdle and the ileopsoas muscles. We sequenced the whole exome of four family members and identified a shared heterozygous frame-shift variant in the Transportin 3 (TNPO3) gene, encoding a member of the importin-β super-family. The TNPO3 gene is mapped within the LGMD1F critical interval and its 923-amino acid human gene product is also expressed in skeletal muscle. In addition, we identified an isolated case of LGMD with a new missense mutation in the same gene. We localized the mutant TNPO3 around the nucleus, but not inside. The involvement of gene related to the nuclear transport suggests a novel disease mechanism leading to muscular dystrophy.
doi:10.1371/journal.pone.0063536
PMCID: PMC3646821  PMID: 23667635
11.  Mutations in the Profilin 1 Gene Cause Familial Amyotrophic Lateral Sclerosis 
Nature  2012;488(7412):499-503.
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years1-9, nearly 50% of FALS cases have unknown genetic etiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is critical for monomeric (G)-actin conversion to filamentous (F)-actin. Exome sequencing of two large ALS families revealed different mutations within the PFN1 gene. Additional sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F-/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.
doi:10.1038/nature11280
PMCID: PMC3575525  PMID: 22801503
12.  Tetracyclines and Neuromuscular Disorders 
Current Neuropharmacology  2012;10(2):134-138.
Tetracyclines are a class of antibiotics which could act as neuroprotective molecules in several neurological disorders, such as Huntington disease, Parkinson disease, stroke and multiple sclerosis. The main biological effects of tetracyclines are the inhibition of microglial activation, the attenuation of apoptosis and the suppression of reactive oxygen species production. The anti-apoptotic effect of tetracyclines involves the mitochondrion, and the major target for neuroprotective effects of tetracyclines lies within the complex network that links mitochondria, oxidative stress and apoptosis.
Neuromuscular disorders are due to dysfunction of motor neurons, peripheral nerves, neuromuscular junction, or skeletal muscle itself. Animal studies have shown that minocycline could play neuroprotective effects in amyotrophic lateral sclerosis, but these positive findings have not been replicated in patients. Other neuromuscular disorders which tetracyclines may benefit are Guillain-Barré syndrome and other neuropathies, muscular dystrophies and mitochondrial disorders. However, well-designed double-blind controlled trials are still needed. Further studies are strongly needed to establish the most appropriate timing and dosage, as well as the indications for which tetracyclines could be effective and safe.
Here, we review the neuroprotective effects of tetracyclines in animal models, the clinical studies in humans, and we focus on their potential application in patients with neuromuscular disorders.
doi:10.2174/157015912800604498
PMCID: PMC3386503  PMID: 23204983
Doxycycline; mitochondria; minocycline; neurodegeneration; PARP-1; progressive external ophthalmoplegia; ROS; tetracycline.
13.  No major progranulin genetic variability contribution to disease etiopathogenesis in an ALS Italian cohort 
Neurobiology of aging  2009;32(6):1157-1158.
To analyze the contribution of progranulin (PGRN) to the etiopathogenesis of amyotrophic lateral sclerosis (ALS), we performed a PGRN gene screening in 146 Italian patients (12 familial cases) and evaluated the association of two common variants with risk of developing ALS in 239 sporadic cases (SALS). Progranulin mRNA and protein levels were measured in peripheral blood mononuclear cells and serum of a subset of these patients and controls. PGRN sequence analysis revealed a heterozygous change (p.S120Y), previously observed in an independent sporadic ALS-FTD patient. Haplotype analysis showed a conserved PGRN region among these two subjects consistent with possible common ancestor allele. Two non-coding polymorphisms were not associated to increased risk to develop ALS; mRNA and serum levels were not significantly different between cases and controls. Overall, our data argue against the hypothesis of progranulin as a major risk factor for motor neuron dysfunction, at least in Italian population. The p.S120Y variant may characterize rare patients with SALS, although its pathogenetic mechanism remains to be elucidated.
doi:10.1016/j.neurobiolaging.2009.06.006
PMCID: PMC3511779  PMID: 19632744
14.  Effects of aerobic training on exercise-related oxidative stress in mitochondrial myopathies 
Neuromuscular Disorders  2012;22(3-3):S172-S177.
In mitochondrial myopathies with respiratory chain deficiency impairment of energy cell production may lead to in excess reactive oxygen species generation with consequent oxidative stress and cell damage. Aerobic training has been showed to increase muscle performance in patients with mitochondrial myopathies. Aim of this study has been to evaluate, in 7 patients (6F e 1 M, mean age 44.9 ± 12.1 years) affected by mitochondrial disease, concomitantly to lactate exercise curve, the occurrence of oxidative stress, as indicated by circulating levels of lipoperoxides, in rest condition and as effect of exercise, and also, to verify if an aerobic training program is able to modify, in these patients, ox-redox balance efficiency. At rest and before training blood level of lipoperoxides was 382.4 ± 37.8 AU, compared to controls (318.7 ± 63.8; P < 0.05), this corresponding to a moderate oxidative stress degree according to the adopted scale. During incremental exercise blood level of lipoperoxides did not increase, but maintained significantly higher compared to controls. After an aerobic training of 10 weeks the blood level of lipoperoxides decreased by 13.7% at rest (P < 0.01) and 10.4%, 8.6% and 8.5% respectively at the corresponding times during the exercise test (P = 0.06). These data indicate that, in mitochondrial patients, oxidative stress occurs and that an aerobic training is useful in partially reverting this condition.
doi:10.1016/j.nmd.2012.10.005
PMCID: PMC3526792  PMID: 23182634
Mitochondrial diseases; Muscle exercise; Aerobic training; Oxidative stress
15.  Evidence of increased restless legs syndrome occurrence in chronic and highly disabling migraine 
Functional Neurology  2012;27(2):91-94.
Summary
The existence of an association between migraine and restless legs syndrome (RLS) has recently been reported, although the possible implications of this for migraine clinical presentation remain poorly understood. The objectives of this study were to determine RLS frequency in a population of migraineurs compared with healthy subjects and to assess RLS occurrence in episodic versus chronic migraine patients; the relationship between migraine-related disability and RLS comorbidity was also evaluated.
Two hundred and seventy-seven consecutive migraineurs (ICHD-II, 2004) were enrolled and compared with 200 controls; migraine was episodic in 175 and chronic in 102 patients. RLS (IRLSSG criteria, 2003) was present in 22.7% of the total sample of migraineurs and in 7.5% of the controls (p<0.0001). RLS occurred significantly more frequently in chronic compared with episodic migraineurs (34.3% vs 16%, respectively, p=0.0006); a significant association between RLS diagnosis and moderate-severe migraine-related disability was also documented (p=0.0003).
In conclusion, the results of the present study not only confirm the higher occurrence of RLS in migraine patients compared with the general population, but also suggest that RLS (the condition itself, or the disruption of sleep patterns often found in patients affected by RLS) might affect migraine clinical presentation, being associated with chronic and highly disabling migraine. These findings could have important therapeutic and prognostic implications in clinical practice.
PMCID: PMC3812772  PMID: 23158580
chronic migraine; migraine; migraine disability; restless legs syndrome; sleep
16.  APOE AND ALZHEIMER DISEASE: A MAJOR GENE WITH SEMI-DOMINANT INHERITANCE 
Molecular psychiatry  2011;16(9):903-907.
Apolipoprotein E (APOE) dependent lifetime risks (LTRs) for Alzheimer Disease (AD) are currently not accurately known and odds ratios (ORs) alone are insufficient to assess these risks. We calculated AD lifetime risk in 7,351 cases and 10,132 controls from Caucasian ancestry using Rochester (USA) incidence data. At the age of 85 the LTR of AD without reference to APOE genotype was 11% in males and 14% in females. At the same age, this risk ranged from 51% for APOE44 male carriers to 60% for APOE44 female carriers, and from 23% for APOE34 male carriers to 30% for APOE34 female carriers, consistent with semi-dominant inheritance of a moderately penetrant gene. Using PAQUID (France) incidence data, estimates were globally similar except that at age 85 the LTRs reached 68% and 35 % for APOE 44 and APOE 34 female carriers, respectively. These risks are more similar to those of major genes in Mendelian diseases, such as BRCA1 in breast cancer, than those of low-risk common alleles identified by recent GWAS in complex diseases. In addition, stratification of our data by age- groups clearly demonstrates that APOE4 is a risk factor not only for late- onset but for early- onset AD as well. Together, these results urge a reappraisal of the impact of APOE in Alzheimer disease.
doi:10.1038/mp.2011.52
PMCID: PMC3162068  PMID: 21556001
17.  Genetic characterization in symptomatic female DMD carriers: lack of relationship between X-inactivation, transcriptional DMD allele balancing and phenotype 
BMC Medical Genetics  2012;13:73.
Background
Although Duchenne and Becker muscular dystrophies, X-linked recessive myopathies, predominantly affect males, a clinically significant proportion of females manifesting symptoms have also been reported. They represent an heterogeneous group characterized by variable degrees of muscle weakness and/or cardiac involvement. Though preferential inactivation of the normal X chromosome has long been considered the principal mechanism behind disease manifestation in these females, supporting evidence is controversial.
Methods
Eighteen females showing a mosaic pattern of dystrophin expression on muscle biopsy were recruited and classified as symptomatic (7) or asymptomatic (11), based on the presence or absence of muscle weakness. The causative DMD gene mutations were identified in all cases, and the X-inactivation pattern was assessed in muscle DNA. Transcriptional analysis in muscles was performed in all females, and relative quantification of wild-type and mutated transcripts was also performed in 9 carriers. Dystrophin protein was quantified by immunoblotting in 2 females.
Results
The study highlighted a lack of relationship between dystrophic phenotype and X-inactivation pattern in females; skewed X-inactivation was found in 2 out of 6 symptomatic carriers and in 5 out of 11 asymptomatic carriers. All females were characterized by biallelic transcription, but no association was found between X-inactivation pattern and allele transcriptional balancing. Either a prevalence of wild-type transcript or equal proportions of wild-type and mutated RNAs was observed in both symptomatic and asymptomatic females. Moreover, very similar levels of total and wild-type transcripts were identified in the two groups of carriers.
Conclusions
This is the first study deeply exploring the DMD transcriptional behaviour in a cohort of female carriers. Notably, no relationship between X-inactivation pattern and transcriptional behaviour of DMD gene was observed, suggesting that the two mechanisms are regulated independently. Moreover, neither the total DMD transcript level, nor the relative proportion of the wild-type transcript do correlate with the symptomatic phenotype.
doi:10.1186/1471-2350-13-73
PMCID: PMC3459813  PMID: 22894145
Dystrophinopathy; Female carriers; X-inactivation; Transcriptional balancing
18.  The empowerment of translational research: lessons from laminopathies 
The need for a collaborative approach to complex inherited diseases collectively referred to as laminopathies, encouraged Italian researchers, geneticists, physicians and patients to join in the Italian Network for Laminopathies, in 2009. Here, we highlight the advantages and added value of such a multidisciplinary effort to understand pathogenesis, clinical aspects and try to find a cure for Emery-Dreifuss muscular dystrophy, Mandibuloacral dysplasia, Hutchinson-Gilford Progeria and forms of lamin-linked cardiomyopathy, neuropathy and lipodystrophy.
doi:10.1186/1750-1172-7-37
PMCID: PMC3458975  PMID: 22691392
Laminopathies; Emery-Dreifuss Muscular Dystrophy; Dilated Cardiomyopathy with Conduction Defects; Mandibuloacral Dysplasia; Familial Partial Lipodystrophy Type 2; Hutchinson-Gilford Progeria Syndrome; Rare Diseases; Networking activity; interdisciplinary approach to diseases
19.  Rippling muscle disease and facioscapulohumeral dystrophy-like phenotype in a patient carrying a heterozygous CAV3 T78M mutation and a D4Z4 partial deletion: Further evidence for “double trouble” overlapping syndromes 
Neuromuscular Disorders  2012;22(6):534-540.
We report the first case of a heterozygous T78M mutation in the caveolin-3 gene (CAV3) associated with rippling muscle disease and proximal myopathy. The patient displayed also bilateral winged scapula with limited abduction of upper arms and marked asymmetric atrophy of leg muscles shown by magnetic resonance imaging. Immunohistochemistry on the patient’s muscle biopsy demonstrated a reduction of caveolin-3 staining, compatible with the diagnosis of caveolinopathy. Interestingly, consistent with the possible diagnosis of FSHD, the patient carried a 35 kb D4Z4 allele on chromosome 4q35. We discuss the hypothesis that the two genetic mutations may exert a synergistic effect in determining the phenotype observed in this patient.
doi:10.1016/j.nmd.2011.12.001
PMCID: PMC3359497  PMID: 22245016
Rippling muscle disease; Caveolinopathy; Facioscapulohumeral dystrophy; Limb girdle muscular dystrophy type 1C
20.  Common variants in ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease 
Hollingworth, Paul | Harold, Denise | Sims, Rebecca | Gerrish, Amy | Lambert, Jean-Charles | Carrasquillo, Minerva M | Abraham, Richard | Hamshere, Marian L | Pahwa, Jaspreet Singh | Moskvina, Valentina | Dowzell, Kimberley | Jones, Nicola | Stretton, Alexandra | Thomas, Charlene | Richards, Alex | Ivanov, Dobril | Widdowson, Caroline | Chapman, Jade | Lovestone, Simon | Powell, John | Proitsi, Petroula | Lupton, Michelle K | Brayne, Carol | Rubinsztein, David C | Gill, Michael | Lawlor, Brian | Lynch, Aoibhinn | Brown, Kristelle S | Passmore, Peter A | Craig, David | McGuinness, Bernadette | Todd, Stephen | Holmes, Clive | Mann, David | Smith, A David | Beaumont, Helen | Warden, Donald | Wilcock, Gordon | Love, Seth | Kehoe, Patrick G | Hooper, Nigel M | Vardy, Emma R. L. C. | Hardy, John | Mead, Simon | Fox, Nick C | Rossor, Martin | Collinge, John | Maier, Wolfgang | Jessen, Frank | Schürmann, Britta | Rüther, Eckart | Heun, Reiner | Kölsch, Heike | van den Bussche, Hendrik | Heuser, Isabella | Kornhuber, Johannes | Wiltfang, Jens | Dichgans, Martin | Frölich, Lutz | Hampel, Harald | Hüll, Michael | Gallacher, John | Rujescu, Dan | Giegling, Ina | Goate, Alison M | Kauwe, John S K | Cruchaga, Carlos | Nowotny, Petra | Morris, John C | Mayo, Kevin | Sleegers, Kristel | Bettens, Karolien | Engelborghs, Sebastiaan | De Deyn, Peter P | Van Broeckhoven, Christine | Livingston, Gill | Bass, Nicholas J | Gurling, Hugh | McQuillin, Andrew | Gwilliam, Rhian | Deloukas, Panagiotis | Al-Chalabi, Ammar | Shaw, Christopher E | Tsolaki, Magda | Singleton, Andrew B | Guerreiro, Rita | Mühleisen, Thomas W | Nöthen, Markus M | Moebus, Susanne | Jöckel, Karl-Heinz | Klopp, Norman | Wichmann, H-Erich | Pankratz, V Shane | Sando, Sigrid B | Aasly, Jan O | Barcikowska, Maria | Wszolek, Zbigniew K | Dickson, Dennis W | Graff-Radford, Neill R | Petersen, Ronald C | van Duijn, Cornelia M | Breteler, Monique MB | Ikram, M Arfan | DeStefano, Anita L | Fitzpatrick, Annette L | Lopez, Oscar | Launer, Lenore J | Seshadri, Sudha | Berr, Claudine | Campion, Dominique | Epelbaum, Jacques | Dartigues, Jean-François | Tzourio, Christophe | Alpérovitch, Annick | Lathrop, Mark | Feulner, Thomas M | Friedrich, Patricia | Riehle, Caterina | Krawczak, Michael | Schreiber, Stefan | Mayhaus, Manuel | Nicolhaus, S | Wagenpfeil, Stefan | Steinberg, Stacy | Stefansson, Hreinn | Stefansson, Kari | Snædal, Jon | Björnsson, Sigurbjörn | Jonsson, Palmi V. | Chouraki, Vincent | Genier-Boley, Benjamin | Hiltunen, Mikko | Soininen, Hilkka | Combarros, Onofre | Zelenika, Diana | Delepine, Marc | Bullido, Maria J | Pasquier, Florence | Mateo, Ignacio | Frank-Garcia, Ana | Porcellini, Elisa | Hanon, Olivier | Coto, Eliecer | Alvarez, Victoria | Bosco, Paolo | Siciliano, Gabriele | Mancuso, Michelangelo | Panza, Francesco | Solfrizzi, Vincenzo | Nacmias, Benedetta | Sorbi, Sandro | Bossù, Paola | Piccardi, Paola | Arosio, Beatrice | Annoni, Giorgio | Seripa, Davide | Pilotto, Alberto | Scarpini, Elio | Galimberti, Daniela | Brice, Alexis | Hannequin, Didier | Licastro, Federico | Jones, Lesley | Holmans, Peter A | Jonsson, Thorlakur | Riemenschneider, Matthias | Morgan, Kevin | Younkin, Steven G | Owen, Michael J | O’Donovan, Michael | Amouyel, Philippe | Williams, Julie
Nature genetics  2011;43(5):429-435.
We sought to identify new susceptibility loci for Alzheimer’s disease (AD) through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer’s Disease Genetic Consortium (ADGC). First, we undertook a combined analysis of four genome-wide association datasets (Stage 1) and identified 10 novel variants with P≤1×10−5. These were tested for association in an independent sample (Stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (Stage 3). Meta-analyses of all data provide compelling evidence that ABCA7 (meta-P 4.5×10−17; including ADGC meta-P=5.0×10−21) and the MS4A gene cluster (rs610932, meta-P=1.8×10−14; including ADGC meta-P=1.2×10−16; rs670139, meta-P=1.4×10−9; including ADGC meta-P=1.1×10−10) are novel susceptibility loci for AD. Second, we observed independent evidence for association for three suggestive loci reported by the ADGC GWAS, which when combined shows genome-wide significance: CD2AP (GERAD+ P=8.0×10−4; including ADGC meta-P=8.6×10−9), CD33 (GERAD+ P=2.2×10−4; including ADGC meta-P=1.6×10−9) and EPHA1 (GERAD+ P=3.4×10−4; including ADGC meta-P=6.0×10−10). These findings support five novel susceptibility genes for AD.
doi:10.1038/ng.803
PMCID: PMC3084173  PMID: 21460840
21.  Welcoming address 
Acta Myologica  2011;30(2):146.
PMCID: PMC3235865
22.  May “Mitochondrial Eve” and Mitochondrial Haplogroups Play a Role in Neurodegeneration and Alzheimer's Disease? 
Mitochondria, the powerhouse of the cell, play a critical role in several metabolic processes and apoptotic pathways. Multiple evidences suggest that mitochondria may be crucial in ageing-related neurodegenerative diseases. Moreover, mitochondrial haplogroups have been linked to multiple area of medicine, from normal ageing to diseases, including neurodegeneration. Polymorphisms within the mitochondrial genome might lead to impaired energy generation and to increased amount of reactive oxygen species, having either susceptibility or protective role in several diseases. Here, we highlight the role of the mitochondrial haplogroups in the pathogenetic cascade leading to diseases, with special attention to Alzheimer's disease.
doi:10.4061/2011/709061
PMCID: PMC3056451  PMID: 21423558
23.  The CALHM1 P86L polymorphism is a genetic modifier of age at onset in Alzheimer’s disease: a meta-analysis study 
Lambert, Jean-Charles | Sleegers, Kristel | González-Pérez, Antonio | Ingelsson, Martin | Beecham, Gary W | Hiltunen, Mikko | Combarros, Onofre | Bullido, Maria J | Brouwers, Nathalie | Bettens, Karolien | Berr, Claudine | Pasquier, Florence | Richard, Florence | DeKosky, Steven T | Hannequin, Didier | Haines, Jonathan L | Tognoni, Gloria | Fiévet, Nathalie | Dartigues, Jean-François | Tzourio, Christophe | Engelborghs, Sebastiaan | Arosio, Beatrice | Coto, Elicer | De Deyn, Peter | Zompo, Maria Del | Mateo, Ignacio | Boada, Merce | Antunez, Carmen | Lopez-Arrieta, Jesus | Epelbaum, Jacques | Schjeide, Brit-Maren Michaud | Frank-Garcia, Ana | Giedraitis, Vilmentas | Helisalmi, Seppo | Porcellini, Elisa | Pilotto, Alberto | Forti, Paola | Ferri, Raffaele | Delepine, Marc | Zelenika, Diana | Lathrop, Mark | Scarpini, Elio | Siciliano, Gabriele | Solfrizzi, Vincenzo | Sorbi, Sandro | Spalletta, Gianfranco | Ravaglia, Giovanni | Valdivieso, Fernando | Vepsäläinen, Saila | Alvarez, Victoria | Bosco, Paolo | Mancuso, Michelangelo | Panza, Francesco | Nacmias, Benedetta | Bossù, Paola | Hanon, Olivier | Piccardi, Paola | Annoni, Giorgio | Mann, David | Marambaud, Philippe | Seripa, Davide | Galimberti, Daniela | Tanzi, Rudolph E | Bertram, Lars | Lendon, Corinne | Lannfelt, Lars | Licastro, Federico | Campion, Dominique | Pericak-Vance, Margaret A | Soininen, Hilkka | Van Broeckhoven, Christine | Alpérovitch, Annick | Ruiz, Agustin | Kamboh, M Ilyas | Amouyel, Philippe
The only established genetic determinant of non-Mendelian forms of Alzheimer’s disease (AD) is the ε4 allele of the apolipoprotein E gene (APOE). Recently, it has been reported that the P86L polymorphism of the calcium homeostasis modulator 1 gene (CALHM1) is associated with the risk of developing AD. In order to independently assess this association, we performed a meta-analysis of 7,873 AD cases and 13,274 controls of Caucasian origin (from a total of 24 centres in Belgium, Finland, France, Italy, Spain, Sweden, the UK and the USA). Our results indicate that the CALHM1 P86L polymorphism is likely not a genetic determinant of AD but may modulate age at onset by interacting with the effect of the ε4 allele of the APOE gene.
doi:10.3233/JAD-2010-100933
PMCID: PMC2964875  PMID: 20847397
24.  Current and emerging treatment options in the management of Friedreich ataxia 
Friedreich ataxia (FRDA) is the most common autosomal recessive ataxia. Oxidative damage within the mitochondria seems to have a key role in the disease phenotype. Therefore, FRDA treatment options have been mostly directed at antioxidant protection against mitochondrial damage. Available evidence seems to suggest that patients with FRDA should be treated with idebenone, because it is well tolerated and may reduce cardiac hypertrophy and, at higher doses, also improve neurological function, but large controlled clinical trials are still needed. Alternatively, gene-based strategies for the treatment of FRDA may involve the development of small-molecules increasing frataxin gene transcription. Animal and human studies are strongly needed to assess whether any of the potential new treatment strategies, such as iron-chelating therapies or treatment with erythropoietin or histone deacetylase inhibitors and other gene-based strategies, may translate into an effective therapy for this devastating disorder. In this review, we try to provide an answer to some questions related to current and emerging treatment options in the management of FRDA.
PMCID: PMC2938298  PMID: 20856912
frataxin; idebenone; oxidative stress
25.  A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis 
Human Molecular Genetics  2009;18(8):1524-1532.
The cause of sporadic amyotrophic lateral sclerosis (ALS) is largely unknown, but genetic factors are thought to play a significant role in determining susceptibility to motor neuron degeneration. To identify genetic variants altering risk of ALS, we undertook a two-stage genome-wide association study (GWAS): we followed our initial GWAS of 545 066 SNPs in 553 individuals with ALS and 2338 controls by testing the 7600 most associated SNPs from the first stage in three independent cohorts consisting of 2160 cases and 3008 controls. None of the SNPs selected for replication exceeded the Bonferroni threshold for significance. The two most significantly associated SNPs, rs2708909 and rs2708851 [odds ratio (OR) = 1.17 and 1.18, and P-values = 6.98 × 10−7 and 1.16 × 10−6], were located on chromosome 7p13.3 within a 175 kb linkage disequilibrium block containing the SUNC1, HUS1 and C7orf57 genes. These associations did not achieve genome-wide significance in the original cohort and failed to replicate in an additional independent cohort of 989 US cases and 327 controls (OR = 1.18 and 1.19, P-values = 0.08 and 0.06, respectively). Thus, we chose to cautiously interpret our data as hypothesis-generating requiring additional confirmation, especially as all previously reported loci for ALS have failed to replicate successfully. Indeed, the three loci (FGGY, ITPR2 and DPP6) identified in previous GWAS of sporadic ALS were not significantly associated with disease in our study. Our findings suggest that ALS is more genetically and clinically heterogeneous than previously recognized. Genotype data from our study have been made available online to facilitate such future endeavors.
doi:10.1093/hmg/ddp059
PMCID: PMC2664150  PMID: 19193627

Results 1-25 (29)