Search tips
Search criteria

Results 1-25 (37)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Glucose and NADPH oxidase drive neuronal superoxide formation in stroke 
Annals of neurology  2008;64(6):654-663.
Hyperglycemia has been recognized for decades to be an exacerbating factor in ischemic stroke, but the mechanism of this effect remains unresolved. Here we evaluated superoxide production by neuronal NADPH oxidase as a link between glucose metabolism and neuronal death in ischemia-reperfusion.
Superoxide production was measured by the ethidium method in cultured neurons treated with oxygen-glucose deprivation and in mice treated with forebrain ischemia-reperfusion. The role of NADPH oxidase was examined using genetic disruption of its p47phox subunit and with the pharmacological inhibitor, apocynin.
In neuron cultures, post-ischemic superoxide production and cell death were completely prevented by removing glucose from the medium, by inactivating NADPH oxidase, or by inhibiting the hexose monophosphate shunt which generates NADPH from glucose. In murine stroke, neuronal superoxide production and death were decreased by the glucose anti-metabolite, 2-deoxyglucose, and increased by high blood glucose concentrations. Inactivating NADPH oxidase with either apocynin or deletion of the p47phox subunit blocked neuronal superoxide production and negated the deleterious effects of hyperglycemia.
These findings identify glucose as the requisite electron donor for reperfusion-induced neuronal superoxide production and establish a previously unrecognized mechanism by which hyperglycemia can exacerbate ischemic brain injury.
PMCID: PMC4304737  PMID: 19107988
ischemia; reperfusion; superoxide; NADPH oxidase; hexose monophosphate shunt
2.  Triggering Receptor Expressed on Myeloid Cells-2 Correlates to Hypothermic Neuroprotection in Ischemic Stroke 
Hypothermia is neuroprotective against many acute neurological insults, including ischemic stroke. We and others have previously shown that protection by hypothermia is partially associated with an anti-inflammatory effect. Phagocytes are thought to play an important role in the clearance of necrotic debris, paving the way for endogenous repair mechanisms to commence, but the effect of cooling and phagocytosis has not been extensively studied. Triggering receptor expressed on myeloid cells-2 (TREM2) is a newly identified surface receptor shown to be involved in phagocytosis. In this study, we examined the effect of therapeutic hypothermia on TREM2 expression. Mice underwent permanent middle cerebral artery occlusion (MCAO) and were treated with one of the two cooling paradigms: one where cooling (30°C) began at the onset of MCAO (early hypothermia [eHT]) and another where cooling began 1 hour later (delayed hypothermia [dHT]). In both groups, cooling was maintained for 2 hours. A third group was maintained at normothermia (NT) as a control (37°C). Mice from the NT and dHT groups had similar ischemic lesion sizes and neurological performance, but the eHT group showed marked protection as evidenced by a smaller lesion size and less neurological deficits up to 30 days after the insult. Microglia and macrophages increased after MCAO as early as 3 days, peaked at 7 days, and decreased by 14 days. Both hypothermia paradigms were associated with decreased numbers of microglia and macrophages at 3 and 7 days, with greater decreases in the early paradigm. However, the proportion of the TREM2-positive microglia/macrophages was actually increased among the eHT group at day 7. eHT showed a long-term neurological benefit, but neuroprotection did not correlate to immune suppression. However, hypothermic neuroprotection was associated with a relative increase in TREM2 expression, and suggests that TREM2 may serve a beneficial role in brain ischemia.
PMCID: PMC3868297  PMID: 24380032
3.  Calcium-sensing receptor (CaSR) as a novel target for ischemic neuroprotection 
Ischemic brain injury is the leading cause for death and long-term disability in patients who suffer cardiac arrest and embolic stroke. Excitotoxicity and subsequent Ca2+-overload lead to ischemic neuron death. We explore a novel mechanism concerning the role of the excitatory extracellular calcium-sensing receptor (CaSR) in the induction of ischemic brain injury.
Mice were exposed to forebrain ischemia and the actions of CaSR were determined after its genes were ablated specifically in hippocampal neurons or its activities were inhibited pharmacologically. Since the CaSR forms a heteromeric complex with the inhibitory type B γ-aminobutyric acid receptor 1 (GABABR1), we compared neuronal responses to ischemia in mice deficient in CaSR, GABABR1, or both, and in mice injected locally or systemically with a specific CaSR antagonist (or calcilytic) in the presence or absence of a GABABR1 agonist (baclofen).
Both global and focal brain ischemia led to CaSR overexpression and GABABR1 downregulation in injured neurons. Genetic ablation of Casr genes or blocking CaSR activities by calcilytics rendered robust neuroprotection and preserved learning and memory functions in ischemic mice, partly by restoring GABABR1 expression. Concurrent ablation of Gabbr1 gene blocked the neuroprotection caused by the Casr gene knockout. Coinjection of calcilytics with baclofen synergistically enhanced neuroprotection. This combined therapy remained robust when given 6 h after ischemia.
Our study demonstrates a novel receptor interaction, which contributes to ischemic neuron death through CaSR upregulation and GABABR1 downregulation, and feasibility of neuroprotection by concurrently targeting these two receptors.
PMCID: PMC4265057  PMID: 25540800
4.  The 70kD heat shock protein protects against experimental traumatic brain injury 
Neurobiology of disease  2013;58:289-295.
Traumatic brain injury (TBI) causes disruption of the blood brain barrier (BBB) leading to hemorrhage which can complicate an already catastrophic illness. Matrix metalloproteinases (MMPs) involved in the breakdown of the extracellular matrix may lead to brain hemorrhage. We explore the contribution of the 70 kD heat shock protein (Hsp70) to outcome and brain hemorrhage in a model of TBI. Male, wildtype (Wt), Hsp70 knockout (Ko) and transgenic (Tg) mice were subjected to TBI using controlled cortical impact (CCI). Motor function, brain hemorrhage and lesion size were assessed at 3, 7 and 14 d. Brains were evaluated for the effects of Hsp70 on MMPs.
In Hsp70 Tg mice, CCI led to smaller brain lesions, decreased hemorrhage and reduced expression and activation of MMPs compared to Wt. CCI also significantly decreased right-biased swings and corner turns in the Hsp70 Tg mice. Conversely, Hsp70 Ko mice had significantly increased lesion size, worsened brain hemorrhage and increased expression and activation of MMPs with worsened behavioral outcomes compared to Wt. Hsp70 is protective in experimental TBI. To our knowledge, this is the direct demonstration of brain protection by Hsp70 in a TBI model. Our data demonstrate a new mechanism linking TBI-induced hemorrhage and neuronal injury to the suppression of MMPs by Hsp70, and support the development of Hsp70 enhancing strategies for the treatment of TBI.
PMCID: PMC3799906  PMID: 23816752
brain injury; heat shock protein; cerebral hemorrhage
5.  Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets 
Current medicinal chemistry  2014;21(18):2076-2097.
Stroke is a frequent cause of long-term disability and death worldwide. Ischemic stroke is more commonly encountered compared to hemorrhagic stroke, and leads to tissue death by ischemia due to occlusion of a cerebral artery. Inflammation is known to result as a result of ischemic injury, long thought to be involved in initiating the recovery and repair process. However, work over the past few decades indicates that aspects of this inflammatory response may in fact be detrimental to stroke outcome.
Acutely, inflammation appears to have a detrimental effect, and anti-inflammatory treatments have been been studied as a potential therapeutic target. Chronically, reports suggest that post-ischemic inflammation is also essential for the tissue repairing and remodeling. The majority of the work in this area has centered around innate immune mechanisms, which will be the focus of this review. This review describes the different key players in neuroinflammation and their possible detrimental and protective effects in stroke. A better understanding of the roles of the different immune cells and their temporal profile of damage versus repair will help to clarify more effective modulation of inflammation post stroke. Introduction Stroke refers to conditions caused by occlusion and/or rupture of blood vessels in the brain, and is a leading cause of death and disability in the industrialized world.
PMCID: PMC4104826  PMID: 24372209
brain ischemia; inflammation; neuroprotection; stroke
6.  Hypothermia and Pharmacological Regimens that Prevent Overexpression and Overactivity of the Extracellular Calcium-Sensing Receptor Protect Neurons against Traumatic Brain Injury 
Journal of Neurotrauma  2013;30(13):1170-1176.
Traumatic brain injury (TBI) leads to acute functional deficit in the brain. Molecular events underlying TBI remain unclear. In mouse brains, we found controlled cortical impact (CCI) injury induced overexpression of the extracellular calcium-sensing receptor (CaSR), which is known to stimulate neuronal activity and accumulation of intracellular Ca2+ and concurrent down-regulation of type B or metabotropic GABA receptor 1 (GABA-B-R1), a prominent inhibitory pathway in the brain. These changes in protein expression preceded and were closely associated with the loss of brain tissue, as indicated by the increased size of cortical cavity at impact sites, and the development of motor deficit, as indicated by the increased frequency of right-biased swing and turn in the CCI mice. Mild hypothermia, an established practice of neuroprotection for brain ischemia, partially but significantly blunted all of the above effects of CCI. Administration of CaSR antagonist NPS89636 mimicked hypothermia to reduce loss of brain tissue and motor functions in the CCI mice. These data together support the concept that CaSR overexpression and overactivity play a causal role in potentiating TBI potentially by stimulating excitatory neuronal responses and by interfering with inhibitory GABA-B-R signaling and that the CaSR could be a novel target for neuroprotection against TBI.
PMCID: PMC3700438  PMID: 23360235
calcilytics; calcium-sensing receptor; CaSR; controlled cortical impact; extracellular calcium-sensing receptor; hypothermia, neuroprotection; traumatic brain injury; type B GABA receptor
7.  Mild Hypothermia Reduces Tissue Plasminogen Activator-Related Hemorrhage and Blood Brain Barrier Disruption After Experimental Stroke 
Therapeutic hypothermia has shown neuroprotective promise, but whether it can be used to improve outcome in stroke has yet to be determined in patients. Recombinant tissue plasminogen activator (rt-PA) is only given to a minority of patients with acute ischemic stroke, and is not without risk, namely significant brain hemorrhage. We explored whether mild hypothermia, in combination with rt-PA, influences the safety of rt-PA. Mice were subjected to middle cerebral artery occlusion (MCAO) using a filament model, followed by 24 hours reperfusion. Two paradigms were studied. In the first paradigm, cooling and rt-PA treatment began at the same time upon reperfusion, whereas in the second paradigm, cooling began soon after ischemia onset, and rt-PA began after re-warming and upon reperfusion. Experimental groups included: tPA treatment at normothermia (37°C), rt-PA treatment at hypothermia (33°C), no rt-PA at normothermia, and no rt-PA treatment at hypothermia. Infarct size, neurological deficit scores, blood brain barrier (BBB) permeability, brain hemorrhage, and expression of endogenous tissue plasminogen activator (tPA) and its inhibitor, plasminogen activator inhibitor (PAI-1) were assessed. For both paradigms, hypothermia reduced infarct size and neurological deficits compared to normothermia, regardless of whether rt-PA was given. rt-PA treatment increased brain hemorrhage and BBB disruption compared to normothermia, and this was prevented by cooling. However, mortality was higher when rt-PA and cooling were administered at the same time, beginning 1–2 hours post MCAO. Endogenous tPA expression was reduced in hypothermic mice, whereas PAI-1 levels were unchanged by cooling. In the setting of rt-PA treatment, hypothermia reduces brain hemorrhage, and BBB disruption, suggesting that combination therapy with mild hypothermia and rt-PA appears safe.
PMCID: PMC3684213  PMID: 23781399
8.  Neuroprotection after cerebral ischemia 
Cerebral ischemia, a focal or global insufficiency of blood flow to the brain, can arise through multiple mechanisms, including thrombosis and arterial hemorrhage. Ischemia is a major driver of stroke, one of the leading causes of morbidity and mortality worldwide. While the general etiology of cerebral ischemia and stroke has been known for some time, the conditions have only recently been considered treatable. This report describes current research in this field seeking to fully understand the pathomechanisms underlying stroke; to characterize the brain’s intrinsic injury, survival, and repair mechanisms; to identify putative drug targets as well as cell-based therapies; and to optimize the delivery of therapeutic agents to the damaged cerebral tissue.
PMCID: PMC3645884  PMID: 23488559
stroke; cerebral ischemia; cerebrovascular disease; neurovascular unit; cell therapy; repair; immune response
10.  Microglial P2Y12 Deficiency/Inhibition Protects against Brain Ischemia 
PLoS ONE  2013;8(8):e70927.
Microglia are among the first immune cells to respond to ischemic insults. Triggering of this inflammatory response may involve the microglial purinergic GPCR, P2Y12, activation via extracellular release of nucleotides from injured cells. It is also the inhibitory target of the widely used antiplatelet drug, clopidogrel. Thus, inhibiting this GPCR in microglia should inhibit microglial mediated neurotoxicity following ischemic brain injury.
Experimental cerebral ischemia was induced, in vitro with oxygen-glucose deprivation (OGD), or in vivo via bilateral common carotid artery occlusion (BCCAO). Genetic knock-down in vitro via siRNA, or in vivo P2Y12 transgenic mice (P2Y12−/− or P2Y12+/−), or in vivo treatment with clopidogrel, were used to manipulate the receptor. Neuron death, microglial activation, and microglial migration were assessed.
The addition of microglia to neuron-astrocyte cultures increases neurotoxicity following OGD, which is mitigated by microglial P2Y12 deficiency (P<0.05). Wildtype microglia form clusters around these neurons following injury, which is also prevented in P2Y12 deficient microglia (P<0.01). P2Y12 knock-out microglia migrated less than WT controls in response to OGD-conditioned neuronal supernatant. P2Y12 (+/−) or clopidogrel treated mice subjected to global cerebral ischemia suffered less neuronal injury (P<0.01, P<0.001) compared to wild-type littermates or placebo treated controls. There were also fewer microglia surrounding areas of injury, and less activation of the pro-inflammatory transcription factor, nuclear factor Kappa B (NFkB).
P2Y12 participates in ischemia related inflammation by mediating microglial migration and potentiation of neurotoxicity. These data also suggest an additional anti-inflammatory, neuroprotective benefit of clopidogrel.
PMCID: PMC3733797  PMID: 23940669
11.  Sphingolipids in cardiovascular and cerebrovascular systems: Pathological implications and potential therapeutic targets 
World Journal of Cardiology  2013;5(4):75-86.
The sphingolipid metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P) and its enzyme sphingosine kinase (SphK) play an important role in the regulation of cell proliferation, survival, inflammation, and cell death. Ceramide and sphingosine usually inhibit proliferation and promote apoptosis, while its metabolite S1P phosphorylated by SphK stimulates growth and suppresses apoptosis. Because these metabolites are interconvertible, it has been proposed that it is not the absolute amounts of these metabolites but rather their relative levels that determine cell fate. The relevance of this “sphingolipid rheostat” and its role in regulating cell fate has been borne out by work in many labs using many different cell types and experimental manipulations. A central finding of these studies is that SphK is a critical regulator of the sphingolipid rheostat, as it not only produces the pro-growth, anti-apoptotic messenger S1P, but also decreases levels of pro-apoptotic ceramide and sphingosine. Activation of bioactive sphingolipid S1P signaling has emerged as a critical protective pathway in response to acute ischemic injury in both cardiac and cerebrovascular disease, and these observations have considerable relevance for future potential therapeutic targets.
PMCID: PMC3653015  PMID: 23675553
Sphingolipids; Sphingosine-1-phosphate; Sphingosine kinase; Ceramide kinase
12.  The immune modulating properties of the heat shock proteins after brain injury 
Anatomy & Cell Biology  2013;46(1):1-7.
Inflammation within the central nervous system often accompanies ischemia, trauma, infection, and other neuronal injuries. The immune system is now recognized to play a major role in neuronal cell death due to microglial activation, leukocyte recruitment, and cytokine secretion. The participation of heat shock proteins (Hsps) in the immune response following in brain injury can be seen as an attempt to correct the inflammatory condition. The Hsps comprise various families on the basis of molecular size. One of the most studied is Hsp70. Hsp70 is thought to act as a molecular chaperone that is present in almost intracellular compartments, and function by refolding misfolded or aggregated proteins. Hsps have recently been studied in inflammatory conditions. Hsp70 can both induce and arrest inflammatory reactions and lead to improved neurological outcome in experimental brain injury and ischemia. In this review, we will focus on underlying inflammatory mechanisms and Hsp70 in acute neurological injury.
PMCID: PMC3615608  PMID: 23560231
Heat shock proteins; Brain injury; Molecular chaperones; Immune system; Anti-inflammation
13.  The Multifaceted Effects of Agmatine on Functional Recovery after Spinal Cord Injury through Modulations of BMP-2/4/7 Expressions in Neurons and Glial Cells 
PLoS ONE  2013;8(1):e53911.
Presently, few treatments for spinal cord injury (SCI) are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm), a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm2 weight for 1 min at thoracic vertebra (Th) 9 segment. Mice that received an intraperitoneal (i.p.) injection of Agm (100 mg/kg/day) within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs) are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST) demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following SCI.
PMCID: PMC3549976  PMID: 23349763
14.  Significance of marrow derived NADPH oxidase in experimental ischemic stroke 
Annals of neurology  2011;70(4):606-615.
Reperfusion after stroke leads to infiltration of inflammatory cells into the ischemic brain. NADPH oxidase (NOX2) is a major enzyme system which generates superoxide in immune cells. We studied the effect of NOX2 derived from the immune cells in the brain and in blood cells in experimental stroke.
To establish whether NOX2 plays a role in brain ischemia, strokes were created in mice, then mice were treated with the NOX2 inhibitor, apocynin or vehicle and compared to mice deficient in NOX2's gp91 subunit and their wildtype littermates. To determine whether NOX2 in circulating cells versus brain resident cells contribute to ischemic injury, bone marrow chimeras were generated by transplanting bone marrow from wildtype or NOX2 deficient mice into NOX2 or wildtype hosts, respectively.
Apocynin and NOX2 deletion both significantly reduced infarct size, blood-brain barrier disruption and hemorrhagic transformation of the infarcts, compared to untreated wildtype controls. This was associated with decreased MMP-9 expression and reduced loss of tight junction proteins. NOX2 deficient mice receiving wildtype marrow had better outcomes compared to the wildtype mice receiving wildtype marrow. Interestingly, wildtype mice receiving NOX2 deficient marrow had even smaller infarct sizes and less hemorrhage than NOX2 deficient mice receiving wildtype marrow.
This indicates that NOX2, whether present in circulating cells or brain resident cells, contributes to ischemic brain injury and hemorrhage. However, NOX2 from the circulating cells contributed more to the exacerbation of stroke than that from brain resident cells. These data suggest the importance of targeting the peripheral immune system for treatment of stroke.
PMCID: PMC3205431  PMID: 22028221
15.  Mild Hypothermia Suppresses Calcium-Sensing Receptor (CaSR) Induction Following Forebrain Ischemia While Increasing GABA-B Receptor 1 (GABA-B-R1) Expression 
Translational stroke research  2011;2(2):195-201.
Hypothermia improves neurological outcome from cardiac arrest. The mechanisms of protection are multifold, but identifying some may be useful in exploring potential therapeutic targets. The extracellular calcium-sensing receptor (CaSR) was originally found in parathyroid cells in which the receptor senses minute changes in extracellular [Ca2+] and promotes Ca2+ influx and intracellular Ca2+ release. The CaSR is broadly expressed in the CNS and colocalized with the inhibitory γ-aminobutyric acid-B receptor 1 (GABA-B-R1). In hippocampal neurons, GABA-B-R1 heterodimerizes with CaSR and suppresses CaSR expression. To study the interplay between these two receptors in the development of ischemic cell death and neuroprotection by hypothermia, we subjected C57/BL6 mice to global cerebral ischemia by performing bilateral carotid artery occlusion (10 min) followed by reperfusion for 1–3 days with or without therapeutic hypothermia (33°C for 3 h at the onset of reperfusion). Terminal deoxynucleotidyl transferase dUTP nick end labeling staining and immunohistochemistry showed that forebrain ischemia increased CaSR expression, decreased GABA-B-R1 expression, and promoted cell death. These changes were particularly evident in hippocampal neurons and could be reversed by mild hypothermia. The induction of CaSR, along with reciprocal decreases in GABA-B-R1 expression, may together potentiate ischemic neuronal death, suggesting a new therapeutic target for treatment of ischemic brain injury.
PMCID: PMC3124781  PMID: 21731589
Calcium-sensing receptor; Global cerebral ischemia; Hypothermia; Neuroprotection
16.  Therapeutic Hypothermia in Stroke 
Stroke Research and Treatment  2012;2011:157969.
PMCID: PMC3270477  PMID: 22315703
Stroke; a journal of cerebral circulation  2010;41(10 Suppl):S72-S74.
Mild hypothermia is an established neuroprotectant in the laboratory, showing remarkable and consistent effects across multiple laboratories and models of brain injury. At the clinical level, mild hypothermia has shown benefits in patients who have suffered cardiac arrest and in some pediatric populations suffering hypoxic brain insults. Its role, however, in stroke therapy has yet to be established. Translating preclinical data to the clinical arena presents unique challenges with regard to cooling in patients who are generally awake and may require additional therapies, such as reperfusion. We review the state of therapeutic hypothermia in ischemic and hemorrhagic stroke and provide an outlook for its role in stroke therapy.
PMCID: PMC2953728  PMID: 20876510
stroke; hypothermia; neuroprotection
Journal of neuroscience methods  2010;190(2):240-243.
A spectrophotometric hemoglobin assay is widely used to estimate the extent of brain hemorrhage by measuring the amount of hemoglobin in the brain. However, this method requires using the entire brain sample, leaving none for histology or other assays. Other widely used measures of gross brain hemorrhage are generally semi-quantitative and can miss subtle differences. Semi-quantitative brain hemorrhage scales may also be subject to bias. Here, we present a method to digitally quantify brain hemorrhage using Photoshop and Image J, and compared this method to the spectrophotometric hemoglobin assay. Male Sprague-Dawley rats received varying amounts of autologous blood injected into the cerebral hemispheres in order to generate different sized hematomas. 24 hours later, the brains were harvested, sectioned, photographed then prepared for the hemoglobin assay. From the brain section photographs, pixels containing hemorrhage were identified by Photoshop® and the optical intensity was measured by Image J. Identification of hemorrhage size using optical intensities strongly correlated to the hemoglobin assay (R=0.94). We conclude that our method can accurately quantify the extent of hemorrhage. An advantage of this technique is that brain tissue can be used for additional studies.
PMCID: PMC2898728  PMID: 20452374
cerebral hemorrhage; digital quantification; Photoshop®; Image J; spectrometry; hemoglobin assay
19.  Therapeutic Hypothermia after Cardiac Arrest: Experience at an Academically Affiliated Community-Based Veterans Affairs Medical Center 
Stroke Research and Treatment  2011;2011:791639.
At laboratory and clinical levels, therapeutic hypothermia has been shown to improve neurologic outcomes and mortality following cardiac arrest. We reviewed each cardiac arrest in our community-based Veterans Affairs Medical Center over a three-year period. The majority of cases were in-hospital arrests associated with initial pulseless electrical activity or asystole. Of a total of 100 patients suffering 118 cardiac arrests, 29 arrests involved comatose survivors, with eight patients completing therapeutic cooling. Cerebral performance category scores at discharge and six months were significantly better in the cooled cohort versus the noncooled cohort, and, in every case except for one, cooling was offered for appropriate reasons. Mean time to initiation of cooling protocol was 3.7 hours and mean time to goal temperature of 33°C was 8.8 hours, and few complications clearly related to cooling were noted in our case series. While in-patient hospital mortality of cardiac arrest was high at 65% mortality during hospital admission, therapeutic hypothermia was safe and feasible at our center. Our cooling times and incidence of favorable outcomes are comparable to previously published reports. This study demonstrates the feasibility of implementing, a cooling protocol a community setting, and the role of neurologists in ensuring effective hospital-wide implementation.
PMCID: PMC3140133  PMID: 21822471
20.  Simvastatin Prevents Dopaminergic Neurodegeneration in Experimental Parkinsonian Models: The Association with Anti-Inflammatory Responses 
PLoS ONE  2011;6(6):e20945.
In addition to their original applications to lowering cholesterol, statins display multiple neuroprotective effects. N-methyl-D-aspartate (NMDA) receptors interact closely with the dopaminergic system and are strongly implicated in therapeutic paradigms of Parkinson's disease (PD). This study aims to investigate how simvastatin impacts on experimental parkinsonian models via regulating NMDA receptors.
Methodology/Principal Findings
Regional changes in NMDA receptors in the rat brain and anxiolytic-like activity were examined after unilateral medial forebrain bundle lesion by 6-hydroxydopamine via a 3-week administration of simvastatin. NMDA receptor alterations in the post-mortem rat brain were detected by [3H]MK-801(Dizocilpine) binding autoradiography. 6-hydroxydopamine treated PC12 was applied to investigate the neuroprotection of simvastatin, the association with NMDA receptors, and the anti-inflammation. 6-hydroxydopamine induced anxiety and the downregulation of NMDA receptors in the hippocampus, CA1(Cornu Ammonis 1 Area), amygdala and caudate putamen was observed in 6-OHDA(6-hydroxydopamine) lesioned rats whereas simvastatin significantly ameliorated the anxiety-like activity and restored the expression of NMDA receptors in examined brain regions. Significant positive correlations were identified between anxiolytic-like activity and the restoration of expression of NMDA receptors in the hippocampus, amygdala and CA1 following simvastatin administration. Simvastatin exerted neuroprotection in 6-hydroxydopamine-lesioned rat brain and 6-hydroxydopamine treated PC12, partially by regulating NMDA receptors, MMP9 (matrix metalloproteinase-9), and TNF-a (tumour necrosis factor-alpha).
Our results provide strong evidence that NMDA receptor modulation after simvastatin treatment could partially explain its anxiolytic-like activity and anti-inflammatory mechanisms in experimental parkinsonian models. These findings contribute to a better understanding of the critical roles of simvastatin in treating PD via NMDA receptors.
PMCID: PMC3120752  PMID: 21731633
21.  A Role for TREM2 Ligands in the Phagocytosis of Apoptotic Neuronal Cells by Microglia 
Journal of neurochemistry  2009;109(4):1144-1156.
Following neuronal injury, microglia initiate repair by phagocytosing dead neurons without eliciting inflammation. Prior evidence indicates TREM2 (triggering receptor expressed by myeloid cells-2) promotes phagocytosis and retards inflammation. However, evidence that microglia and neurons directly interact through TREM2 to orchestrate microglial function is lacking. We here demonstrate that TREM2 interacts with endogenous ligands on neurons. Staining with TREM2-Fc identified TREM2 ligands (TREM2-L) on Neuro2A cells and on cultured cortical and dopamine neurons. Apoptosis greatly increased the expression of TREM2-L. Furthermore, apoptotic neurons stimulated TREM2 signaling, and an anti-TREM2 mAb blocked stimulation. To examine the interaction between TREM2 and TREM2-L in phagocytosis, we studied BV2 microglial cells and their engulfment of apoptotic Neuro2A. One of our anti-TREM2 mAb, but not others, reduced engulfment, suggesting the presence of a functional site on TREM2 interacting with neurons. Further, CHO cells transfected with TREM2 conferred phagocytic activity of neuronal cells demonstrating that TREM2 is both required and sufficient for competent uptake of apoptotic neuronal cells. Finally, while TREM2-L are expressed on neurons, TREM2 is not; in the brain, it is found on microglia. TREM2 and TREM2-L form a receptor-ligand pair connecting microglia with apoptotic neurons, directing removal of damaged cells to allow repair.
PMCID: PMC3087597  PMID: 19302484
microglia; apoptotic neurons; phagocytosis
22.  Endotoxin-activated microglia injure brain derived endothelial cells via NF-κB, JAK-STAT and JNK stress kinase pathways 
We previously showed that microglia damage blood brain barrier (BBB) components following ischemic brain insults, but the underlying mechanism(s) is/are not well known. Recent work has established the contribution of toll-like receptor 4 (TLR4) activation to several brain pathologies including ischemia, neurodegeneration and sepsis. The present study established the requirement of microglia for lipopolysaccharide (LPS) mediated endothelial cell death, and explored pathways involved in this toxicity. LPS is a classic TLR4 agonist, and is used here to model aspects of brain conditions where TLR4 stimulation occurs.
In monocultures, LPS induced death in microglia, but not brain derived endothelial cells (EC). However, LPS increased EC death when cocultured with microglia. LPS led to nitric oxide (NO) and inducible NO synthase (iNOS) induction in microglia, but not in EC. Inhibiting microglial activation by blocking iNOS and other generators of NO or blocking reactive oxygen species (ROS) also prevented injury in these cocultures. To assess the signaling pathway(s) involved, inhibitors of several downstream TLR-4 activated pathways were studied. Inhibitors of NF-κB, JAK-STAT and JNK/SAPK decreased microglial activation and prevented cell death, although the effect of blocking JNK/SAPK was rather modest. Inhibitors of PI3K, ERK, and p38 MAPK had no effect.
We show that LPS-activated microglia promote BBB disruption through injury to endothelial cells, and the specific blockade of JAK-STAT, NF-κB may prove to be especially useful anti-inflammatory strategies to confer cerebrovascular protection.
PMCID: PMC3061894  PMID: 21385378
Ageing research reviews  2009;9(1):61.
Hypothermia is a well established cytoprotectant, with remarkable and consistent effects demonstrated across multiple laboratories. At the clinical level, it has recently been shown to improve neurological outcome following cardiac arrest and neonatal hypoxia ischemia. It is increasingly being embraced by the medical community, and could be considered an effective neuroprotectant. Conditions such as brain injury, hepatic encephalopathy and cardiopulmonary bypass seem to benefit from this intervention. It's role in direct myocardial protection is also being explored. A review of the literature has demonstrated that in order to appreciate the maximum benefits of hypothermia, cooling needs to begin soon after the insult, and maintained for relatively long period periods of time. In the case of ischemic stroke, cooling should ideally be applied in conjunction with the re-establishment of cerebral perfusion. Translating this to the clinical arena can be challenging, given the technical challenges of rapidly and stably cooling patients. This review will discuss the application of hypothermia especially as it pertains to its effects neurological outcome, cooling methods, and important parameters in optimizing hypothermic protection.
PMCID: PMC2818269  PMID: 19833233
hypothermia; ischemia; injury; cytotprotection
24.  Direct protection of cultured neurons from ischemia-like injury by minocycline 
Anatomy & Cell Biology  2010;43(4):325-331.
Minocycline, a tetracycline antibiotic, is now known to protect cells via an anti-inflammatory mechanism. We further explored this effect using an in vitro model of ischemia-like injury to neurons. Coculturing neurons with microglia, the brain's resident immune cell, modestly increased cell death due to oxygen and glucose deprivation (OGD), compared to neurons alone. Treatment of cocultures with minocycline decreased cell death to a level significantly lower than that of neurons alone. Treatment of cocultures with minocycline or inhibitors of various immune mediators, also led to decreased cell death. Importantly, treatment of neuron cultures without added microglia with these same inhibitors of tissue plasminogen activator, matrix metalloproteinases, TNF-alpha and inducible nitric oxide synthase as well as minocycline also led to decreased cell death. Thus, anti-inflammatory treatments appear to be directly protective of neurons from in vitro ischemia.
PMCID: PMC3026185  PMID: 21267407
Minocycline; Microglia; Ischemia; Neurons
25.  Pyruvate protects against experimental stroke via an anti-inflammatory mechanism 
Neurobiology of disease  2009;36(1):223-231.
Pyruvate, a key intermediate in glucose metabolism, was explored as a potential treatment in models of experimental stroke and inflammation. Pyruvate was administered to rodents after the onset of middle cerebral artery occlusion (MCAO). Since the extent of inflammation is often proportional to the size of the infarct, we also studied a group of animals given lipopolysaccharide (LPS) to cause brain inflammation without cell death. Following MCAO, pyruvate did not affect physiological parameters but significantly reduced infarct volume, improved behavioral tests and reduced numbers of neutrophils, microglial and NF-kB activation. Animals given LPS showed increased microglial and NF-kB activation which was almost completely abolished by pyruvate. Lactate, a major metabolite of pyruvate, was increased after pyruvate administration. However, administration of lactate itself did not have any anti-inflammatory effects. Pyruvate protects against ischemia possibly by blocking inflammation, but lactate itself does not appear to explain pyruvate's anti-inflammatory properties.
PMCID: PMC2742567  PMID: 19635562
cerebral ischemia; inflammation; pyruvate; stroke; neuroprotection

Results 1-25 (37)