Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("ankara, denis")
1.  Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice 
Most inherited retinal dystrophies display progressive photoreceptor cell degeneration leading to severe visual impairment. Optogenetic reactivation of retinal neurons mediated by adeno-associated virus (AAV) gene therapy has the potential to restore vision regardless of patient specific mutations. The challenge for clinical translatability is to restore a vision as close to natural vision as possible, while using a surgically safe delivery route for the fragile degenerated retina. To preserve the visual processing of the inner retina, we targeted ON bipolar cells, which are still present at late stages of disease. For safe gene delivery, we used a recently engineered AAV variant that can transduce the bipolar cells after injection into the eye’s easily accessible vitreous humor. We show that AAV encoding channelrhodopsin under the ON bipolar cell specific promoter mediates long-term gene delivery restricted to ON-bipolar cells after intravitreal administration. Channelrhodopsin expression in ON bipolar cells leads to restoration of ON and OFF responses at the retinal and cortical levels. Moreover, light induced locomotory behavior is restored in treated blind mice. Our results support the clinical relevance of a minimally-invasive AAV-mediated optogenetic therapy for visual restoration.
PMCID: PMC4270733  PMID: 25095892
2.  Genotypic and Phenotypic Characterization of P23H Line 1 Rat Model 
PLoS ONE  2015;10(5):e0127319.
Rod-cone dystrophy, also known as retinitis pigmentosa (RP), is the most common inherited degenerative photoreceptor disease, for which no therapy is currently available. The P23H rat is one of the most commonly used autosomal dominant RP models. It has been created by incorporation of a mutated mouse rhodopsin (Rho) transgene in the wild-type (WT) Sprague Dawley rat. Detailed genetic characterization of this transgenic animal has however never been fully reported. Here we filled this knowledge gap on P23H Line 1 rat (P23H-1) and provide additional phenotypic information applying non-invasive and state-of-the-art in vivo techniques that are relevant for preclinical therapeutic evaluations. Transgene sequence was analyzed by Sanger sequencing. Using quantitative PCR, transgene copy number was calculated and its expression measured in retinal tissue. Full field electroretinography (ERG) and spectral domain optical coherence tomography (SD-OCT) were performed at 1-, 2-, 3- and 6-months of age. Sanger sequencing revealed that P23H-1 rat carries the mutated mouse genomic Rho sequence from the promoter to the 3’ UTR. Transgene copy numbers were estimated at 9 and 18 copies in the hemizygous and homozygous rats respectively. In 1-month-old hemizygous P23H-1 rats, transgene expression represented 43% of all Rho expressed alleles. ERG showed a progressive rod-cone dysfunction peaking at 6 months-of-age. SD-OCT confirmed a progressive thinning of the photoreceptor cell layer leading to the disappearance of the outer retina by 6 months with additional morphological changes in the inner retinal cell layers in hemizygous P23H-1 rats. These results provide precise genotypic information of the P23H-1 rat with additional phenotypic characterization that will serve basis for therapeutic interventions, especially for those aiming at gene editing.
PMCID: PMC4444340  PMID: 26009893
3.  Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration 
Alternative splicing of nucleoredoxin-like 1 (Nxnl1) results in 2 isoforms of the rod-derived cone viability factor. The truncated form (RdCVF) is a thioredoxin-like protein secreted by rods that promotes cone survival, while the full-length isoform (RdCVFL), which contains a thioredoxin fold, is involved in oxidative signaling and protection against hyperoxia. Here, we evaluated the effects of these different isoforms in 2 murine models of rod-cone dystrophy. We used adeno-associated virus (AAV) to express these isoforms in mice and found that both systemic and intravitreal injection of engineered AAV vectors resulted in RdCVF and RdCVFL expression in the eye. Systemic delivery of AAV92YF vectors in neonates resulted in earlier onset of RdCVF and RdCVFL expression compared with that observed with intraocular injection using the same vectors at P14. We also evaluated the efficacy of intravitreal injection using a recently developed photoreceptor-transducing AAV variant (7m8) at P14. Systemic administration of AAV92YF-RdCVF improved cone function and delayed cone loss, while AAV92YF-RdCVFL increased rhodopsin mRNA and reduced oxidative stress by-products. Intravitreal 7m8-RdCVF slowed the rate of cone cell death and increased the amplitude of the photopic electroretinogram. Together, these results indicate different functions for Nxnl1 isoforms in the retina and suggest that RdCVF gene therapy has potential for treating retinal degenerative disease.
PMCID: PMC4382269  PMID: 25415434
4.  Retinoschisin gene therapy in photoreceptors, Müller glia, or all retinal cells in the Rs1h−/− mouse 
Gene therapy  2014;21(6):585-592.
X-linked retinoschisis, a disease characterized by splitting of the retina, is caused by mutations in the retinoschisin gene, which encodes a secreted cell adhesion protein. Currently, there is no effective treatment for retinoschisis, though viral vector-mediated gene replacement therapies offer promise. We used intravitreal delivery of three different AAV vectors to target delivery of the RS1 gene to Müller glia, photoreceptors, or multiple cell types throughout the retina. Müller glia radially span the entire retina, are accessible from the vitreous, and remain intact throughout progression of the disease. However, photoreceptors, not glia, normally secrete retinoschisin. We compared the efficacy of rescue mediated by retinoschisin secretion from these specific subtypes of retinal cells in the Rs1h−/− mouse model of retinoschisis. Our results indicate that all three vectors deliver the RS1 gene, and that several cell types can secrete retinoschisin, leading to transport of the protein across the retina. The greatest long-term rescue was observed when photoreceptors produce retinoschisin. Similar rescue was observed with photoreceptor-specific or generalized expression, though photoreceptor secretion may contribute to rescue in the latter case. These results collectively point to the importance of cell targeting and appropriate vector choice in the success of retinal gene therapies.
PMCID: PMC4047144  PMID: 24694538
Gene therapy; X-linked retinoschisis; AAV vectors; photoreceptors; Müller glia; cell targeting
5.  Imaging Light Responses of Foveal Ganglion Cells in the Living Macaque Eye 
The Journal of Neuroscience  2014;34(19):6596-6605.
The fovea dominates primate vision, and its anatomy and perceptual abilities are well studied, but its physiology has been little explored because of limitations of current physiological methods. In this study, we adapted a novel in vivo imaging method, originally developed in mouse retina, to explore foveal physiology in the macaque, which permits the repeated imaging of the functional response of many retinal ganglion cells (RGCs) simultaneously. A genetically encoded calcium indicator, G-CaMP5, was inserted into foveal RGCs, followed by calcium imaging of the displacement of foveal RGCs from their receptive fields, and their intensity-response functions. The spatial offset of foveal RGCs from their cone inputs makes this method especially appropriate for fovea by permitting imaging of RGC responses without excessive light adaptation of cones. This new method will permit the tracking of visual development, progression of retinal disease, or therapeutic interventions, such as insertion of visual prostheses.
PMCID: PMC4012315  PMID: 24806684
calcium imaging; in vivo adaptive optics imaging; intrinsic signal imaging; primate fovea; retinal ganglion cells
6.  Rapid optical control of nociception with an ion channel photoswitch 
Nature methods  2012;9(4):396-402.
Local anesthetics are effective in suppressing pain sensation, but most of these compounds act non-selectively, inhibiting the activity of all neurons. Moreover, their actions abate slowly, preventing precise spatial and temporal control of nociception. We have developed a photoisomerizable molecule named QAQ (Quaternary ammonium – Azobenzene – Quaternary ammonium) that enables rapid and selective optical control of nociception. QAQ is membrane-impermeant and it has no effect on most cells, but it infiltrates pain-sensing neurons through endogenous ion channels that are activated by noxious stimuli, primarily TRPV1. After QAQ accumulates intracellularly, it blocks voltage-gated ion channels in the trans but not the cis form. QAQ enables reversible optical silencing of mouse nociceptive neuron firing without exogenous gene expression and can serve as a light-sensitive analgesic in rats in vivo. Moreover, because intracellular QAQ accumulation is a consequence of nociceptive ion channel activity, QAQ-mediated photosensitization provides a new platform for understanding signaling mechanisms in acute and chronic pain.
PMCID: PMC3906498  PMID: 22343342
7.  Intracisternal delivery of NFκB-inducible scAAV2/9 reveals locoregional neuroinflammation induced by systemic kainic acid treatment 
We have previously demonstrated disease-dependent gene delivery in the brain using an AAV vector responding to NFκB activation as a probe for inflammatory responses. This vector, injected focally in the parenchyma prior to a systemic kainic acid (KA) injection mediated inducible transgene expression in the hippocampus but not in the cerebellum, regions, respectively, known to be affected or not by the pathology. However, such a focal approach relies on previous knowledge of the model parameters and does not allow to predict the whole brain response to the disease. Global brain gene delivery would allow to predict the regional distribution of the pathology as well as to deliver therapeutic factors in all affected brain regions. We show that self-complementary AAV2/9 (scAAV2/9) delivery in the adult rat cisterna magna allows a widespread but not homogenous transduction of the brain. Indeed, superficial regions, i.e., cortex, hippocampus, and cerebellum were more efficiently transduced than deeper regions, such as striatum, and substantia nigra. These data suggest that viral particles penetration from the cerebrospinal fluid (CSF) into the brain is a limiting factor. Interestingly, AAV2/9-2YF a rationally designed capsid mutant (affecting surface tyrosines) increased gene transfer efficiency approximately fivefold. Neurons, astrocytes, and oligodendrocytes, but not microglia, were transduced in varying proportions depending on the brain region and the type of capsid. Finally, after a single intracisternal injection of scAAV2/9-2YF using the NFκB-inducible promoter, KA treatment induced transgene expression in the hippocampus and cortex but not in the cerebellum, corresponding to the expression of the CD11b marker of microglial activation. These data support the use of disease-inducible vectors administered in the cisterna magna as a tool to characterize the brain pathology in systemic drug-induced or transgenic disease models. However, further improvements are required to enhance viral particles penetration into the brain.
PMCID: PMC4251317  PMID: 25520614
AAV; neuroinflammation; inducible vector; cisterna magna; cerebrospinal fluid
8.  Systemic scAAV9 variant mediates brain transduction in newborn rhesus macaques 
Scientific Reports  2012;2:253.
Transgenic macaques would allow to study brain function and diseases. We report that an engineered adeno-associated virus serotype 9 variant (scAAV9) injected intravenously in newborn rhesus macaques results in efficient, exclusively-neuronal and widespread transduction of the brain. The present data pave the way to large-scale genetic modelling of brain diseases in the rhesus macaque.
PMCID: PMC3275921  PMID: 22355765
9.  Intravitreal Injection of AAV2 Transduces Macaque Inner Retina 
Intravitreally injected AAV2 transduced inner retinal cells in a restricted region at the macaque fovea. Because macaque and human eyes are similar, the results suggest a need to improve transduction methods in gene therapy for the human inner retina.
Adeno-associated virus serotype 2 (AAV2) has been shown to be effective in transducing inner retinal neurons after intravitreal injection in several species. However, results in nonprimates may not be predictive of transduction in the human inner retina, because of differences in eye size and the specialized morphology of the high-acuity human fovea. This was a study of inner retina transduction in the macaque, a primate with ocular characteristics most similar to that of humans.
In vivo imaging and histology were used to examine GFP expression in the macaque inner retina after intravitreal injection of AAV vectors containing five distinct promoters.
AAV2 produced pronounced GFP expression in inner retinal cells of the fovea, no expression in the central retina beyond the fovea, and variable expression in the peripheral retina. AAV2 vector incorporating the neuronal promoter human connexin 36 (hCx36) transduced ganglion cells within a dense annulus around the fovea center, whereas AAV2 containing the ubiquitous promoter hybrid cytomegalovirus (CMV) enhancer/chicken-β-actin (CBA) transduced both Müller and ganglion cells in a dense circular disc centered on the fovea. With three shorter promoters—human synapsin (hSYN) and the shortened CBA and hCx36 promoters (smCBA and hCx36sh)—AAV2 produced visible transduction, as seen in fundus images, only when the retina was altered by ganglion cell loss or enzymatic vitreolysis.
The results in the macaque suggest that intravitreal injection of AAV2 would produce high levels of gene expression at the human fovea, important in retinal gene therapy, but not in the central retina beyond the fovea.
PMCID: PMC3088562  PMID: 21310920
10.  Changes in Adeno-Associated Virus-Mediated Gene Delivery in Retinal Degeneration 
Human Gene Therapy  2010;21(5):571-578.
Gene therapies for retinal degeneration have relied on subretinal delivery of viral vectors carrying therapeutic DNA. The subretinal injection is clearly not ideal as it limits the viral transduction profile to a focal region at the injection site and negatively affects the neural retina by detaching it from the supportive retinal pigment epithelium (RPE). We assessed changes in adeno-associated virus (AAV) dispersion and transduction in the degenerating rat retina after intravitreal delivery. We observed a significant increase in AAV-mediated gene transfer in the diseased compared with normal retina, the extent of which depends on the AAV serotype injected. We also identified key structural changes that correspond to increased viral infectivity. Particle diffusion and transgene accumulation in normal and diseased retina were monitored via fluorescent labeling of viral capsids and quantitative PCR. Viral particles were observed to accumulate at the vitreoretinal junction in normal retina, whereas particles spread into the outer retina and RPE in degenerated tissue. Immunohistochemistry illustrates remarkable changes in the architecture of the inner limiting membrane, which are likely to underlie the increased viral transduction in diseased retina. These data highlight the importance of characterizing gene delivery vectors in diseased tissue as structural and biochemical changes can alter viral vector transduction patterns. Furthermore, these results indicate that gene delivery to the outer nuclear layer may be achieved by noninvasive intravitreal AAV administration in the diseased state.
Kolstad et al. evaluate the distribution of vector particles and transduction of AAV administered intravitreally in diseased versus healthy retinas. Whereas healthy retinas are not very receptive to vector penetration and transduction following intravitreal injection, in retinal degenerations the authors show improved and more extensive gene transfer.
PMCID: PMC3143418  PMID: 20021232
11.  Molecular Evolution of Adeno-Associated Virus for Enhanced Glial Gene Delivery 
Due to the natural tropism of most viral vectors, including adeno-associated viral (AAV) vectors, efficient gene delivery within the central nervous system and retina occurs primarily to neurons and epithelia. Despite the clinical relevance of glia for homeostasis in neural tissue, and as causal contributors in genetic disorders such as Alzheimer's and amyotrophic lateral sclerosis, efforts to develop more efficient gene delivery vectors for glia have met with limited success. Recently, viral vector engineering involving high-throughput random diversification and selection has enabled the rapid creation of novel AAV vectors with valuable new gene delivery properties. We have engineered novel AAV variants capable of efficient glia transduction by employing directed evolution with a panel of four distinct AAV libraries, including a new semi-random peptide replacement strategy. Several novel variants transduced both human and rat astrocytes in vitro up to 15-fold higher than their parent serotypes, and injection into the rat striatum led to astrocyte transduction levels up to 16% of the total transduced cell population. Furthermore, one variant exhibited a substantial shift in tropism towards Müller glia within the retina, further highlighting the general utility of these variants for efficient glia transduction within the CNS and retina.
PMCID: PMC2788045  PMID: 19672246
12.  A Novel Adeno-Associated Viral Variant for Efficient and Selective Intravitreal Transduction of Rat Müller Cells 
PLoS ONE  2009;4(10):e7467.
The pathologies of numerous retinal degenerative diseases can be attributed to a multitude of genetic factors, and individualized treatment options for afflicted patients are limited and cost-inefficient. In light of the shared neurodegenerative phenotype among these disorders, a safe and broad-based neuroprotective approach would be desirable to overcome these obstacles. As a result, gene delivery of secretable-neuroprotective factors to Müller cells, a type of retinal glia that contacts all classes of retinal neurons, represents an ideal approach to mediate protection of the entire retina through a simple and innocuous intraocular, or intravitreal, injection of an efficient vehicle such as an adeno-associated viral vector (AAV). Although several naturally occurring AAV variants have been isolated with a variety of tropisms, or cellular specificities, these vectors inefficiently infect Müller cells via intravitreal injection.
Methodology/Principal Findings
We have previously applied directed evolution to create several novel AAV variants capable of efficient infection of both rat and human astrocytes through iterative selection of a panel of highly diverse AAV libraries. Here, in vivo and in vitro characterization of these isolated variants identifies a previously unreported AAV variant ShH10, closely related to AAV serotype 6 (AAV6), capable of efficient, selective Müller cell infection through intravitreal injection. Importantly, this new variant shows significantly improved transduction relative to AAV2 (>60%) and AAV6.
Our findings demonstrate that AAV is a highly versatile vector capable of powerful shifts in tropism from minor sequence changes. This isolated variant represents a new therapeutic vector to treat retinal degenerative diseases through secretion of neuroprotective factors from Müller cells as well as provides new opportunities to study their biological functions in the retina.
PMCID: PMC2758586  PMID: 19826483

Results 1-12 (12)