PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("scolex, Drew")
1.  In Vivo Imaging of Human Cone Photoreceptor Inner Segments 
Purpose.
An often overlooked prerequisite to cone photoreceptor gene therapy development is residual photoreceptor structure that can be rescued. While advances in adaptive optics (AO) retinal imaging have recently enabled direct visualization of individual cone and rod photoreceptors in the living human retina, these techniques largely detect strongly directionally-backscattered (waveguided) light from normal intact photoreceptors. This represents a major limitation in using existing AO imaging to quantify structure of remnant cones in degenerating retina.
Methods.
Photoreceptor inner segment structure was assessed with a novel AO scanning light ophthalmoscopy (AOSLO) differential phase technique, that we termed nonconfocal split-detector, in two healthy subjects and four subjects with achromatopsia. Ex vivo preparations of five healthy donor eyes were analyzed for comparison of inner segment diameter to that measured in vivo with split-detector AOSLO.
Results.
Nonconfocal split-detector AOSLO reveals the photoreceptor inner segment with or without the presence of a waveguiding outer segment. The diameter of inner segments measured in vivo is in good agreement with histology. A substantial number of foveal and parafoveal cone photoreceptors with apparently intact inner segments were identified in patients with the inherited disease achromatopsia.
Conclusions.
The application of nonconfocal split-detector to emerging human gene therapy trials will improve the potential of therapeutic success, by identifying patients with sufficient retained photoreceptor structure to benefit the most from intervention. Additionally, split-detector imaging may be useful for studies of other retinal degenerations such as AMD, retinitis pigmentosa, and choroideremia where the outer segment is lost before the remainder of the photoreceptor cell.
A new ophthalmic imaging technique that reveals the photoreceptor inner segment is presented and validated. The presence of retained cone photoreceptors is demonstrated in the inherited disease achromatopsia, which has significant impact for upcoming gene therapy trials.
doi:10.1167/iovs.14-14542
PMCID: PMC4095721  PMID: 24906859
AOSLO; photoreceptor; gene therapy
2.  Microscopic Inner Retinal Hyper-Reflective Phenotypes in Retinal and Neurologic Disease 
Purpose.
We surveyed inner retinal microscopic features in retinal and neurologic disease using a reflectance confocal adaptive optics scanning light ophthalmoscope (AOSLO).
Methods.
Inner retinal images from 101 subjects affected by one of 38 retinal or neurologic conditions and 11 subjects with no known eye disease were examined for the presence of hyper-reflective features other than vasculature, retinal nerve fiber layer, and foveal pit reflex. The hyper-reflective features in the AOSLO images were grouped based on size, location, and subjective texture. Clinical imaging, including optical coherence tomography (OCT), scanning laser ophthalmoscopy, and fundus photography was analyzed for comparison.
Results.
Seven categories of hyper-reflective inner retinal structures were identified, namely punctate reflectivity, nummular (disc-shaped) reflectivity, granular membrane, waxy membrane, vessel-associated membrane, microcysts, and striate reflectivity. Punctate and nummular reflectivity also was found commonly in normal volunteers, but the features in the remaining five categories were found only in subjects with retinal or neurologic disease. Some of the features were found to change substantially between follow up imaging months apart.
Conclusions.
Confocal reflectance AOSLO imaging revealed a diverse spectrum of normal and pathologic hyper-reflective inner and epiretinal features, some of which were previously unreported. Notably, these features were not disease-specific, suggesting that they might correspond to common mechanisms of degeneration or repair in pathologic states. Although prospective studies with larger and better characterized populations, along with imaging of more extensive retinal areas are needed, the hyper-reflective structures reported here could be used as disease biomarkers, provided their specificity is studied further.
The human inner retina was examined with confocal adaptive optics scanning light ophthalmoscopy. Seven non–disease-specific categories of hyper-reflective structures were identified, suggesting common mechanisms of degeneration or repair in pathologic states.
doi:10.1167/iovs.14-14668
PMCID: PMC4078949  PMID: 24894394
adaptive optics; inner retina; ophthalmoscopy; neuro-ophthalmology; retinal disease
3.  Adaptive Optics Retinal Imaging – Clinical Opportunities and Challenges 
Current eye research  2013;38(7):709-721.
The array of therapeutic options available to clinicians for treating retinal disease is expanding. With these advances comes the need for better understanding of the etiology of these diseases on a cellular level as well as improved non-invasive tools for identifying the best candidates for given therapies and monitoring the efficacy of those therapies. While spectral domain optical coherence tomography (SD-OCT) offers a widely available tool for clinicians to assay the living retina, it suffers from poor lateral resolution due to the eye’s monochromatic aberrations. Adaptive optics (AO) is a technique to compensate for the eye’s aberrations and provide nearly diffraction-limited resolution. The result is the ability to visualize the living retina with cellular resolution. While AO is unquestionably a powerful research tool, many clinicians remain undecided on the clinical potential of AO imaging – putting many at a crossroads with respect to adoption of this technology. This review will briefly summarize the current state of AO retinal imaging, discuss current as well as future clinical applications of AO retinal imaging, and finally provide some discussion of research needs to facilitate more widespread clinical use.
doi:10.3109/02713683.2013.784792
PMCID: PMC4031042  PMID: 23621343
retinal imaging; adaptive optics; retinal degeneration; photoreceptor
4.  In vivo dark-field imaging of the retinal pigment epithelium cell mosaic 
Biomedical Optics Express  2013;4(9):1710-1723.
Non-invasive reflectance imaging of the human RPE cell mosaic is demonstrated using a modified confocal adaptive optics scanning light ophthalmoscope (AOSLO). The confocal circular aperture in front of the imaging detector was replaced with a combination of a circular aperture 4 to 16 Airy disks in diameter and an opaque filament, 1 or 3 Airy disks thick. This arrangement reveals the RPE cell mosaic by dramatically attenuating the light backscattered by the photoreceptors. The RPE cell mosaic was visualized in all 7 recruited subjects at multiple retinal locations with varying degrees of contrast and cross-talk from the photoreceptors. Various experimental settings were explored for improving the visualization of the RPE cell boundaries including: pinhole diameter, filament thickness, illumination and imaging pupil apodization, unmatched imaging and illumination focus, wavelength and polarization. None of these offered an obvious path for enhancing image contrast. The demonstrated implementation of dark-field AOSLO imaging using 790 nm light requires low light exposures relative to light safety standards and it is more comfortable for the subject than the traditional autofluorescence RPE imaging with visible light. Both these factors make RPE dark-field imaging appealing for studying mechanisms of eye disease, as well as a clinical tool for screening and monitoring disease progression.
doi:10.1364/BOE.4.001710
PMCID: PMC3771842  PMID: 24049692
(170.4460) Ophthalmic optics and devices; (170.4470) Ophthalmology; (290.4210) Multiple scattering; (110.1080) Active or adaptive optics
5.  In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography 
Biomedical Optics Express  2013;4(8):1305-1317.
The adaptive optics scanning light ophthalmoscope (AOSLO) allows visualization of microscopic structures of the human retina in vivo. In this work, we demonstrate its application in combination with oral and intravenous (IV) fluorescein angiography (FA) to the in vivo visualization of the human retinal microvasculature. Ten healthy subjects ages 20 to 38 years were imaged using oral (7 and/or 20 mg/kg) and/or IV (500 mg) fluorescein. In agreement with current literature, there were no adverse effects among the patients receiving oral fluorescein while one patient receiving IV fluorescein experienced some nausea and heaving. We determined that all retinal capillary beds can be imaged using clinically accepted fluorescein dosages and safe light levels according to the ANSI Z136.1-2000 maximum permissible exposure. As expected, the 20 mg/kg oral dose showed higher image intensity for a longer period of time than did the 7 mg/kg oral and the 500 mg IV doses. The increased resolution of AOSLO FA, compared to conventional FA, offers great opportunity for studying physiological and pathological vascular processes.
doi:10.1364/BOE.4.001305
PMCID: PMC3756583  PMID: 24009994
(110.1080) Active or adaptive optics; (330.5380) Physiology; (170.1610) Clinical applications; (170.3880) Medical and biological imaging; (170.4470) Ophthalmology
6.  In-vivo imaging of retinal nerve fiber layer vasculature: imaging - histology comparison 
BMC Ophthalmology  2009;9:9.
Background
Although it has been suggested that alterations of nerve fiber layer vasculature may be involved in the etiology of eye diseases, including glaucoma, it has not been possible to examine this vasculature in-vivo. This report describes a novel imaging method, fluorescence adaptive optics (FAO) scanning laser ophthalmoscopy (SLO), that makes possible for the first time in-vivo imaging of this vasculature in the living macaque, comparing in-vivo and ex-vivo imaging of this vascular bed.
Methods
We injected sodium fluorescein intravenously in two macaque monkeys while imaging the retina with an FAO-SLO. An argon laser provided the 488 nm excitation source for fluorescence imaging. Reflectance images, obtained simultaneously with near infrared light, permitted precise surface registration of individual frames of the fluorescence imaging. In-vivo imaging was then compared to ex-vivo confocal microscopy of the same tissue.
Results
Superficial focus (innermost retina) at all depths within the NFL revealed a vasculature with extremely long capillaries, thin walls, little variation in caliber and parallel-linked structure oriented parallel to the NFL axons, typical of the radial peripapillary capillaries (RPCs). However, at a deeper focus beneath the NFL, (toward outer retina) the polygonal pattern typical of the ganglion cell layer (inner) and outer retinal vasculature was seen. These distinguishing patterns were also seen on histological examination of the same retinas. Furthermore, the thickness of the RPC beds and the caliber of individual RPCs determined by imaging closely matched that measured in histological sections.
Conclusion
This robust method demonstrates in-vivo, high-resolution, confocal imaging of the vasculature through the full thickness of the NFL in the living macaque, in precise agreement with histology. FAO provides a new tool to examine possible primary or secondary role of the nerve fiber layer vasculature in retinal vascular disorders and other eye diseases, such as glaucoma.
doi:10.1186/1471-2415-9-9
PMCID: PMC2744910  PMID: 19698151

Results 1-6 (6)