PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Perilipin 2 Improves Insulin Sensitivity in Skeletal Muscle Despite Elevated Intramuscular Lipid Levels 
Diabetes  2012;61(11):2679-2690.
Type 2 diabetes is characterized by excessive lipid storage in skeletal muscle. Excessive intramyocellular lipid (IMCL) storage exceeds intracellular needs and induces lipotoxic events, ultimately contributing to the development of insulin resistance. Lipid droplet (LD)–coating proteins may control proper lipid storage in skeletal muscle. Perilipin 2 (PLIN2/adipose differentiation–related protein [ADRP]) is one of the most abundantly expressed LD-coating proteins in skeletal muscle. Here we examined the role of PLIN2 in myocellular lipid handling and insulin sensitivity by investigating the effects of in vitro PLIN2 knockdown and in vitro and in vivo overexpression. PLIN2 knockdown decreased LD formation and triacylglycerol (TAG) storage, marginally increased fatty-acid (FA) oxidation, and increased incorporation of palmitate into diacylglycerols and phospholipids. PLIN2 overexpression in vitro increased intramyocellular TAG storage paralleled with improved insulin sensitivity. In vivo muscle-specific PLIN2 overexpression resulted in increased LD accumulation and blunted the high-fat diet–induced increase in protein content of the subunits of the oxidative phosphorylation (OXPHOS) chain. Diacylglycerol levels were unchanged, whereas ceramide levels were increased. Despite the increased IMCL accumulation, PLIN2 overexpression improved skeletal muscle insulin sensitivity. We conclude that PLIN2 is essential for lipid storage in skeletal muscle by enhancing the partitioning of excess FAs toward TAG storage in LDs, thereby blunting lipotoxicity-associated insulin resistance.
doi:10.2337/db11-1402
PMCID: PMC3478528  PMID: 22807032
2.  Prolonged Fasting Identifies Skeletal Muscle Mitochondrial Dysfunction as Consequence Rather Than Cause of Human Insulin Resistance 
Diabetes  2010;59(9):2117-2125.
OBJECTIVE
Type 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we employed the unique model of prolonged fasting in humans. Prolonged fasting is a physiologic condition in which muscular insulin resistance develops in the presence of increased free fatty acid (FFA) levels, increased fat oxidation and low glucose and insulin levels. It is therefore anticipated that skeletal muscle mitochondrial function is maintained to accommodate increased fat oxidation unless factors secondary to insulin resistance exert negative effects on mitochondrial function.
RESEARCH DESIGN AND METHODS
While in a respiration chamber, twelve healthy males were subjected to a 60 h fast and a 60 h normal fed condition in a randomized crossover design. Afterward, insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp, and mitochondrial function was quantified ex vivo in permeabilized muscle fibers using high-resolution respirometry.
RESULTS
Indeed, FFA levels were increased approximately ninefold after 60 h of fasting in healthy male subjects, leading to elevated intramuscular lipid levels and decreased muscular insulin sensitivity. Despite an increase in whole-body fat oxidation, we observed an overall reduction in both coupled state 3 respiration and maximally uncoupled respiration in permeabilized skeletal muscle fibers, which could not be explained by changes in mitochondrial density.
CONCLUSIONS
These findings confirm that the insulin-resistant state has secondary negative effects on mitochondrial function. Given the low insulin and glucose levels after prolonged fasting, hyperglycemia and insulin action per se can be excluded as underlying mechanisms, pointing toward elevated plasma FFA and/or intramuscular fat accumulation as possible causes for the observed reduction in mitochondrial capacity.
doi:10.2337/db10-0519
PMCID: PMC2927932  PMID: 20573749
3.  Paradoxical Increase in TAG and DAG Content Parallel the Insulin Sensitizing Effect of Unilateral DGAT1 Overexpression in Rat Skeletal Muscle 
PLoS ONE  2011;6(1):e14503.
Background
The involvement of muscle triacylglycerol (TAG) storage in the onset of insulin resistance is questioned and the attention has shifted towards inhibition of insulin signalling by the lipid intermediate diacylglycerol (DAG). The enzyme 1,2-acylCoA:diacylglyceroltransferase-1 (DGAT1) esterifies a fatty acyl-CoA on DAG to form TAG. Therefore, the aim of the present study was to investigate if unilateral overexpression of DGAT1 in adult rat Tibialis anterior (TA) muscle will increase conversion of the lipid intermediate DAG into TAG, thereby improving muscle insulin sensitivity.
Methodology/Principal Findings
The DGAT1 gene construct was injected in the left TA muscle of male rats on chow or high-fat (45% kcal) diet for three weeks, followed by application of one 800 V/cm and four 80 V/cm pulses, using the contralateral leg as sham-electroporated control. Seven days after electroporation, muscle specific insulin sensitivity was assessed with a hyperinsulinemic euglycemic clamp using 2-deoxy-[3H]glucose. Here, we provide evidence that unilateral overexpression of DGAT1 in TA muscle of male rats is associated with an increased rather than decreased DAG content. Strikingly, this increase in DAG content was accompanied by improved muscle insulin sensitivity. Interestingly, markers of muscle lipolysis and mitochondrial function were also increased in DGAT1 overexpressing muscle.
Conclusions/Significance
We conclude that unilateral DGAT1 overexpression can rescue insulin sensitivity, possibly by increasing DAG and TAG turnover in skeletal muscle. In case of a proper balance between the supply and oxidation of fatty acids in skeletal muscle, the lipid intermediate DAG may not exert harmful effects on insulin signalling.
doi:10.1371/journal.pone.0014503
PMCID: PMC3021516  PMID: 21264296
4.  Palmitate-induced skeletal muscle insulin resistance does not require NF-κB activation 
Cellular and Molecular Life Sciences  2010;68(7):1215-1225.
Palmitate activates the NF-κB pathway, and induces accumulation of lipid metabolites and insulin resistance in skeletal muscle cells. Little information is available whether and how these processes are causally related. Therefore, the objectives were to investigate whether intra-cellular lipid metabolites are involved in FA-induced NF-κB activation and/or insulin resistance in skeletal muscle and to investigate whether FA-induced insulin resistance and NF-κB activation are causally related. Inhibiting DGAT or CPT-1 by using, respectively, amidepsine or etomoxir increased DAG accumulation and sensitized myotubes to palmitate-induced insulin resistance. While co-incubation of palmitate with etomoxir increased NF-κB transactivation, co-incubation with amidepsine did not, indicating that DAG accumulation is associated with insulin resistance but not with NF-κB activation. Furthermore, pharmacological or genetic inhibition of the NF-κB pathway could not prevent palmitate-induced insulin resistance. In conclusion, we have demonstrated that activation of the NF-κB pathway is not required for palmitate-induced insulin resistance in skeletal muscle cells.
Electronic supplementary material
The online version of this article (doi:10.1007/s00018-010-0515-3) contains supplementary material, which is available to authorized users.
doi:10.1007/s00018-010-0515-3
PMCID: PMC3056136  PMID: 20820848
Skeletal muscle; Insulin resistance; Palmitate; Nuclear factor-kappa B; Glucose uptake

Results 1-4 (4)