PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("schaar, Gert")
1.  Genetic Analysis of Intracapillary Glomerular Lipoprotein Deposits in Aging Mice 
PLoS ONE  2014;9(10):e111308.
Background
Renal aging is characterized by functional and structural changes like decreased glomerular filtration rate, and glomerular, tubular and interstitial damage. To gain insight in pathways involved in renal aging, we studied aged mouse strains and used genetic analysis to identify genes associated with aging phenotypes.
Methods
Upon morphological screening in kidneys from 20-month-old mice from 26 inbred strains we noted intracapillary PAS-positive deposits. The severity of these deposits was quantified by scoring of a total of 50 glomeruli per section (grade 0–4). Electron microscopy and immunohistochemical staining for apoE, apoB, apoA-IV and perilipin-2 was performed to further characterize the lesions. To identify loci associated with these PAS-positive intracapillary glomerular deposits, we performed haplotype association mapping.
Results
Six out of 26 mouse strains showed glomerular PAS-positive deposits. The severity of these deposits varied: NOD(0.97), NZW(0.41), NON(0.30), B10(0.21), C3 H(0.9) and C57BR(0.7). The intracapillary deposits were strongly positive for apoE and weakly positive for apoB and apoA-IV. Haplotype association mapping showed a strong association with a 30-Kb haplotype block on Chr 1 within the Esrrg gene. We investigated 1 Mb on each site of this region, which includes the genes Spata17, Gpatch2, Esrrg, Ush2a and Kctd3.
Conclusions
By analyzing 26 aged mouse strains we found that some strains developed an intracapillary PAS and apoE-positive lesion and identified a small haplotype block on Chr 1 within the Esrrg gene to be associated with these lipoprotein deposits. The region spanning this haplotype block contains the genes Spata17, Gpatch2, Esrrg, Ush2a and Kctd3, which are all highly expressed in the kidney. Esrrg might be involved in the evolvement of these glomerular deposits by influencing lipid metabolism and possibly immune reponses.
doi:10.1371/journal.pone.0111308
PMCID: PMC4213026  PMID: 25353171
2.  Reduced Incorporation of Fatty Acids Into Triacylglycerol in Myotubes From Obese Individuals With Type 2 Diabetes 
Diabetes  2014;63(5):1583-1593.
Altered skeletal muscle lipid metabolism is a hallmark feature of type 2 diabetes (T2D). We investigated muscle lipid turnover in T2D versus BMI-matched control subjects (controls) and examined whether putative in vivo differences would be preserved in the myotubes. Male obese T2D individuals (n = 6) and BMI-matched controls (n = 6) underwent a hyperinsulinemic-euglycemic clamp, VO2max test, dual-energy X-ray absorptiometry scan, underwater weighing, and muscle biopsy of the vastus lateralis. 14C-palmitate and 14C-oleate oxidation rates and incorporation into lipids were measured in muscle tissue as well as in primary myotubes. Palmitate oxidation (controls: 0.99 ± 0.17 nmol/mg protein; T2D: 0.53 ± 0.07 nmol/mg protein; P = 0.03) and incorporation of fatty acids (FAs) into triacylglycerol (TAG) (controls: 0.45 ± 0.13 nmol/mg protein; T2D: 0.11 ± 0.02 nmol/mg protein; P = 0.047) were significantly reduced in muscle homogenates of T2D. These reductions were not retained for palmitate oxidation in primary myotubes (P = 0.38); however, incorporation of FAs into TAG was lower in T2D (P = 0.03 for oleate and P = 0.11 for palmitate), with a strong correlation of TAG incorporation between muscle tissue and primary myotubes (r = 0.848, P = 0.008). The data indicate that the ability to incorporate FAs into TAG is an intrinsic feature of human muscle cells that is reduced in individuals with T2D.
doi:10.2337/db13-1123
PMCID: PMC4023412  PMID: 24487026
3.  Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy 
Nature medicine  2013;19(8):1039-1046.
The nuclear receptor Rev-erb-α modulates hepatic lipid and glucose metabolism, adipogenesis and the inflammatory response in macrophages. We show here that Rev-erb-α is highly expressed in oxidative skeletal muscle and plays a role in mitochondrial biogenesis and oxidative function, in gain- and loss-of function studies. Rev-erb-α-deficiency in skeletal muscle leads to reduced mitochondrial content and oxidative function, resulting in compromised exercise capacity. This phenotype was recapitulated in isolated fibers and in muscle cells upon Rev-erbα knock-down, while Rev-erb-α over-expression increased the number of mitochondria with improved respiratory capacity. Rev-erb-α-deficiency resulted in deactivation of the Stk11–Ampk–Sirt1–Ppargc1-α signaling pathway, whereas autophagy was up-regulated, resulting in both impaired mitochondrial biogenesis and increased clearance. Muscle over-expression or pharmacological activation of Rev-erb-α increased respiration and exercise capacity. This study identifies Rev-erb-α as a pharmacological target which improves muscle oxidative function by modulating gene networks controlling mitochondrial number and function.
doi:10.1038/nm.3213
PMCID: PMC3737409  PMID: 23852339
Rev-erb-α; skeletal muscle; oxidative capacity; mitochondrial biogenesis; autophagy
4.  Perilipin 2 Improves Insulin Sensitivity in Skeletal Muscle Despite Elevated Intramuscular Lipid Levels 
Diabetes  2012;61(11):2679-2690.
Type 2 diabetes is characterized by excessive lipid storage in skeletal muscle. Excessive intramyocellular lipid (IMCL) storage exceeds intracellular needs and induces lipotoxic events, ultimately contributing to the development of insulin resistance. Lipid droplet (LD)–coating proteins may control proper lipid storage in skeletal muscle. Perilipin 2 (PLIN2/adipose differentiation–related protein [ADRP]) is one of the most abundantly expressed LD-coating proteins in skeletal muscle. Here we examined the role of PLIN2 in myocellular lipid handling and insulin sensitivity by investigating the effects of in vitro PLIN2 knockdown and in vitro and in vivo overexpression. PLIN2 knockdown decreased LD formation and triacylglycerol (TAG) storage, marginally increased fatty-acid (FA) oxidation, and increased incorporation of palmitate into diacylglycerols and phospholipids. PLIN2 overexpression in vitro increased intramyocellular TAG storage paralleled with improved insulin sensitivity. In vivo muscle-specific PLIN2 overexpression resulted in increased LD accumulation and blunted the high-fat diet–induced increase in protein content of the subunits of the oxidative phosphorylation (OXPHOS) chain. Diacylglycerol levels were unchanged, whereas ceramide levels were increased. Despite the increased IMCL accumulation, PLIN2 overexpression improved skeletal muscle insulin sensitivity. We conclude that PLIN2 is essential for lipid storage in skeletal muscle by enhancing the partitioning of excess FAs toward TAG storage in LDs, thereby blunting lipotoxicity-associated insulin resistance.
doi:10.2337/db11-1402
PMCID: PMC3478528  PMID: 22807032
5.  High Oxidative Capacity Due to Chronic Exercise Training Attenuates Lipid-Induced Insulin Resistance 
Diabetes  2012;61(10):2472-2478.
Fat accumulation in skeletal muscle combined with low mitochondrial oxidative capacity is associated with insulin resistance (IR). Endurance-trained athletes, characterized by a high oxidative capacity, have elevated intramyocellular lipids, yet are highly insulin sensitive. We tested the hypothesis that a high oxidative capacity could attenuate lipid-induced IR. Nine endurance-trained (age = 23.4 ± 0.9 years; BMI = 21.2 ± 0.6 kg/m2) and 10 untrained subjects (age = 21.9 ± 0.9 years; BMI = 22.8 ± 0.6 kg/m2) were included and underwent a clamp with either infusion of glycerol or intralipid. Muscle biopsies were taken to perform high-resolution respirometry and protein phosphorylation/expression. Trained subjects had ∼32% higher mitochondrial capacity and ∼22% higher insulin sensitivity (P < 0.05 for both). Lipid infusion reduced insulin-stimulated glucose uptake by 63% in untrained subjects (P < 0.05), whereas this effect was blunted in trained subjects (29%, P < 0.05). In untrained subjects, lipid infusion reduced oxidative and nonoxidative glucose disposal (NOGD), whereas trained subjects were completely protected against lipid-induced reduction in NOGD, supported by dephosphorylation of glycogen synthase. We conclude that chronic exercise training attenuates lipid-induced IR and specifically attenuates the lipid-induced reduction in NOGD. Signaling data support the notion that high glucose uptake in trained subjects is maintained by shuttling glucose toward storage as glycogen.
doi:10.2337/db11-1832
PMCID: PMC3447923  PMID: 22787138
6.  Beige Adipocytes are a Distinct Type of Thermogenic Fat Cell in Mouse and Human 
Cell  2012;150(2):366-376.
Summary
Brown fat defends against hypothermia and obesity through thermogenesis mediated by mitochondrial UCP1. Recent data suggest that there are two distinct types of brown fat: classical brown fat derived from a myf-5 cellular lineage and UCP1-positive cells that emerge in white fat from a non-myf-5 lineage. Here we report the cloning of “beige” cells from murine white fat depots. Beige cells resemble white fat cells in having extremely low basal expression of UCP1, but like classical brown fat, they respond to cyclic AMP stimulation with high UCP1 expression and respiration rates. Beige cells have a gene expression pattern distinct from either white or brown fat and are preferentially sensitive to the polypeptide hormone irisin. Finally, we show that deposits of brown fat previously observed in adult humans are composed of beige adipose cells. These data illustrate a new cell type with therapeutic potential in mouse and human.
doi:10.1016/j.cell.2012.05.016
PMCID: PMC3402601  PMID: 22796012
7.  Relationship of C5L2 Receptor to Skeletal Muscle Substrate Utilization 
PLoS ONE  2013;8(2):e57494.
Objective
To investigate the role of Acylation Stimulating Protein (ASP) receptor C5L2 in skeletal muscle fatty acid accumulation and metabolism as well as insulin sensitivity in both mice and human models of diet-induced insulin resistance.
Design and Methods
Male wildtype (WT) and C5L2 knockout (KO) mice were fed a low (LFD) or a high (HFD) fat diet for 10 weeks. Intramyocellular lipid (IMCL) accumulation (by oil red O staining) and beta-oxidation HADH enzyme activity were determined in skeletal muscle. Mitochondria were isolated from hindleg muscles for high-resolution respirometry. Muscle C5L2 protein content was also determined in obese type 2 diabetics and age- and BMI matched men.
Results
IMCL levels were increased by six-fold in C5L2KO-HFD compared to WT-HFD mice (p<0.05) and plasma insulin levels were markedly increased in C5L2KO-HFD mice (twofold, p<0.05). Muscle HADH activity was elevated in C5L2KO-LFD mice (+75%, p<0.001 vs. WT-LFD) and C5L2KO-HFD displayed increased mitochondrial fatty acid oxidative capacity compared to WT-HFD mice (+23%, p<0.05). In human subjects, C5L2 protein content was reduced (−48%, p<0.01) in type 2 diabetic patients when compared to obese controls. Further, exercise training increased C5L2 (+45%, p = 0.0019) and ASP (+80%, p<0.001) in obese insulin-resistant men.
Conclusion
The results suggest that insulin sensitivity may be permissive for coupling of C5L2 levels to lipid storage and utilization.
doi:10.1371/journal.pone.0057494
PMCID: PMC3583831  PMID: 23460866
8.  The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria 
Histochemistry and Cell Biology  2011;137(2):205-216.
Perilipin 5 (PLIN5/OXPAT) is a lipid droplet (LD) coat protein mainly present in tissues with a high fat-oxidative capacity, suggesting a role for PLIN5 in facilitating fatty acid oxidation. Here, we investigated the role of PLIN5 in fat oxidation in skeletal muscle. In human skeletal muscle, we observed that PLIN5 (but not PLIN2) protein content correlated tightly with OXPHOS content and in rat muscle PLIN5 content correlated with mitochondrial respiration rates on a lipid-derived substrate. This prompted us to examine PLIN5 protein expression in skeletal muscle mitochondria by means of immunogold electron microscopy and Western blots in isolated mitochondria. These data show that PLIN5, in contrast to PLIN2, not only localizes to LD but also to mitochondria, possibly facilitating fatty acid oxidation. Unilateral overexpression of PLIN5 in rat anterior tibialis muscle augmented myocellular fat storage without increasing mitochondrial density as indicated by the lack of change in protein content of five components of the OXPHOS system. Mitochondria isolated from PLIN5 overexpressing muscles did not possess increased fatty acid respiration. Interestingly though, 14C-palmitate oxidation assays in muscle homogenates from PLIN5 overexpressing muscles revealed a 44.8% (P = 0.05) increase in complete fatty acid oxidation. Thus, in mitochondrial isolations devoid of LD, PLIN5 does not augment fat oxidation, while in homogenates containing PLIN5-coated LD, fat oxidation is higher upon PLIN5 overexpression. The presence of PLIN5 in mitochondria helps to understand why PLIN5, in contrast to PLIN2, is of specific importance in fat oxidative tissues. Our data suggests involvement of PLIN5 in directing fatty acids from the LD to mitochondrial fatty acid oxidation.
doi:10.1007/s00418-011-0888-x
PMCID: PMC3262136  PMID: 22127648
PLIN5; OXPAT; Perilipin; Lipid droplet; Fatty acid oxidation; Mitochondria
9.  High Fat Diet-Induced Changes in Mouse Muscle Mitochondrial Phospholipids Do Not Impair Mitochondrial Respiration Despite Insulin Resistance 
PLoS ONE  2011;6(11):e27274.
Background
Type 2 diabetes mellitus and muscle insulin resistance have been associated with reduced capacity of skeletal muscle mitochondria, possibly as a result of increased intake of dietary fat. Here, we examined the hypothesis that a prolonged high-fat diet consumption (HFD) increases the saturation of muscle mitochondrial membrane phospholipids causing impaired mitochondrial oxidative capacity and possibly insulin resistance.
Methodology
C57BL/6J mice were fed an 8-week or 20-week low fat diet (10 kcal%; LFD) or HFD (45 kcal%). Skeletal muscle mitochondria were isolated and fatty acid (FA) composition of skeletal muscle mitochondrial phospholipids was analyzed by thin-layer chromatography followed by GC. High-resolution respirometry was used to assess oxidation of pyruvate and fatty acids by mitochondria. Insulin sensitivity was estimated by HOMA-IR.
Principal Findings
At 8 weeks, mono-unsaturated FA (16∶1n7, 18∶1n7 and 18∶1n9) were decreased (−4.0%, p<0.001), whereas saturated FA (16∶0) were increased (+3.2%, p<0.001) in phospholipids of HFD vs. LFD mitochondria. Interestingly, 20 weeks of HFD descreased mono-unsaturated FA while n-6 poly-unsaturated FA (18∶2n6, 20∶4n6, 22∶5n6) showed a pronounced increase (+4.0%, p<0.001). Despite increased saturation of muscle mitochondrial phospholipids after the 8-week HFD, mitochondrial oxidation of both pyruvate and fatty acids were similar between LFD and HFD mice. After 20 weeks of HFD, the increase in n-6 poly-unsaturated FA was accompanied by enhanced maximal capacity of the electron transport chain (+49%, p = 0.002) and a tendency for increased ADP-stimulated respiration, but only when fuelled by a lipid-derived substrate. Insulin sensitivity in HFD mice was reduced at both 8 and 20 weeks.
Conclusions/Interpretation
Our findings do not support the concept that prolonged HF feeding leads to increased saturation of skeletal muscle mitochondrial phospholipids resulting in a decrease in mitochondrial fat oxidative capacity and (muscle) insulin resistance.
doi:10.1371/journal.pone.0027274
PMCID: PMC3225362  PMID: 22140436
10.  Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity 
Diabetes  2009;59(3):572-579.
OBJECTIVE
Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes.
RESEARCH DESIGN AND METHODS
Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and Vo2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training.
RESULTS
Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (−64%; P < 0.01 in control subjects and −52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers.
CONCLUSIONS
Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near–significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.
doi:10.2337/db09-1322
PMCID: PMC2828651  PMID: 20028948
11.  Paradoxical Increase in TAG and DAG Content Parallel the Insulin Sensitizing Effect of Unilateral DGAT1 Overexpression in Rat Skeletal Muscle 
PLoS ONE  2011;6(1):e14503.
Background
The involvement of muscle triacylglycerol (TAG) storage in the onset of insulin resistance is questioned and the attention has shifted towards inhibition of insulin signalling by the lipid intermediate diacylglycerol (DAG). The enzyme 1,2-acylCoA:diacylglyceroltransferase-1 (DGAT1) esterifies a fatty acyl-CoA on DAG to form TAG. Therefore, the aim of the present study was to investigate if unilateral overexpression of DGAT1 in adult rat Tibialis anterior (TA) muscle will increase conversion of the lipid intermediate DAG into TAG, thereby improving muscle insulin sensitivity.
Methodology/Principal Findings
The DGAT1 gene construct was injected in the left TA muscle of male rats on chow or high-fat (45% kcal) diet for three weeks, followed by application of one 800 V/cm and four 80 V/cm pulses, using the contralateral leg as sham-electroporated control. Seven days after electroporation, muscle specific insulin sensitivity was assessed with a hyperinsulinemic euglycemic clamp using 2-deoxy-[3H]glucose. Here, we provide evidence that unilateral overexpression of DGAT1 in TA muscle of male rats is associated with an increased rather than decreased DAG content. Strikingly, this increase in DAG content was accompanied by improved muscle insulin sensitivity. Interestingly, markers of muscle lipolysis and mitochondrial function were also increased in DGAT1 overexpressing muscle.
Conclusions/Significance
We conclude that unilateral DGAT1 overexpression can rescue insulin sensitivity, possibly by increasing DAG and TAG turnover in skeletal muscle. In case of a proper balance between the supply and oxidation of fatty acids in skeletal muscle, the lipid intermediate DAG may not exert harmful effects on insulin signalling.
doi:10.1371/journal.pone.0014503
PMCID: PMC3021516  PMID: 21264296
12.  Partial hexokinase II knockout results in acute ischemia–reperfusion damage in skeletal muscle of male, but not female, mice 
Pflugers Archiv   2010;459(5):705-712.
Cellular studies have demonstrated a protective role of mitochondrial hexokinase against oxidative insults. It is unknown whether HK protective effects translate to the in vivo condition. In the present study, we hypothesize that HK affects acute ischemia–reperfusion injury in skeletal muscle of the intact animal. Male and female heterozygote knockout HKII (HK+/-), heterozygote overexpressed HKII (HKtg), and their wild-type (WT) C57Bl/6 littermates mice were examined. In anesthetized animals, the left gastrocnemius medialis (GM) muscle was connected to a force transducer and continuously stimulated (1-Hz twitches) during 60 min ischemia and 90 min reperfusion. Cell survival (%LDH) was defined by the amount of cytosolic lactate dehydrogenase (LDH) activity still present in the reperfused GM relative to the contralateral (non-ischemic) GM. Mitochondrial HK activity was 72.6 ± 7.5, 15.7 ± 1.7, and 8.8 ± 0.9 mU/mg protein in male mice, and 72.7 ± 3.7, 11.2 ± 1.4, and 5.9 ± 1.1 mU/mg in female mice for HKtg, WT, and HK+/-, respectively. Tetanic force recovery amounted to 33 ± 7% for male and 17 ± 4% for female mice and was similar for HKtg, WT, and HK+/-. However, cell survival was decreased (p = 0.014) in male HK+/- (82 ± 4%LDH) as compared with WT (98 ± 5%LDH) and HKtg (97 ± 4%LDH). No effects of HKII on cell survival was observed in female mice (92 ± 2% LDH). In conclusion, in this mild model of acute in vivo ischemia–reperfusion injury, a partial knockout of HKII was associated with increased cell death in male mice. The data suggest for the first time that HKII mediates skeletal muscle ischemia–reperfusion injury in the intact male animal.
doi:10.1007/s00424-010-0787-3
PMCID: PMC2842566  PMID: 20182739
Mitochondria; Cell death; Ischemia; Muscle; Muscle ischemia
13.  Arachidonic Acid but not Eicosapentaenoic Acid (EPA) and Oleic Acid Activates NF-κB and Elevates ICAM-1 Expression in Caco-2 Cells  
Lipids  2007;42(8):687-698.
In patients with inflammatory bowel disease (IBD), intestinal activation of the transcription factor NF-κB as well as intercellular adhesion molecule (ICAM)-1 expression, which is involved in recruiting leukocytes to the side of inflammation is increased. Moreover, colonic arachidonic acid (ARA) proportions are increased and oleic acid (OA) proportions are decreased. Fish oils are protective in IBD patients however, a side-by-side comparison between effects of fish oils, ARA and OA has not been made. We therefore, compared effects of eicosapentaenoic acid (EPA) versus ARA and OA on ICAM-1 expression in Caco-2 enterocytes. To validate our model we showed that dexamethasone, sulfasalazine and PPARα (GW7647) or PPARγ (troglitazone) agonists significantly lowered ICAM-1 expression. ICAM-1 expression of non-stimulated and cytokine stimulated Caco-2 cells cultured for 22 days with ARA was significant higher as compared to EPA and OA. Furthermore, ARA increased NF-κB activation in a reporter cell-line as compared to EPA. Antibody array analysis of multiple inflammatory proteins particularly showed an increased monocyte chemotactic protein (MCP)-1 and angiogenin production and a decreased interleukin (IL)-6 and IL-10 production by ARA as compared to EPA. Our results showed that ARA but not EPA and OA activates NF-κB and elevates ICAM-1 expression in Caco-2 enterocytes. It suggests that replacement of ARA by EPA or OA in the colon mucosa might have beneficial effects for IBD patients. Finally, we suggest that the pro-inflammatory effects of ARA versus EPA and OA are not related to PPARγ activation and/or eicosanoid formation.
doi:10.1007/s11745-007-3071-3
PMCID: PMC2039812  PMID: 17610002
Intestinal inflammation; Caco-2 cells; Prostaglandins; Peroxisome proliferator-activated receptor (PPAR)
14.  Increased uncoupling protein 3 content does not affect mitochondrial function in human skeletal muscle in vivo 
Journal of Clinical Investigation  2003;111(4):479-486.
Phosphocreatine (PCr) resynthesis rate following intense anoxic contraction can be used as a sensitive index of in vivo mitochondrial function. We examined the effect of a diet-induced increase in uncoupling protein 3 (UCP3) expression on postexercise PCr resynthesis in skeletal muscle. Nine healthy male volunteers undertook 20 one-legged maximal voluntary contractions with limb blood flow occluded to deplete muscle PCr stores. Exercise was performed following 7 days consumption of low-fat (LF) or high-fat (HF) diets. Immediately following exercise, blood flow was reinstated, and muscle was sampled after 20, 60, and 120 seconds of recovery. Mitochondrial coupling was assessed by determining the rate of PCr resynthesis during recovery. The HF diet increased UCP3 protein content by approximately 44% compared with the LF diet. However, this HF diet–induced increase in UCP3 expression was not associated with any changes in the rate of muscle PCr resynthesis during conditions of maximal flux through oxidative phosphorylation. Muscle acetylcarnitine, free-creatine, and lactate concentrations during recovery were unaffected by the HF diet. Taken together, our findings demonstrate that increasing muscle UCP3 expression does not diminish the rate of PCr resynthesis, allowing us to conclude that the primary role of UCP3 in humans is not uncoupling.
doi:10.1172/JCI200316653
PMCID: PMC152374  PMID: 12588886

Results 1-14 (14)