PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Efficient mitochondrial biogenesis drives incomplete penetrance in Leber’s hereditary optic neuropathy 
Brain  2013;137(2):335-353.
The mechanisms of incomplete penetrance in Leber’s hereditary optic neuropathy are elusive. Giordano et al. show that mitochondrial DNA content and mitochondrial mass are both increased in tissues and cells from unaffected mutation carriers relative to affected relatives and control individuals. Upregulation of mitochondrial biogenesis may represent a therapeutic target.
Leber’s hereditary optic neuropathy is a maternally inherited blinding disease caused as a result of homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. It is characterized by incomplete penetrance, as only some mutation carriers become affected. Thus, the mitochondrial DNA mutation is necessary but not sufficient to cause optic neuropathy. Environmental triggers and genetic modifying factors have been considered to explain its variable penetrance. We measured the mitochondrial DNA copy number and mitochondrial mass indicators in blood cells from affected and carrier individuals, screening three large pedigrees and 39 independently collected smaller families with Leber’s hereditary optic neuropathy, as well as muscle biopsies and cells isolated by laser capturing from post-mortem specimens of retina and optic nerves, the latter being the disease targets. We show that unaffected mutation carriers have a significantly higher mitochondrial DNA copy number and mitochondrial mass compared with their affected relatives and control individuals. Comparative studies of fibroblasts from affected, carriers and controls, under different paradigms of metabolic demand, show that carriers display the highest capacity for activating mitochondrial biogenesis. Therefore we postulate that the increased mitochondrial biogenesis in carriers may overcome some of the pathogenic effect of mitochondrial DNA mutations. Screening of a few selected genetic variants in candidate genes involved in mitochondrial biogenesis failed to reveal any significant association. Our study provides a valuable mechanism to explain variability of penetrance in Leber’s hereditary optic neuropathy and clues for high throughput genetic screening to identify the nuclear modifying gene(s), opening an avenue to develop predictive genetic tests on disease risk and therapeutic strategies.
doi:10.1093/brain/awt343
PMCID: PMC3914475  PMID: 24369379
LHON penetrance; mitochondrial biogenesis; mtDNA copy number
2.  A Novel Null Homozygous Mutation Confirms CACNA2D2 as a Gene Mutated in Epileptic Encephalopathy 
PLoS ONE  2013;8(12):e82154.
Contribution to epileptic encephalopathy (EE) of mutations in CACNA2D2, encoding α2δ-2 subunit of Voltage Dependent Calcium Channels, is unclear. To date only one CACNA2D2 mutation altering channel functionality has been identified in a single family. In the same family, a rare CELSR3 polymorphism also segregated with disease. Involvement of CACNA2D2 in EE is therefore not confirmed, while that of CELSR3 is questionable. In a patient with epilepsy, dyskinesia, cerebellar atrophy, psychomotor delay and dysmorphic features, offspring to consanguineous parents, we performed whole exome sequencing (WES) for homozygosity mapping and mutation detection. WES identified extended autozygosity on chromosome 3, containing two novel homozygous candidate mutations: c.1295delA (p.Asn432fs) in CACNA2D2 and c.G6407A (p.Gly2136Asp) in CELSR3. Gene prioritization pointed to CACNA2D2 as the most prominent candidate gene. The WES finding in CACNA2D2 resulted to be statistically significant (p = 0.032), unlike that in CELSR3. CACNA2D2 homozygous c.1295delA essentially abolished α2δ-2 expression. In summary, we identified a novel null CACNA2D2 mutation associated to a clinical phenotype strikingly similar to the Cacna2d2 null mouse model. Molecular and statistical analyses together argued in favor of a causal contribution of CACNA2D2 mutations to EE, while suggested that finding in CELSR3, although potentially damaging, is likely incidental.
doi:10.1371/journal.pone.0082154
PMCID: PMC3864908  PMID: 24358150
3.  Cybrid studies establish the causal link between the mtDNA m.3890G>A/MT-ND1 mutation and optic atrophy with bilateral brainstem lesions 
Biochimica et Biophysica Acta  2013;1832(3):445-452.
Complex I (CI) deficiency is a frequent cause of mitochondrial disorders and, in most cases, is due to mutations in CI subunit genes encoded by mitochondrial DNA (mtDNA). In this study, we establish the pathogenic role of the heteroplasmic mtDNA m.3890G>A/MT-ND1 (p.R195Q) mutation, which affects an extremely conserved amino acid position in ND1 subunit of CI. This mutation was found in a young-adult male with optic atrophy resembling Leber's hereditary optic neuropathy (LHON) and bilateral brainstem lesions. The only previously reported case with this mutation was a girl with fatal infantile Leigh syndrome with bilateral brainstem lesions. Transfer of the mutant mtDNA in the cybrid cell system resulted in a marked reduction of CI activity and CI-dependent ATP synthesis in the presence of a normally assembled enzyme.
These findings establish the pathogenicity of the m.3890G>A/MT-ND1 mutation and remark the link between CI mutations affecting the mtDNA-encoded ND subunits and LHON-like optic atrophy, which may be complicated by bilateral and symmetric lesions affecting the central nervous system. Peculiar to this mutation is the distribution of the brainstem lesions, with sparing of the striatum in both patients.
Highlights
► Heteroplasmic m.3890G>A/MT-ND1 mutation causes optic atrophy and bilateral brainstem lesions ► This mutation affects a conserved amino acid in a functional domain of ND1 subunit ► This mutation significantly affects CI redox activity and function
doi:10.1016/j.bbadis.2012.12.002
PMCID: PMC3778985  PMID: 23246842
CI, Complex I; CII, Complex II; CIII, Complex III; CIV, Complex IV; LHON, Leber's hereditary optic neuropathy; mtDNA, mitochondrial DNA; nDNA, nuclear DNA; OS, Oculus Sinister (left eye); OD, Oculus Dexter (right eye); Mitochondrial disorder; Vision loss; MT-ND1; Complex I
4.  Pseudomyotonia in Romagnola cattle caused by novel ATP2A1 mutations 
Background
Bovine congenital pseudomyotonia (PMT) is an impairment of muscle relaxation induced by exercise preventing animals from performing rapid movements. Forms of recessively inherited PMT have been described in different cattle breeds caused by two independent mutations in ATP2A1 encoding a skeletal-muscle Ca2+-ATPase (SERCA1). We observed symptoms of congenital PMT in four related Romagnola beef cattle from Italy and evaluated SERCA1 activity and scanned ATP2A1 for possible causative mutations.
Results
We obtained four PMT affected Romagnola cattle and noted striking clinical similarities to the previously described PMT cases in other cattle breeds. The affected animals had a reduced SERCA1 activity in the sarcoplasmic reticulum. A single affected animal was homozygous for a novel complex variant in ATP2A1 exon 8 (c.[632 G>T; 857 G>T]). Three out of four cases were compound heterozygous for the newly identified exon 8 variant and the exon 6 variant c.491 G>A(p. Arg146Gly), which has previously been shown to cause PMT in Chianina cattle. Pedigree analysis showed that the exon 8 double mutation event dates back to at least 1978. Both nucleotide substitutions are predicted to alter the SERCA1 amino acid sequence (p.[(Gly211Val; Gly284Val)]), affect highly conserved residues, in particular the actuator domain of SERCA1.
Conclusion
Clinical, biochemical and DNA analyses confirmed the initial hypothesis. We provide functional and genetic evidence that one novel and one previously described ATP2A1 mutation lead to a reduced SERCA1 activity in skeletal muscles and pseudomyotonia in affected Romagnola cattle. Selection against these mutations can now be used to eliminate the mutant alleles from the Romagnola breed.
doi:10.1186/1746-6148-8-186
PMCID: PMC3545862  PMID: 23046865
Cattle; Genetic disease; ATP2A1; Compound heterozygous; SERCA1; Brody disease
5.  Rare Primary Mitochondrial DNA Mutations and Probable Synergistic Variants in Leber’s Hereditary Optic Neuropathy 
PLoS ONE  2012;7(8):e42242.
Background
Leber’s hereditary optic neuropathy (LHON) is a maternally inherited blinding disorder, which in over 90% of cases is due to one of three primary mitochondrial DNA (mtDNA) point mutations (m.11778G>A, m.3460G>A and m.14484T>C, respectively in MT-ND4, MT-ND1 and MT-ND6 genes). However, the spectrum of mtDNA mutations causing the remaining 10% of cases is only partially and often poorly defined.
Methodology/Principal Findings
In order to improve such a list of pathological variants, we completely sequenced the mitochondrial genomes of suspected LHON patients from Italy, France and Germany, lacking the three primary common mutations. Phylogenetic and conservation analyses were performed. Sixteen mitochondrial genomes were found to harbor at least one of the following nine rare LHON pathogenic mutations in genes MT-ND1 (m.3700G>A/p.A132T, m.3733G>A-C/p.E143K-Q, m.4171C>A/p.L289M), MT-ND4L (m.10663T>C/p.V65A) and MT-ND6 (m.14459G>A/p.A72V, m.14495A>G/p.M64I, m.14482C>A/p.L60S, and m.14568C>T/p.G36S). Phylogenetic analyses revealed that these substitutions were due to independent events on different haplogroups, whereas interspecies comparisons showed that they affected conserved amino acid residues or domains in the ND subunit genes of complex I.
Conclusions/Significance
Our findings indicate that these nine substitutions are all primary LHON mutations. Therefore, despite their relative low frequency, they should be routinely tested for in all LHON patients lacking the three common mutations. Moreover, our sequence analysis confirms the major role of haplogroups J1c and J2b (over 35% in our probands versus 6% in the general population of Western Europe) and other putative synergistic mtDNA variants in LHON expression.
doi:10.1371/journal.pone.0042242
PMCID: PMC3411744  PMID: 22879922
6.  The empowerment of translational research: lessons from laminopathies 
The need for a collaborative approach to complex inherited diseases collectively referred to as laminopathies, encouraged Italian researchers, geneticists, physicians and patients to join in the Italian Network for Laminopathies, in 2009. Here, we highlight the advantages and added value of such a multidisciplinary effort to understand pathogenesis, clinical aspects and try to find a cure for Emery-Dreifuss muscular dystrophy, Mandibuloacral dysplasia, Hutchinson-Gilford Progeria and forms of lamin-linked cardiomyopathy, neuropathy and lipodystrophy.
doi:10.1186/1750-1172-7-37
PMCID: PMC3458975  PMID: 22691392
Laminopathies; Emery-Dreifuss Muscular Dystrophy; Dilated Cardiomyopathy with Conduction Defects; Mandibuloacral Dysplasia; Familial Partial Lipodystrophy Type 2; Hutchinson-Gilford Progeria Syndrome; Rare Diseases; Networking activity; interdisciplinary approach to diseases

Results 1-6 (6)