Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Hormone-Sensitive Lipase Serine Phosphorylation and Glycerol Exchange Across Skeletal Muscle in Lean and Obese Subjects  
Diabetes  2008;57(7):1834-1841.
OBJECTIVE—Increased intramuscular triacylglycerol (IMTG) storage is a characteristic of the obese insulin-resistant state. We aimed to investigate whether a blunted fasting or β-adrenergically mediated lipolysis contributes to this increased IMTG storage in obesity.
RESEARCH DESIGN AND METHODS—Forearm skeletal muscle lipolysis was investigated in 13 lean and 10 obese men using [2H5]glycerol combined with the measurement of arteriovenous differences before and during β-adrenergic stimulation using the nonselective β-agonist isoprenaline (ISO). Muscle biopsies were taken from the vastus lateralis muscle before and during ISO to investigate hormone-sensitive lipase (HSL) protein expression and serine phosphorylation.
RESULTS—Baseline total glycerol release across the forearm was significantly blunted in obese compared with lean subjects (P = 0.045). This was accompanied by lower HSL protein expression (P = 0.004), HSL phosphorylation on PKA sites Ser563 (P = 0.041) and Ser659 (P = 0.09), and HSL phosphorylation on the AMPK site Ser565 (P = 0.007), suggesting a blunted skeletal muscle lipolysis in obesity. Total forearm glycerol uptake during baseline did not differ significantly between groups, whereas higher net fatty acid uptake across the forearm was observed in the obese (P = 0.064). ISO induced an increase in total glycerol release from skeletal muscle, which was not significantly different between groups. Interestingly, this was accompanied by an increase in HSL Ser659 phosphorylation in obese subjects during ISO compared with baseline (P = 0.008).
CONCLUSIONS—Obesity is accompanied by impaired fasting glycerol release, lower HSL protein expression, and serine phosphorylation. It remains to be determined whether this is a primary factor or an adaptation to the obese insulin-resistant state.
PMCID: PMC2453623  PMID: 18398140
2.  Insulin-mediated suppression of lipolysis in adipose tissue and skeletal muscle of obese type 2 diabetic men and men with normal glucose tolerance 
Diabetologia  2013;56(10):2255-2265.
Impaired regulation of lipolysis and accumulation of lipid intermediates may contribute to obesity-related insulin resistance and type 2 diabetes mellitus. We investigated insulin-mediated suppression of lipolysis in abdominal subcutaneous adipose tissue (AT) and skeletal muscle (SM) of obese men with normal glucose tolerance (NGT) and obese type 2 diabetic men.
Eleven NGT men and nine long-term diagnosed type 2 diabetic men (7 ± 1 years), matched for age (58 ± 2 vs 62 ± 2 years), BMI (31.4 ± 0.6 vs 30.5 ± 0.6 kg/m2) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\cdot }{V}{\mathrm{O}}_{2 \max } $$\end{document} (28.9 ± 1.5 vs 29.5 ± 2.4 ml kg−1 min−1) participated in this study. Interstitial glycerol concentrations in AT and SM were assessed using microdialysis during a 1 h basal period and a 6 h stepwise hyperinsulinaemic–euglycaemic clamp (8, 20 and 40 mU m−2 min−1). AT and SM biopsies were collected to investigate underlying mechanisms.
Hyperinsulinaemia suppressed interstitial SM glycerol concentrations less in men with type 2 diabetes (−7 ± 6%, −13 ± 9% and −27 ± 9%) compared with men with NGT (−21 ± 7%, −38 ± 8% and −53 ± 8%) (p = 0.014). This was accompanied by increased circulating fatty acid and glycerol concentrations, a lower glucose infusion rate (21.8 ± 3.1 vs 30.5 ± 2.0 μmol kg body weight−1 min−1; p < 0.05), higher hormone-sensitive lipase (HSL) serine 660 phosphorylation, increased saturated diacylglycerol (DAG) lipid species in the muscle membrane and increased protein kinase C (PKC) activation in type 2 diabetic men vs men with NGT. No significant differences in insulin-mediated reduction in AT interstitial glycerol were observed between groups.
Our results suggest that a blunted insulin-mediated suppression of SM lipolysis may promote the accumulation of membrane saturated DAG, aggravating insulin resistance, at least partly mediated by PKC. This may represent an important mechanism involved in the progression of insulin resistance towards type 2 diabetes.
Trial registration: NCT01680133
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-013-2995-9) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
PMCID: PMC3764323  PMID: 23907381
Adipose tissue; Diabetes; Insulin resistance; Lipolysis; Skeletal muscle
3.  Valsartan Improves Adipose Tissue Function in Humans with Impaired Glucose Metabolism: A Randomized Placebo-Controlled Double-Blind Trial 
PLoS ONE  2012;7(6):e39930.
Blockade of the renin-angiotensin system (RAS) reduces the incidence of type 2 diabetes mellitus. In rodents, it has been demonstrated that RAS blockade improved adipose tissue (AT) function and glucose homeostasis. However, the effects of long-term RAS blockade on AT function have not been investigated in humans. Therefore, we examined whether 26-wks treatment with the angiotensin II type 1 receptor blocker valsartan affects AT function in humans with impaired glucose metabolism (IGM).
Methodology/Principal Findings
We performed a randomized, double-blind, placebo-controlled parallel-group study, in which 38 subjects with IGM were treated with valsartan (VAL, 320 mg/d) or placebo (PLB) for 26 weeks. Before and after treatment, an abdominal subcutaneous AT biopsy was collected for measurement of adipocyte size and AT gene/protein expression of angiogenesis/capillarization, adipogenesis, lipolytic and inflammatory cell markers. Furthermore, we evaluated fasting and postprandial AT blood flow (ATBF) (133Xe wash-out), systemic inflammation and insulin sensitivity (hyperinsulinemic-euglycemic clamp). VAL treatment markedly reduced adipocyte size (P<0.001), with a shift toward a higher proportion of small adipocytes. In addition, fasting (P = 0.043) and postprandial ATBF (P = 0.049) were increased, whereas gene expression of angiogenesis/capillarization, adipogenesis and macrophage infiltration markers in AT was significantly decreased after VAL compared with PLB treatment. Interestingly, the change in adipocyte size was associated with alterations in insulin sensitivity and reduced AT gene expression of macrophage infiltration markers. VAL did not alter plasma monocyte-chemoattractant protein (MCP)-1, TNF-α, adiponectin and leptin concentrations.
26-wks VAL treatment markedly reduced abdominal subcutaneous adipocyte size and AT macrophage infiltration markers, and increased ATBF in IGM subjects. The VAL-induced decrease in adipocyte size was associated with reduced expression of macrophage infiltration markers in AT. Our findings suggest that interventions targeting the RAS may improve AT function, thereby contributing to a reduced risk of developing cardiovascular disease and type 2 diabetes.
Trial Registration NTR721 (ISRCTN Registry: ISRCTN42786336)
PMCID: PMC3386933  PMID: 22768174
4.  Adipose triglyceride lipase (ATGL) expression in human skeletal muscle is type I (oxidative) fiber specific 
Histochemistry and Cell Biology  2008;129(4):535-538.
Accumulation of triacylglycerol (TAG) and lipid intermediates in skeletal muscle plays an important role in the etiology of insulin resistance and type 2 diabetes mellitus. Disturbances in skeletal muscle lipid turnover and lipolysis may contribute significantly to this. So far, knowledge on the regulation of muscle lipolysis is limited. Recently the identification of a new lipase was reported: adipose triglyceride lipase (ATGL). ATGL deficient animals show significant lipid accumulation in skeletal muscle, which may indicate that ATGL plays a pivotal role in skeletal muscle lipolysis. However, until now, it is still unknown whether ATGL protein is expressed in human skeletal muscle. Therefore, the aim of the present study was to investigate whether ATGL is expressed at the protein level in human skeletal muscle, and to examine whether its expression is fiber-type specific. To accomplish this, we established an imunohistochemical and immunofluorescent staining procedure to study ATGL protein expression in relation to fiber type in human vastus lateralis muscle of eight male subjects (BMI range: 21.0–34.5 kg/m2 and age: 38–59 years). In the present paper we report for the first time that ATGL protein is indeed expressed in human skeletal muscle. Moreover, ATGL is exclusively expressed in type I (oxidative) muscle fibers, suggesting a pivotal role for ATGL in intramuscular fatty acid handling, lipid storage and breakdown.
PMCID: PMC2668625  PMID: 18224330
ATGL;  Skeletal muscle; Fiber type; Obesity; Protein

Results 1-4 (4)