PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Focal damage to macaque photoreceptors produces persistent visual loss 
Experimental eye research  2013;119:88-96.
Insertion of light-gated channels into inner retina neurons restores neural light responses, light evoked potentials, visual optomotor responses and visually-guided maze behavior in mice blinded by retinal degeneration. This method of vision restoration bypasses damaged outer retina, providing stimulation directly to retinal ganglion cells in inner retina. The approach is similar to that of electronic visual protheses, but may offer some advantages, such as avoidance of complex surgery and direct targeting of many thousands of neurons. However, the promise of this technique for restoring human vision remains uncertain because rodent animal models, in which it has been largely developed, are not ideal for evaluating visual perception. On the other hand, psychophysical vision studies in macaque can be used to evaluate different approaches to vision restoration in humans. Furthermore, it has not been possible to test vision restoration in macaques, the optimal model for human-like vision, because there has been no macaque model of outer retina degeneration. In this study, we describe development of a macaque model of photoreceptor degeneration that can in future studies be used to test restoration of perception by visual prostheses. Our results show that perceptual deficits caused by focal light damage are restricted to locations at which photoreceptors are damaged, that optical coherence tomography (OCT) can be used to track such lesions, and that adaptive optics retinal imaging, which we recently used for in vivo recording of ganglion cell function, can be used in future studies to examine these lesions.
doi:10.1016/j.exer.2013.11.001
PMCID: PMC4329982  PMID: 24316158
retina; light damage; ganglion cells; macaque; adaptive optics
2.  Noninvasive two-photon fluorescence microscopy imaging of mouse retina and RPE through the pupil of the eye 
Nature medicine  2014;20(7):785-789.
Two-photon excitation microscopy (TPM) can image retinal molecular processes in vivo. Intrinsically fluorescent retinyl esters in sub-cellular structures called retinosomes are an integral part of the visual chromophore regeneration pathway. Fluorescent condensation products of all–trans–retinal accumulate in the eye with age and are also associated with age-related macular degeneration (AMD). Here we report repetitive, dynamic imaging of these compounds in live mice, through the pupil of the eye. Leveraging advanced adaptive optics we developed a data acquisition algorithm that permitted the identification of retinosomes and condensation products in the retinal pigment epithelium (RPE) by their characteristic localization, spectral properties, and absence in genetically modified or drug-treated mice. This imaging approach has the potential to detect early molecular changes in retinoid metabolism that trigger light and AMD-induced retinal defects and to assess the effectiveness of treatments for these conditions.
doi:10.1038/nm.3590
PMCID: PMC4087080  PMID: 24952647
3.  Endogenous Fluorophores Enable Two-Photon Imaging of the Primate Eye 
Purpose.
Noninvasive two-photon imaging of a living mammalian eye can reveal details of molecular processes in the retina and RPE. Retinyl esters and all-trans-retinal condensation products are two types of retinoid fluorophores present in these tissues. We measured the content of these two types of retinoids in monkey and human eyes to validate the potential of two-photon imaging for monitoring retinoid changes in human eyes.
Methods.
Two-photon microscopy (TPM) was used to visualize excised retina from monkey eyes. Retinoid composition and content in human and monkey eyes were quantified by HPLC and mass spectrometry (MS).
Results.
Clear images of inner and outer segments of rods and cones were obtained in primate eyes at different eccentricities. Fluorescence spectra from outer segments revealed a maximum emission at 480 nm indicative of retinols and their esters. In cynomolgus monkey and human retinal extracts, retinyl esters existed predominantly in the 11-cis configuration along with notable levels of 11-cis-retinol, a characteristic of cone-enriched retinas. Average amounts of di-retinoid-pyridinium-ethanolamine (A2E) in primate and human eyes were 160 and 225 pmol/eye, respectively.
Conclusions.
These data show that human retina contains sufficient amounts of retinoids for two-photon excitation imaging. Greater amounts of 11-cis-retinyl esters relative to rodent retinas contribute to the fluorescence signal from both monkey and human eyes. These observations indicate that TPM imaging found effective in mice could detect early age- and disease-related changes in human retina.
Two-photon excitation tracks early changes in primate retina.
doi:10.1167/iovs.14-14395
PMCID: PMC4106253  PMID: 24970255
rod photoreceptors; cone photoreceptors; retinoid cycle; two-photon microscopy; primate retina
4.  Long-Term Reduction in Infrared Autofluorescence Caused by Infrared Light Below the Maximum Permissible Exposure 
Purpose.
Many retinal imaging instruments use infrared wavelengths to reduce the risk of light damage. However, we have discovered that exposure to infrared illumination causes a long-lasting reduction in infrared autofluorescence (IRAF). We have characterized the dependence of this effect on radiant exposure and investigated its origin.
Methods.
A scanning laser ophthalmoscope was used to obtain IRAF images from two macaques before and after exposure to 790-nm light (15-450 J/cm2). Exposures were performed with either raster-scanning or uniform illumination. Infrared autofluorescence images also were obtained in two humans exposed to 790-nm light in a separate study. Humans were assessed with direct ophthalmoscopy, Goldmann visual fields, multifocal ERG, and photopic microperimetry to determine whether these measures revealed any effects in the exposed locations.
Results.
A significant decrease in IRAF after exposure to infrared light was seen in both monkeys and humans. In monkeys, the magnitude of this reduction increased with retinal radiant exposure. Partial recovery was seen at 1 month, with full recovery within 21 months. Consistent with a photochemical origin, IRAF decreases caused by either raster-scanning or uniform illumination were not significantly different. We were unable to detect any effect of the light exposure with any measure other than IRAF imaging. We cannot exclude the possibility that changes could be detected with more sensitive tests or longer follow-up.
Conclusions.
This long-lasting effect of infrared illumination in both humans and monkeys occurs at exposure levels four to five times below current safety limits. The photochemical basis for this phenomenon remains unknown.
Exposure to infrared illumination at irradiances well below current safety limits can cause a long-lasting decrease in infrared autofluorescence from the retina. It is unclear whether this effect is benign or indicative of a subcellular change that could be cumulatively harmful.
doi:10.1167/iovs.13-12562
PMCID: PMC4068866  PMID: 24845640
retina; light damage; radiation damage; scanning laser ophthalmoscopy; retinal pigment epithelium
5.  In vivo two-photon imaging of the mouse retina 
Biomedical Optics Express  2013;4(8):1285-1293.
Though in vivo two-photon imaging has been demonstrated in non-human primates, improvements in the signal-to-noise ratio (SNR) would greatly improve its scientific utility. In this study, extrinsic fluorophores, expressed in otherwise transparent retinal ganglion cells, were imaged in the living mouse eye using a two-photon fluorescence adaptive optics scanning laser ophthalmoscope. We recorded two orders of magnitude greater signal levels from extrinsically labeled cells relative to previous work done in two-photon autofluorescence imaging of primates. Features as small as single dendrites in various layers of the retina could be resolved and predictions are made about the feasibility of measuring functional response from cells. In the future, two-photon imaging in the intact eye may allow us to monitor the function of retinal cell classes with infrared light that minimally excites the visual response.
doi:10.1364/BOE.4.001285
PMCID: PMC3756587  PMID: 24009992
(330.4460) Ophthalmic optics and devices; (180.4315) Nonlinear microscopy; (170.0110) Imaging systems
6.  The susceptibility of the retina to photochemical damage from visible light 
The photoreceptor/RPE complex must maintain a delicate balance between maximizing the absorption of photons for vision and retinal image quality while simultaneously minimizing the risk of photodamage when exposed to bright light. We review the recent discovery of two new effects of light exposure on the photoreceptor/RPE complex in the context of current thinking about the causes of retinal phototoxicity. These effects are autofluorescence photobleaching in which exposure to bright light reduces lipofuscin autofluorescence and, at higher light levels, RPE disruption in which the pattern of autofluorescence is permanently altered following light exposure. Both effects occur following exposure to visible light at irradiances that were previously thought to be safe. Photopigment, retinoids involved in the visual cycle, and bisretinoids in lipofuscin have been implicated as possible photosensitizers for photochemical damage. The mechanism of RPE disruption may follow either of these paths. On the other hand, autofluorescence photobleaching is likely an indicator of photooxidation of lipofuscin. The permanent changes inherent in RPE disruption might require modification of the light safety standards. AF photobleaching recovers after several hours although the mechanisms by which this occurs are not yet clear. Understanding the mechanisms of phototoxicity is all the more important given the potential for increased susceptibility in the presence of ocular diseases that affect either the visual cycle and/or lipofuscin accumulation. In addition, knowledge of photochemical mechanisms can improve our understanding of some disease processes that may be influenced by light exposure, such as some forms of Leber’s congenital amaurosis, and aid in the development of new therapies. Such treatment prior to intentional light exposures, as in ophthalmic examinations or surgeries, could provide an effective preventative strategy.
doi:10.1016/j.preteyeres.2011.11.001
PMCID: PMC3242847  PMID: 22085795
Phototoxicity; Photochemical; Retina; Retinal pigment epithelium; Autofluorescence; Visual cycle; Lipofuscin; Bisretinoids
7.  Toward an Understanding of Bisretinoid Autofluorescence Bleaching and Recovery 
Purpose.
To understand molecular mechanisms underlying photobleaching of the RPE fluorophores responsible for fundus autofluorescence.
Methods.
ARPE-19 cells were allowed to accumulate the bisretinoid, A2E, and were irradiated at 430 nm. For some experiments, the cells were pretreated with vitamin E or sulforaphane and N-acetylcysteine; samples included A2E-free cells. The cells were analyzed by fluorescence microscopy and ultra–performance liquid chromatography-mass spectrometry (UPLC-MS) analysis. A2E free cells were also irradiated and analyzed. Cell death was quantified by double labeling with a membrane impermeable dye and 4′,6′-diamino-2-phenylindole (DAPI).
Results.
A2E that had accumulated in ARPE-19 cells exhibited irradiation-associated autofluorescence bleaching despite the absence of appreciable cell death. Chromatographic analysis with absorbance, fluorescence, and mass spectrometry detection revealed that irradiation of A2E was associated with A2E photoisomerization, photooxidation, and photodegradation. Pretreatment with vitamin E favored fluorescence recovery; this finding was consistent with a process involving photooxidation. A2E that was not cell-associated underwent irradiation-induced bleaching, but fluorescence recovery was not observed.
Conclusions.
Using cell-associated A2E as a model of RPE bisretinoid behavior, photobleaching and autofluorescence recovery was observed; these changes were similar to RPE autofluorescence reduction in vivo. The potential for autofluorescence recovery is dependent on light dose and antioxidant status. Fluorescence bleaching of bisretinoid involves photooxidative and photodegradative processes.
Fundus autofluorescence bleaching involves bisretinoid photooxidation and photodegradation, the extent of which is dependent on light dose.
doi:10.1167/iovs.12-9535
PMCID: PMC3390008  PMID: 22570342
8.  Intravitreal Injection of AAV2 Transduces Macaque Inner Retina 
Intravitreally injected AAV2 transduced inner retinal cells in a restricted region at the macaque fovea. Because macaque and human eyes are similar, the results suggest a need to improve transduction methods in gene therapy for the human inner retina.
Purpose.
Adeno-associated virus serotype 2 (AAV2) has been shown to be effective in transducing inner retinal neurons after intravitreal injection in several species. However, results in nonprimates may not be predictive of transduction in the human inner retina, because of differences in eye size and the specialized morphology of the high-acuity human fovea. This was a study of inner retina transduction in the macaque, a primate with ocular characteristics most similar to that of humans.
Methods.
In vivo imaging and histology were used to examine GFP expression in the macaque inner retina after intravitreal injection of AAV vectors containing five distinct promoters.
Results.
AAV2 produced pronounced GFP expression in inner retinal cells of the fovea, no expression in the central retina beyond the fovea, and variable expression in the peripheral retina. AAV2 vector incorporating the neuronal promoter human connexin 36 (hCx36) transduced ganglion cells within a dense annulus around the fovea center, whereas AAV2 containing the ubiquitous promoter hybrid cytomegalovirus (CMV) enhancer/chicken-β-actin (CBA) transduced both Müller and ganglion cells in a dense circular disc centered on the fovea. With three shorter promoters—human synapsin (hSYN) and the shortened CBA and hCx36 promoters (smCBA and hCx36sh)—AAV2 produced visible transduction, as seen in fundus images, only when the retina was altered by ganglion cell loss or enzymatic vitreolysis.
Conclusions.
The results in the macaque suggest that intravitreal injection of AAV2 would produce high levels of gene expression at the human fovea, important in retinal gene therapy, but not in the central retina beyond the fovea.
doi:10.1167/iovs.10-6250
PMCID: PMC3088562  PMID: 21310920
9.  Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy 
Biomedical Optics Express  2010;2(1):139-148.
In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrinsic fluorescence allowed images of the cone mosaic. Imaging intact ex vivo retina revealed that the strongest two-photon excited fluorescence signal comes from the cone inner segments. The fluorescence response increased following light stimulation, which could provide a functional measure of the effects of light on photoreceptors.
doi:10.1364/BOE.2.000139
PMCID: PMC3028489  PMID: 21326644
(010.1080) adaptive optics; (330.4460) Ophthalmic optics and devices; (330.5310) Vision – photoreceptors; (330.7327) Visual optics, ophthalmic instrumentation
10.  In vivo imaging of microscopic structures in the rat retina 
Purpose
The ability to resolve single retinal cells in rodents in vivo has applications in rodent models of the visual system and retinal disease. We have characterized the performance of a fluorescence adaptive optics scanning laser ophthalmoscope (fAOSLO) that provides cellular and subcellular imaging of rat retina in vivo.
Methods
Green fluorescent protein (eGFP) was expressed in retinal ganglion cells of normal Sprague Dawley rats via intravitreal injections of adeno-associated viral vectors. Simultaneous reflectance and fluorescence retinal images were acquired using the fAOSLO. fAOSLO resolution was characterized by comparing in vivo images with subsequent imaging of retinal sections from the same eyes using confocal microscopy.
Results
Retinal capillaries and eGFP-labeled ganglion cell bodies, dendrites, and axons were clearly resolved in vivo with adaptive optics (AO). AO correction reduced the total root mean square wavefront error, on average, from 0.30 μm to 0.05 μm (1.7-mm pupil). The full width at half maximum (FWHM) of the average in vivo line-spread function (LSF) was ∼1.84 μm, approximately 82% greater than the FWHM of the diffraction-limited LSF.
Conclusions
With perfect aberration compensation, the in vivo resolution in the rat eye could be ∼2× greater than that in the human eye due to its large numerical aperture (∼0.43). While the fAOSLO corrects a substantial fraction of the rat eye's aberrations, direct measurements of retinal image quality reveal some blur beyond that expected from diffraction. Nonetheless, subcellular features can be resolved, offering promise for using AO to investigate the rodent eye in vivo with high resolution.
doi:10.1167/iovs.09-3675
PMCID: PMC2873188  PMID: 19578019
11.  The Reduction of Retinal Autofluorescence Caused by Light Exposure 
Purpose
We have previously shown that long exposure to 568 nm light at levels below the maximum permissible exposure safety limit produces retinal damage preceded by a transient reduction in the autofluorescence of retinal pigment epithelial (RPE) cells in vivo. Here, we determine how the effects of exposure power and duration combine to produce this autofluorescence reduction and find the minimum exposure causing a detectable autofluorescence reduction.
Methods
Macaque retinas were imaged using a fluorescence adaptive optics scanning laser ophthalmoscope to resolve individual RPE cells in vivo. The retina was exposed to 568 nm light over a square subtending 0.5° with energies ranging from 1 J/cm2 to 788 J/cm2, where power and duration were independently varied.
Results
In vivo exposures of 5 J/cm2 and higher caused an immediate decrease in autofluorescence followed by either full autofluorescence recovery (exposures ≤ 210 J/cm2) or permanent RPE cell damage (exposures ≥ 247 J/cm2). No significant autofluorescence reduction was observed for exposures of 2 J/cm2 and lower. Reciprocity of exposure power and duration held for the exposures tested, implying that the total energy delivered to the retina, rather than its distribution in time, determines the amount of autofluorescence reduction.
Conclusions
That reciprocity holds is consistent with a photochemical origin, which may or may not cause retinal degeneration. The implementation of safe methods for delivering light to the retina requires a better understanding of the mechanism causing autofluorescence reduction. Finally, RPE imaging was demonstrated using light levels that do not cause a detectable reduction in autofluorescence.
doi:10.1167/iovs.09-3643
PMCID: PMC2790527  PMID: 19628734
12.  Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium 
Purpose
Autofluorescence fundus imaging using an adaptive optics scanning laser ophthalmoscope (AOSLO) allows for imaging of individual retinal pigment epithelial (RPE) cells in vivo. In this study, the potential of retinal damage was investigated by using radiant exposure levels that are 2 to 150 times those used for routine imaging.
Methods
Macaque retinas were imaged in vivo with a fluorescence AOSLO. The retina was exposed to 568- or 830-nm light for 15 minutes at various intensities over a square ½° per side. Pre-and immediate postexposure images of the photoreceptors and RPE cells were taken over a 2° field. Long-term AOSLO imaging was performed intermittently from 5 to 165 days after exposure. Exposures delivered over a uniform field were also investigated.
Results
Exposures to 568-nm light caused an immediate decrease in autofluorescence of RPE cells. Follow-up imaging revealed either full recovery of autofluorescence or long-term damage in the RPE cells at the exposure. The outcomes of AOSLO exposures and uniform field exposures of equal average power were not significantly different. No effects from 830-nm exposures were observed.
Conclusions
The study revealed a novel change in RPE autofluorescence induced by 568-nm light exposure. Retinal damage occurred as a direct result of total average power, independent of the light-delivery method. Because the exposures were near or below permissible levels in laser safety standards, these results suggest that caution should be used with exposure of the retina to visible light and that the safety standards should be re-evaluated for these exposure conditions.
doi:10.1167/iovs.07-1430
PMCID: PMC2790526  PMID: 18408191
13.  In-vivo imaging of retinal nerve fiber layer vasculature: imaging - histology comparison 
BMC Ophthalmology  2009;9:9.
Background
Although it has been suggested that alterations of nerve fiber layer vasculature may be involved in the etiology of eye diseases, including glaucoma, it has not been possible to examine this vasculature in-vivo. This report describes a novel imaging method, fluorescence adaptive optics (FAO) scanning laser ophthalmoscopy (SLO), that makes possible for the first time in-vivo imaging of this vasculature in the living macaque, comparing in-vivo and ex-vivo imaging of this vascular bed.
Methods
We injected sodium fluorescein intravenously in two macaque monkeys while imaging the retina with an FAO-SLO. An argon laser provided the 488 nm excitation source for fluorescence imaging. Reflectance images, obtained simultaneously with near infrared light, permitted precise surface registration of individual frames of the fluorescence imaging. In-vivo imaging was then compared to ex-vivo confocal microscopy of the same tissue.
Results
Superficial focus (innermost retina) at all depths within the NFL revealed a vasculature with extremely long capillaries, thin walls, little variation in caliber and parallel-linked structure oriented parallel to the NFL axons, typical of the radial peripapillary capillaries (RPCs). However, at a deeper focus beneath the NFL, (toward outer retina) the polygonal pattern typical of the ganglion cell layer (inner) and outer retinal vasculature was seen. These distinguishing patterns were also seen on histological examination of the same retinas. Furthermore, the thickness of the RPC beds and the caliber of individual RPCs determined by imaging closely matched that measured in histological sections.
Conclusion
This robust method demonstrates in-vivo, high-resolution, confocal imaging of the vasculature through the full thickness of the NFL in the living macaque, in precise agreement with histology. FAO provides a new tool to examine possible primary or secondary role of the nerve fiber layer vasculature in retinal vascular disorders and other eye diseases, such as glaucoma.
doi:10.1186/1471-2415-9-9
PMCID: PMC2744910  PMID: 19698151

Results 1-13 (13)