Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  A Δ11 desaturase gene genealogy reveals two divergent allelic classes within the European corn borer (Ostrinia nubilalis) 
Moth pheromone mating systems have been characterized at the molecular level, allowing evolutionary biologists to study how changes in protein sequence or gene expression affect pheromone phenotype, patterns of mating, and ultimately, the formation of barriers to gene exchange. Recent studies of Ostrinia pheromones have focused on the diversity of sex pheromone desaturases and their role in the specificity of pheromone production. Here we produce a Δ11 desaturase genealogy within Ostrinia nubilalis. We ask what has been the history of this gene, and whether this history suggests that changes in Δ11 desaturase have been involved in the divergence of the E and Z O. nubilalis pheromone strains.
The Δ11 desaturase gene genealogy does not differentiate O. nubilalis pheromone strains. However, we find two distinct clades, separated by 2.9% sequence divergence, that do not sort with pheromone strain, geographic origin, or emergence time. We demonstrate that these clades do not represent gene duplicates, but rather allelic variation at a single gene locus.
Analyses of patterns of variation at the Δ11 desaturase gene in ECB suggest that this enzyme does not contribute to reproductive isolation between pheromone strains (E and Z). However, our genealogy reveals two deeply divergent allelic classes. Standing variation at loci that contribute to mate choice phenotypes may permit novel pheromone mating systems to arise in the presence of strong stabilizing selection.
PMCID: PMC2877688  PMID: 20423501
2.  Construction of a High Resolution Linkage Disequilibrium Map to Evaluate Common Genetic Variation in TP53 and Neural Tube Defect Risk in an Irish Population 
Genetic and environmental factors contribute to the etiology of neural tube defects (NTDs). While periconceptional folic acid supplementation is known to significantly reduce the risk of NTDs, folate metabolic pathway related factors do not account for all NTDs. Evidence from mouse models indicates that the tumor protein p53 (TP53) is involved in implantation and normal neural tube development. To determine whether genetic variation in the TP53 might contribute to NTD risk in humans, we constructed a high resolution linkage disequilibrium (LD) map of the TP53 genomic region based on genotyping 21 markers in an Irish population. We found that nine of these variants can be used to capture the majority of common variation in the TP53 genomic region. In contrast, the 3-marker haplotype commonly reported in the TP53 literature offers limited coverage of the variation in the gene. We used the expanded set of polymorphisms to measure the influence of TP53 on NTDs using both case-control and family-based tests of association. We also assayed a functional variant in the p53 regulator MDM2 (rs2279744). Alleles of three noncoding TP53 markers were associated with NTD risk. A case effect was seen with the GG genotype of rs1625895 in intron 6 (OR = 1.37 [1.04-1.79], p=0.02). A maternal effect was seen with the 135/135 genotype of the intron 1 VNTR (OR = 1.86 [1.16-2.96], p=0.01) and the TT genotype of rs1614984 (RR = 0.58 [0.37-0.91], p=0.02). As multiple comparisons were made, these cannot be considered definitive positive findings and additional investigation is required.
PMCID: PMC2836760  PMID: 18798306
neural tube defects; spina bifida; p53; TP53; MDM2; linkage disequilibrium

Results 1-2 (2)