PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  A Critical Role for the mTORC2 Pathway in Lung Fibrosis 
PLoS ONE  2014;9(8):e106155.
A characteristic of dysregulated wound healing in IPF is fibroblastic-mediated damage to lung epithelial cells within fibroblastic foci. In these foci, TGF-β and other growth factors activate fibroblasts that secrete growth factors and matrix regulatory proteins, which activate a fibrotic cascade. Our studies and those of others have revealed that Akt is activated in IPF fibroblasts and it mediates the activation by TGF-β of pro-fibrotic pathways. Recent studies show that mTORC2, a component of the mTOR pathway, mediates the activation of Akt. In this study we set out to determine if blocking mTORC2 with MLN0128, an active site dual mTOR inhibitor, which blocks both mTORC1 and mTORC2, inhibits lung fibrosis. We examined the effect of MLN0128 on TGF-β-mediated induction of stromal proteins in IPF lung fibroblasts; also, we looked at its effect on TGF-β-mediated epithelial injury using a Transwell co-culture system. Additionally, we assessed MLN0128 in the murine bleomycin lung model. We found that TGF-β induces the Rictor component of mTORC2 in IPF lung fibroblasts, which led to Akt activation, and that MLN0128 exhibited potent anti-fibrotic activity in vitro and in vivo. Also, we observed that Rictor induction is Akt-mediated. MLN0128 displays multiple anti-fibrotic and lung epithelial-protective activities; it (1) inhibited the expression of pro-fibrotic matrix-regulatory proteins in TGF-β-stimulated IPF fibroblasts; (2) inhibited fibrosis in a murine bleomycin lung model; and (3) protected lung epithelial cells from injury caused by TGF-β-stimulated IPF fibroblasts. Our findings support a role for mTORC2 in the pathogenesis of lung fibrosis and for the potential of active site mTOR inhibitors in the treatment of IPF and other fibrotic lung diseases.
doi:10.1371/journal.pone.0106155
PMCID: PMC4146613  PMID: 25162417
2.  T Cell–Macrophage Interactions and Granuloma Formation in Vasculitis 
Granuloma formation, bringing into close proximity highly activated macrophages and T cells, is a typical event in inflammatory blood vessel diseases, and is noted in the name of several of the vasculitides. It is not known whether specific properties of the microenvironment in the blood vessel wall or the immediate surroundings of blood vessels contribute to granuloma formation and, in some cases, generation of multinucleated giant cells. Granulomas provide a specialized niche to optimize macrophage–T cell interactions, strongly activating both cell types. This is mirrored by the intensity of the systemic inflammation encountered in patients with vasculitis, often presenting with malaise, weight loss, fever, and strongly upregulated acute phase responses. As a sophisticated and highly organized structure, granulomas can serve as an ideal site to induce differentiation and maturation of T cells. The granulomas possibly seed aberrant Th1 and Th17 cells into the circulation, which are known to be the main pathogenic cells in vasculitis. Through the induction of memory T cells, aberrant innate immune responses can imprint the host immune system for decades to come and promote chronicity of the disease process. Improved understanding of T cell–macrophage interactions will redefine pathogenic models in the vasculitides and provide new avenues for immunomodulatory therapy.
doi:10.3389/fimmu.2014.00432
PMCID: PMC4162471  PMID: 25309534
macrophage; dendritic cell; T cell; granuloma; vasculitis
3.  Report from a consensus conference on antibody-mediated rejection in heart transplantation 
BACKGROUND
The problem of AMR remains unsolved because standardized schemes for diagnosis and treatment remains contentious. Therefore, a consensus conference was organized to discuss the current status of antibody-mediated rejection (AMR) in heart transplantation.
METHODS
The conference included 83 participants (transplant cardiologists, surgeons, immunologists and pathologists) representing 67 heart transplant centers from North America, Europe, and Asia who all participated in smaller break-out sessions to discuss the various topics of AMR and attempt to achieve consensus.
RESULTS
A tentative pathology diagnosis of AMR was established, however, the pathologist felt that further discussion was needed prior to a formal recommendation for AMR diagnosis. One of the most important outcomes of this conference was that a clinical definition for AMR (cardiac dysfunction and/or circulating donor-specific antibody) was no longer believed to be required due to recent publications demonstrating that asymptomatic (no cardiac dysfunction) biopsy-proven AMR is associated with subsequent greater mortality and greater development of cardiac allograft vasculopathy. It was also noted that donor-specific antibody is not always detected during AMR episodes as the antibody may be adhered to the donor heart. Finally, recommendations were made for the timing for specific staining of endomyocardial biopsy specimens and the frequency by which circulating antibodies should be assessed. Recommendations for management and future clinical trials were also provided.
CONCLUSIONS
The AMR Consensus Conference brought together clinicians, pathologists and immunologists to further the understanding of AMR. Progress was made toward a pathology AMR grading scale and consensus was accomplished regarding several clinical issues.
doi:10.1016/j.healun.2010.11.003
PMCID: PMC3829685  PMID: 21300295
heart transplant; antibody; rejection; treatment; outcomes
4.  Pediatric Plastic Bronchitis: Case Report and Retrospective Comparative Analysis of Epidemiology and Pathology 
Case Reports in Pulmonology  2013;2013:649365.
Plastic bronchitis (PB) is a pathologic condition in which airway casts develop in the tracheobronchial tree causing airway obstruction. There is no standard treatment strategy for this uncommon condition. We report an index patient treated using an emerging multimodal strategy of directly instilled and inhaled tissue plasminogen activator (t-PA) as well as 13 other cases of PB at our institution between 2000 and 2012. The majority of cases (n = 8) occurred in patients with congenital heart disease. Clinical presentations, treatments used, histopathology of the casts, and patient outcomes are reviewed. Further discussion is focused on the epidemiology of plastic bronchitis and a systematic approach to the histologic classification of casts. Comorbid conditions identified in this study included congenital heart disease (8), pneumonia (3), and asthma (2). Our institutional prevalence rate was 6.8 per 100,000 patients, and our case fatality rate was 7%.
doi:10.1155/2013/649365
PMCID: PMC3639666  PMID: 23662235
5.  β2-Adrenergic Receptors Mediate Cardioprotection through Crosstalk with Mitochondrial Cell Death Pathways 
Aims
β-adrenergic receptors (β-ARs) modulate cardiotoxicity/cardioprotection through crosstalk with multiple signaling pathways. We have previously shown that β2-ARs are cardioprotective during exposure to oxidative stress induced by doxorubicin (DOX). DOX cardiotoxicity is mediated in part through a Ca2+-dependent opening of the mitochondrial permeability transition (MPT), however the signals linking a cell surface receptor like the β2-AR to regulators of mitochondrial function are not clear. The objective of this study was to assess mechanisms of crosstalk between β2-ARs and mitochondrial cell death pathways.
Methods and Results
DOX administered to WT mice resulted in no acute mortality, however 85% of β2-/- mice died within 30 min. Several pro- and anti-survival pathways were altered. The pro-survival kinase, εPKC, was decreased by 64% in β2-/- after DOX vs WT (p<0.01); the εPKC activator ψεRACK partially rescued these mice (47% reduction in mortality). Activity of the pro-survival kinase Akt decreased by 76% in β2-/- after DOX vs WT (p<0.01). The α1-antagonist prazosin restored Akt activity to normal and also partially reversed the mortality (45%). Deletion of the β2-AR increased rate of Ca2+ release by 75% and peak [Ca2+]i by 20% respectively in isolated cardiomyocytes; the Ca2+ channel blocker verapamil also partially rescued the β2-/- (26%). Mitochondrial architecture was disrupted and complex I and II activities decreased by 40.9% and 34.6% respectively after DOX only in β2-/-. The MPT blocker cyclosporine reduced DOX mortality by 41% and prazosin plus cyclosporine acted synergistically to decrease mortality by 85%.
Conclusion
β2-ARs activate pro-survival kinases and attenuate mitochondrial dysfunction during oxidative stress; absence of β2-ARs enhances cardiotoxicity via negative regulation of survival kinases and enhancement of intracellular Ca2+, thus predisposing the mitochondria to opening of the MPT.
doi:10.1016/j.yjmcc.2011.06.019
PMCID: PMC3184305  PMID: 21756913
Adrenergic receptors; cardiomyopathy; mitochondria; signal transduction; protein kinases
6.  Identification and Classification of Acute Cardiac Rejection by Intragraft Transcriptional Profiling 
Circulation  2011;123(20):2236-2243.
Background
Treatment of acute rejection (AR) in heart transplantation relies on histopathological grading of endomyocardial biopsies (EMB) according to International Society for Heart and Lung Transplantation (ISHLT) guidelines. Intragraft gene expression profiling may be a way to complement histological evaluation.
Methods and results
Transcriptional profiling was performed on 26 EMB and expression patterns were compared with the 1990 ISHLT AR grades. Importantly, transcriptional profiles from settings with an equivalent AR grade appeared the same. In addition, grade 0 profiles could not be distinguished from 1A and grade 3A profiles could not be distinguished from 3B. Comparing the AR groupings (0+1A, 1B, and 3A+3B), 0+1A showed more striking differences from 1B than from 3A+3B. When these findings were extrapolated to the 2005 revised guidelines, the combination of 1A and 1B into a single category (1R) appears to have brought together EMBs with different underlying processes that is not evident from histological evaluation. Grade 1B was associated with upregulated immune response genes, as one categorical distinction from grade 1A. Although, grade 1B was distinct from the clinically relevant AR grades 3A and 3B, all of these grades shared a small number of overlapping pathways consistent with common physiological underpinnings.
Conclusion
The gene expression similarities and differences identified here in different AR settings have the potential to revise the clinical perspective on acute graft rejection, pending the results of larger studies.
doi:10.1161/CIRCULATIONAHA.109.913921
PMCID: PMC3115694  PMID: 21555702
heart; biopsy; transplantation; gene expression
7.  Cyanobacterial Toxins as Allelochemicals with Potential Applications as Algaecides, Herbicides and Insecticides 
Marine Drugs  2008;6(2):117-146.
Cyanobacteria (“blue-green algae”) from marine and freshwater habitats are known to produce a diverse array of toxic or otherwise bioactive metabolites. However, the functional role of the vast majority of these compounds, particularly in terms of the physiology and ecology of the cyanobacteria that produce them, remains largely unknown. A limited number of studies have suggested that some of the compounds may have ecological roles as allelochemicals, specifically including compounds that may inhibit competing sympatric macrophytes, algae and microbes. These allelochemicals may also play a role in defense against potential predators and grazers, particularly aquatic invertebrates and their larvae. This review will discuss the existing evidence for the allelochemical roles of cyanobacterial toxins, as well as the potential for development and application of these compounds as algaecides, herbicides and insecticides, and specifically present relevant results from investigations into toxins of cyanobacteria from the Florida Everglades and associated waterways.
doi:10.3390/md20080007
PMCID: PMC2525484  PMID: 18728763
Chemical ecology of cyanobacteria; toxins; allelopathy; mosquito larvicide; algaecide
8.  Cyclin D1 and p16 expression in recurrent nasopharyngeal carcinoma 
Background
Cyclin D1 and p16 are involved in the regulation of G1 checkpoint and may play an important role in the tumorigenesis of nasopharyngeal carcinoma (NPC). Previous studies have examined the level of expression of cyclin D1 and p16 in primary untreated NPC but no such information is available for recurrent NPC. We set out in this study to examine the expression level of cyclin D1 and p16 in recurrent NPC that have failed previous treatment with radiation +/- chemotherapy.
Patients and methods
A total of 42 patients underwent salvage nasopharyngectomy from 1984 to 2001 for recurrent NPC after treatment failure with radiation +/- chemotherapy. Twenty-seven pathologic specimens were available for immunohistochemical study using antibodies against cyclin D1 and p16.
Results
Positive expression of cyclin D1 was observed in 7 of 27 recurrent NPC specimens (26%) while positive p16 expression was seen in only 1 of 27 recurrent NPC (4%).
Conclusion
While the level of expression of cyclin D1 in recurrent NPC was similar to that of previously untreated head and neck cancer, the level of p16 expression in recurrent NPC samples was much lower than that reported for previously untreated cancer. The finding that almost all (96%) of the recurrent NPC lack expression of p16 suggested that loss of p16 may confer a survival advantage by making cancer cells more resistant to conventional treatment with radiation +/- chemotherapy. Further research is warranted to investigate the clinical use of p16 both as a prognostic marker and as a potential therapeutic target.
doi:10.1186/1477-7819-4-62
PMCID: PMC1569377  PMID: 16953893
9.  Scedosporium apiospermum Soft Tissue Infection Successfully Treated with Voriconazole: Potential Pitfalls in the Transition from Intravenous to Oral Therapy 
Journal of Clinical Microbiology  2005;43(2):973-977.
An immunocompromised patient with an invasive soft tissue infection due to Scedosporium apiospermum was successfully treated with voriconazole and surgical debridement. After transition from intravenous to oral therapy, successive adjustments of the oral dose were required to achieve complete resolution. For soft tissue infections due to molds characterized by thin, septate hyphae branching at acute angles, voriconazole should be considered a first-line antifungal agent. The potential usefulness of plasma voriconazole levels for guiding optimal therapy should be investigated.
doi:10.1128/JCM.43.2.973-977.2005
PMCID: PMC548045  PMID: 15695722
10.  CD4+ T helper cells engineered to produce latent TGF-β1 reverse allergen-induced airway hyperreactivity and inflammation 
T helper 2 (Th2) cells play a critical role in the pathogenesis of asthma, but the precise immunological mechanisms that inhibit Th2 cell function in vivo are not well understood. Using gene therapy, we demonstrated that ovalbumin-specific (OVA-specific) Th cells engineered to express latent TGF-β abolished airway hyperreactivity and airway inflammation induced by OVA-specific Th2 effector cells in SCID and BALB/c mice. These effects correlated with increased concentrations of active TGF-β in the bronchoalveolar lavage (BAL) fluid, demonstrating that latent TGF-β was activated in the inflammatory environment. In contrast, OVA-specific Th1 cells failed to inhibit airway hyperreactivity and inflammation in this system. The inhibitory effect of TGF-β–secreting Th cells was antigen-specific and was reversed by neutralization of TGF-β. Our results demonstrate that T cells secreting TGF-β in the respiratory mucosa can indeed regulate Th2-induced airway hyperreactivity and inflammation and suggest that TGF-β–producing T cells play an important regulatory role in asthma.
PMCID: PMC382583  PMID: 10619862
11.  Allergen-specific Th1 cells fail to counterbalance Th2 cell–induced airway hyperreactivity but cause severe airway inflammation 
Journal of Clinical Investigation  1999;103(2):175-183.
Allergic asthma, which is present in as many as 10% of individuals in industrialized nations, is characterized by chronic airway inflammation and hyperreactivity induced by allergen-specific Th2 cells secreting interleukin-4 (IL-4) and IL-5. Because Th1 cells antagonize Th2 cell functions, it has been proposed that immune deviation toward Th1 can protect against asthma and allergies. Using an adoptive transfer system, we assessed the roles of Th1, Th2, and Th0 cells in a mouse model of asthma and examined the capacity of Th1 cells to counterbalance the proasthmatic effects of Th2 cells. Th1, Th2, and Th0 lines were generated from ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic mice and transferred into lymphocyte-deficient, OVA-treated severe combined immunodeficiency (SCID) mice. OVA-specific Th2 and Th0 cells induced significant airway hyperreactivity and inflammation. Surprisingly, Th1 cells did not attenuate Th2 cell–induced airway hyperreactivity and inflammation in either SCID mice or in OVA-immunized immunocompetent BALB/c mice, but rather caused severe airway inflammation. These results indicate that antigen-specific Th1 cells may not protect or prevent Th2-mediated allergic disease, but rather may cause acute lung pathology. These findings have significant implications with regard to current therapeutic goals in asthma and allergy and suggest that conversion of Th2-dominated allergic inflammatory responses into Th1-dominated responses may lead to further problems.
PMCID: PMC407883  PMID: 9916129
12.  Extrahepatic manifestations of hepatitis B virus infection: Addison’s disease and myelofibrosis in a patient with persistent hepatitis B surface antigenemia 
A 60-year-old white male patient was admitted to the hospital with acute abdominal pain, seemingly a self-limited ileus. He was found to be hepatitis B surface antigen (HBsAg)-positive. Previous dental treatment was suspected to be the initial source of the infection with hepatitis B virus. Five months later he was re-admitted with a diagnosis of adrenal insufficiency (Addison’s disease) which responded well to steroids. Four years later he developed fever and leucocytosis. A bone marrow biopsy revealed myelofibrosis. He had several episodes of pyrexia during his lifetime. After a 12-year period the patient suffered a fatal myocardial infarction. At autopsy the adrenal glands were reduced to scarred remnants and HBsAg was found to be present in the residual adrenocortical cells by immunoflouresence methods. Bone marrow at autopsy revealed myelosclerosis as well HBsAg (via immunofluoresence). Hepatitis B virus was therefore closely correlated with the development of Addison’s disease and myelofibrosis in this case.
PMCID: PMC3250782  PMID: 22346436
Addison’s disease; Hepatitis B surface antigen; Hepatitis B virus; Myelofibrosis; Myelosclerosis

Results 1-12 (12)