PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Quantum coherence spectroscopy to measure dietary fat retention in the liver 
JCI Insight  null;1(13):e84671.
The prevalence of fatty liver reaches alarming proportions. Fatty liver increases the risk for insulin resistance, cardiovascular disease, and nonalcoholic steatohepatitis (NASH). Although extensively studied in a preclinical setting, the lack of noninvasive methodologies hampers our understanding of which pathways promote hepatic fat accumulation in humans. Dietary fat retention is one of the pathways that may lead to fatty liver. The low (1.1%) natural abundance (NA) of carbon-13 (13C) allows use of 13C-enriched lipids for in vivo MR studies. Successful implementation of such methodology, however, is challenging due to low sensitivity of 13C-magnetic resonance spectroscopy (13C-MRS). Here, we investigated the use of 1-dimensional gradient enhanced heteronuclear single quantum coherence (ge-HSQC) spectroscopy for the in vivo detection of hepatic 1H-[13C]-lipid signals after a single high-fat meal with 13C-labeled fatty acids in 5 lean and 6 obese subjects. Postprandial retention of orally administered 13C-labeled fatty acids was significant (P < 0.01). Approximately 1.5% of the tracer was retained in the liver after 6 hours, and retention was similar in both groups (P = 0.92). Thus, a substantial part of the liver fat can originate directly from storage of meal-derived fat. The ge-HSQC can be used to noninvasively reveal the contribution of dietary fat to the development of hepatic steatosis over time.
An indirect 13C-MR spectroscopy method for dietary fatty acid tracking with uniformly labeled fatty acids.
doi:10.1172/jci.insight.84671
PMCID: PMC5035097  PMID: 27699229
2.  Effects of exercise training on intrahepatic lipid content in humans 
Diabetologia  2016;59(10):2068-2079.
Non-alcoholic fatty liver (NAFL) is the most common liver disorder in western society. Various factors may play a role in determining hepatic fat content, such as delivery of lipids to the liver, de novo lipogenesis, hepatic lipid oxidation, secretion of intrahepatic lipids to the circulation or a combination of these. If delivery of lipids to the liver outweighs the sum of hepatic lipid oxidation and secretion, the intrahepatic lipid (IHL) content starts to increase and NAFL may develop. NAFL is closely related to obesity and insulin resistance and a fatty liver increases the vulnerability to type 2 diabetes development. Exercise training is a cornerstone in the treatment and prevention of type 2 diabetes. There is a large body of literature describing the beneficial metabolic consequences of exercise training on skeletal muscle metabolism. Recent studies have started to investigate the effects of exercise training on liver metabolism but data is still limited. Here, first, we briefly discuss the routes by which IHL content is modulated. Second, we review whether and how these contributing routes might be modulated by long-term exercise training. Third, we focus on the effects of acute exercise on IHL metabolism, since exercise also might affect hepatic metabolism in the physically active state. This will give insight into whether the effect of exercise training on IHL could be explained by the accumulated effect of acute bouts of exercise, or whether adaptations might occur only after long-term exercise training. The primary focus of this review will be on observations made in humans. Where human data is missing, data obtained from well-accepted animal models will be used.
doi:10.1007/s00125-016-4037-x
PMCID: PMC5016557  PMID: 27393135
Exercise; Human; Insulin sensitivity and resistance; Lipid metabolism; Non-alcoholic fatty liver disease; Prediction and prevention of type 2 diabetes; Review
3.  Carnitine Acetyltransferase Mitigates Metabolic Inertia and Muscle Fatigue During Exercise 
Cell metabolism  2015;22(1):65-76.
Acylcarnitine metabolites have gained attention as biomarkers of nutrient stress, but their physiological relevance and metabolic purpose remain poorly understood. Short chain carnitine conjugates, including acetylcarnitine, derive from their corresponding acyl-CoA precursors via the action of carnitine acetyltransferase (CrAT), a bidirectional mitochondrial matrix enzyme. We show here that contractile activity reverses acetylcarnitine flux in muscle, from net production and efflux at rest to net uptake and consumption during exercise. Disruption of this switch in mice with muscle-specific CrAT deficiency resulted in acetyl-CoA deficit, perturbed energy charge and diminished exercise tolerance, whereas acetylcarnitine supplementation produced opposite outcomes in a CrAT-dependent manner. Likewise, in exercise-trained compared to untrained humans, post-exercise phosphocreatine recovery rates were positively associated with CrAT activity and coincided with dramatic shifts in muscle acetylcarnitine dynamics. These findings show acetylcarnitine serves as a critical acetyl buffer for working muscles and provide insight into potential therapeutic strategies for combatting exercise intolerance.
Graphical Abstract
doi:10.1016/j.cmet.2015.06.003
PMCID: PMC4754082  PMID: 26154055
4.  Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity 
Molecular Metabolism  2016;5(8):635-645.
Objective
A disturbed day-night rhythm is associated with metabolic perturbations that can lead to obesity and type 2 diabetes mellitus (T2DM). In skeletal muscle, a reduced oxidative capacity is also associated with the development of T2DM. However, whether oxidative capacity in skeletal muscle displays a day-night rhythm in humans has so far not been investigated.
Methods
Lean, healthy subjects were enrolled in a standardized living protocol with regular meals, physical activity and sleep to reflect our everyday lifestyle. Mitochondrial oxidative capacity was examined in skeletal muscle biopsies taken at five time points within a 24-hour period.
Results
Core-body temperature was lower during the early night, confirming a normal day-night rhythm. Skeletal muscle oxidative capacity demonstrated a robust day-night rhythm, with a significant time effect in ADP-stimulated respiration (state 3 MO, state 3 MOG and state 3 MOGS, p < 0.05). Respiration was lowest at 1 PM and highest at 11 PM (state 3 MOGS: 80.6 ± 4.0 vs. 95.8 ± 4.7 pmol/mg/s). Interestingly, the fluctuation in mitochondrial function was also observed in whole-body energy expenditure, with peak energy expenditure at 11 PM and lowest energy expenditure at 4 AM (p < 0.001). In addition, we demonstrate rhythmicity in mRNA expression of molecular clock genes in human skeletal muscle.
Conclusions
Our results suggest that the biological clock drives robust rhythms in human skeletal muscle oxidative metabolism. It is tempting to speculate that disruption of these rhythms contribute to the deterioration of metabolic health associated with circadian misalignment.
Graphical abstract
Highlights
•Mitochondrial oxidative capacity in human skeletal muscle follows a day-night rhythm.•Oxidative capacity peaks in the late evening and is lowest in the early afternoon.•Energy expenditure follows a day-night rhythm and is highest in the late evening.•Human muscle exhibits rhythmic gene expression, with a cycling core molecular clock.
doi:10.1016/j.molmet.2016.06.012
PMCID: PMC5021670  PMID: 27656401
Biological rhythm; Mitochondria; Oxidative capacity; Skeletal muscle; Energy metabolism; Molecular clock; BMAL1, brain and muscle ARNT-like 1; BMI, body mass index; CLOCK, circadian locomotor output cycles kaput; CRY, cryptochrome; FCCP, carbonyl cyanide-4-trifluoromethoxyphenylhydrazone; NADH, reduced nicotinamide adenine dinucleotide; PER, period; RER, respiratory exchange ratio; RT-QPCR, Real-Time Quantitative Polymerase Chain Reaction; T2DM, type 2 diabetes mellitus; TCA cycle, tricarboxylic acid cycle
5.  Long–echo time MR spectroscopy for skeletal muscle acetylcarnitine detection 
The Journal of Clinical Investigation  2014;124(11):4915-4925.
Animal models suggest that acetylcarnitine production is essential for maintaining metabolic flexibility and insulin sensitivity. Because current methods to detect acetylcarnitine involve biopsy of the tissue of interest, noninvasive alternatives to measure acetylcarnitine concentrations could facilitate our understanding of its physiological relevance in humans. Here, we investigated the use of long–echo time (TE) proton magnetic resonance spectroscopy (1H-MRS) to measure skeletal muscle acetylcarnitine concentrations on a clinical 3T scanner. We applied long-TE 1H-MRS to measure acetylcarnitine in endurance-trained athletes, lean and obese sedentary subjects, and type 2 diabetes mellitus (T2DM) patients to cover a wide spectrum in insulin sensitivity. A long-TE 1H-MRS protocol was implemented for successful detection of skeletal muscle acetylcarnitine in these individuals. There were pronounced differences in insulin sensitivity, as measured by hyperinsulinemic-euglycemic clamp, and skeletal muscle mitochondrial function, as measured by phosphorus-MRS (31P-MRS), across groups. Insulin sensitivity and mitochondrial function were highest in trained athletes and lowest in T2DM patients. Skeletal muscle acetylcarnitine concentration showed a reciprocal distribution, with mean acetylcarnitine concentration correlating with mean insulin sensitivity in each group. These results demonstrate that measuring acetylcarnitine concentrations with 1H-MRS is feasible on clinical MR scanners and support the hypothesis that T2DM patients are characterized by a decreased formation of acetylcarnitine, possibly underlying decreased insulin sensitivity.
doi:10.1172/JCI74830
PMCID: PMC4347229  PMID: 25271624
6.  Evidence for a Direct Effect of the NAD+ Precursor Acipimox on Muscle Mitochondrial Function in Humans 
Diabetes  2014;64(4):1193-1201.
Recent preclinical studies showed the potential of nicotinamide adenine dinucleotide (NAD+) precursors to increase oxidative phosphorylation and improve metabolic health, but human data are lacking. We hypothesize that the nicotinic acid derivative acipimox, an NAD+ precursor, would directly affect mitochondrial function independent of reductions in nonesterified fatty acid (NEFA) concentrations. In a multicenter randomized crossover trial, 21 patients with type 2 diabetes (age 57.7 ± 1.1 years, BMI 33.4 ± 0.8 kg/m2) received either placebo or acipimox 250 mg three times daily dosage for 2 weeks. Acipimox treatment increased plasma NEFA levels (759 ± 44 vs. 1,135 ± 97 μmol/L for placebo vs. acipimox, P < 0.01) owing to a previously described rebound effect. As a result, skeletal muscle lipid content increased and insulin sensitivity decreased. Despite the elevated plasma NEFA levels, ex vivo mitochondrial respiration in skeletal muscle increased. Subsequently, we showed that acipimox treatment resulted in a robust elevation in expression of nuclear-encoded mitochondrial gene sets and a mitonuclear protein imbalance, which may indicate activation of the mitochondrial unfolded protein response. Further studies in C2C12 myotubes confirmed a direct effect of acipimox on NAD+ levels, mitonuclear protein imbalance, and mitochondrial oxidative capacity. To the best of our knowledge, this study is the first to demonstrate that NAD+ boosters can also directly affect skeletal muscle mitochondrial function in humans.
doi:10.2337/db14-0667
PMCID: PMC4375076  PMID: 25352640
7.  Liver fat accumulation in response to overfeeding with a high-fat diet: a comparison between South Asian and Caucasian men 
Background
South Asians were reported to have a higher liver fat content as compared to BMI-matched Caucasians. This study compared the increase in liver fat content in response to overfeeding with a high fat diet in South Asian and Caucasian men when matched for body fat percentage.
Methods
Ten South Asian men (BMI 18–29 kg/m2) and 10 Caucasian men (BMI 22–33 kg/m2), aged 20–40 y, matched for body fat percentage, were included. A weight maintenance diet was given for 3 days based on the individual energy requirement. Individual energy requirement of the subjects was calculated based on their body composition (measured by hydro densitometry and deuterium dilution) and activity counts (accelerometer). Liver fat content was measured before and after 4 days of overfeeding (50 % excess energy need) with a high fat diet (60 % energy from fat). Fat distribution was measured by anthropometry and an MRI scan of the abdomen while liver fat content using 1H-MRS.
Results
While having a similar body fat % (P = 0.58), South Asians had a lower BMI (P = 0.04) than Caucasians. Liver fat content at baseline did not differ between ethnicities (P = 0.48) and was associated with visceral fat area (P = 0.002, R2 = 0.56) but not with ethnicity (P = 0.13). Overfeeding with a high fat diet significantly increased liver fat (P = 0.01) but the increase did not differ between ethnicities (P = 0.47). There was no difference in the total abdominal fat area (P = 0.37), subcutaneous abdominal fat area (P = 0.18) and visceral fat area (VAT, P = 0.32). However as a percentage of the total abdominal fat area, VAT was higher in South Asians (P = 0.003).
Conclusion
Despite a relatively higher percentage of visceral fat area, liver fat increased similarly in South Asian and Caucasian men in response to overfeeding with a high fat diet.
Trial registration
The study was registered in the public trial registry www.ccmo.nl No. NL31217.068.10.
doi:10.1186/s12986-015-0015-4
PMCID: PMC4940726  PMID: 27408613
Liver fat content; Body fat distribution; Overfeeding; South Asian men
8.  Calorie restriction-like effects of 30 days of Resveratrol (resVida™) supplementation on energy metabolism and metabolic profile in obese humans 
Cell metabolism  2011;14(5):10.1016/j.cmet.2011.10.002.
Summary
Resveratrol is a natural compound that affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here we treated 11 healthy, obese men with placebo and 150 mg/day resveratrol in a randomized double-blind cross-over study for 30 days. Resveratrol significantly reduced sleeping- and resting metabolic rate. In muscle, resveratrol activated AMPK, increased SIRT1 and PGC-1α protein levels, increased citrate synthase activity without change in mitochondrial content, and improved muscle mitochondrial respiration on a fatty acid-derived substrate. Furthermore, resveratrol elevated intramyocellular lipid levels, and decreased intrahepatic lipid content, circulating glucose, triglycerides, alanine-aminotransferase, and inflammation markers. Systolic blood pressure dropped and HOMA index improved after resveratrol. In the postprandial state, adipose tissue lipolysis and plasma fatty acid and glycerol decreased. In conclusion, we demonstrate that 30 days of resveratrol supplementation induces metabolic changes in obese humans, mimicking the effects of calorie restriction.
doi:10.1016/j.cmet.2011.10.002
PMCID: PMC3880862  PMID: 22055504
9.  Cardiac lipid content is unresponsive to a physical activity training intervention in type 2 diabetic patients, despite improved ejection fraction 
Background
Increased cardiac lipid content has been associated with diabetic cardiomyopathy. We recently showed that cardiac lipid content is reduced after 12 weeks of physical activity training in healthy overweight subjects. The beneficial effect of exercise training on cardiovascular risk is well established and the decrease in cardiac lipid content with exercise training in healthy overweight subjects was accompanied by improved ejection fraction. It is yet unclear whether diabetic patients respond similarly to physical activity training and whether a lowered lipid content in the heart is necessary for improvements in cardiac function. Here, we investigated whether exercise training is able to lower cardiac lipid content and improve cardiac function in type 2 diabetic patients.
Methods
Eleven overweight-to-obese male patients with type 2 diabetes mellitus (age: 58.4 ± 0.9 years, BMI: 29.9 ± 0.01 kg/m2) followed a 12-week training program (combination endurance/strength training, three sessions/week). Before and after training, maximal whole body oxygen uptake (VO2max) and insulin sensitivity (by hyperinsulinemic, euglycemic clamp) was determined. Systolic function was determined under resting conditions by CINE-MRI and cardiac lipid content in the septum of the heart by Proton Magnetic Resonance Spectroscopy.
Results
VO2max increased (from 27.1 ± 1.5 to 30.1 ± 1.6 ml/min/kg, p = 0.001) and insulin sensitivity improved upon training (insulin stimulated glucose disposal (delta Rd of glucose) improved from 5.8 ± 1.9 to 10.3 ± 2.0 μmol/kg/min, p = 0.02. Left-ventricular ejection fraction improved after training (from 50.5 ± 2.0 to 55.6 ± 1.5%, p = 0.01) as well as cardiac index and cardiac output. Unexpectedly, cardiac lipid content in the septum remained unchanged (from 0.80 ± 0.22% to 0.95 ± 0.21%, p = 0.15).
Conclusions
Twelve weeks of progressive endurance/strength training was effective in improving VO2max, insulin sensitivity and cardiac function in patients with type 2 diabetes mellitus. However, cardiac lipid content remained unchanged. These data suggest that a decrease in cardiac lipid content in type 2 diabetic patients is not a prerequisite for improvements in cardiac function.
Trial registration
ISRCTN: ISRCTN43780395
doi:10.1186/1475-2840-10-47
PMCID: PMC3127755  PMID: 21615922
magnetic resonance spectroscopy; magnetic resonance imaging; ectopic fat; type 2 diabetes mellitus; exercise; cardiomyopathy; lipotoxicity
10.  Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity 
Diabetes  2009;59(3):572-579.
OBJECTIVE
Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes.
RESEARCH DESIGN AND METHODS
Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and Vo2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training.
RESULTS
Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (−64%; P < 0.01 in control subjects and −52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers.
CONCLUSIONS
Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near–significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.
doi:10.2337/db09-1322
PMCID: PMC2828651  PMID: 20028948
11.  Lower Intrinsic ADP-Stimulated Mitochondrial Respiration Underlies In Vivo Mitochondrial Dysfunction in Muscle of Male Type 2 Diabetic Patients 
Diabetes  2008;57(11):2943-2949.
OBJECTIVE—A lower in vivo mitochondrial function has been reported in both type 2 diabetic patients and first-degree relatives of type 2 diabetic patients. The nature of this reduction is unknown. Here, we tested the hypothesis that a lower intrinsic mitochondrial respiratory capacity may underlie lower in vivo mitochondrial function observed in diabetic patients.
RESEARCH DESIGN AND METHODS—Ten overweight diabetic patients, 12 first-degree relatives, and 16 control subjects, all men, matched for age and BMI, participated in this study. Insulin sensitivity was measured with a hyperinsulinemic-euglycemic clamp. Ex vivo intrinsic mitochondrial respiratory capacity was determined in permeabilized skinned muscle fibers using high-resolution respirometry and normalized for mitochondrial content. In vivo mitochondrial function was determined by measuring phosphocreatine recovery half-time after exercise using 31P-magnetic resonance spectroscopy.
RESULTS—Insulin-stimulated glucose disposal was lower in diabetic patients compared with control subjects (11.2 ± 2.8 vs. 28.9 ± 3.7 μmol · kg−1 fat-free mass · min−1, respectively; P = 0.003), with intermediate values for first-degree relatives (22.1 ± 3.4 μmol · kg−1 fat-free mass · min−1). In vivo mitochondrial function was 25% lower in diabetic patients (P = 0.034) and 23% lower in first-degree relatives, but the latter did not reach statistical significance (P = 0.08). Interestingly, ADP-stimulated basal respiration was 35% lower in diabetic patients (P = 0.031), and fluoro-carbonyl cyanide phenylhydrazone–driven maximal mitochondrial respiratory capacity was 31% lower in diabetic patients (P = 0.05) compared with control subjects with intermediate values for first-degree relatives.
CONCLUSIONS—A reduced basal ADP-stimulated and maximal mitochondrial respiratory capacity underlies the reduction in in vivo mitochondrial function, independent of mitochondrial content. A reduced capacity at both the level of the electron transport chain and phosphorylation system underlies this impaired mitochondrial capacity.
doi:10.2337/db08-0391
PMCID: PMC2570390  PMID: 18678616

Results 1-11 (11)