Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene 
Nature genetics  2013;45(10):10.1038/ng.2745.
Allelic heterogeneity in disease-causing genes presents a substantial challenge to the translation of genomic variation to clinical practice. Few of the almost 2,000 variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have empirical evidence that they cause cystic fibrosis. To address this gap, we collected both genotype and phenotype data for 39,696 cystic fibrosis patients in registries and clinics in North America and Europe. Among these patients, 159 CFTR variants had an allele frequency of ≥0.01%. These variants were evaluated for both clinical severity and functional consequence with 127 (80%) meeting both clinical and functional criteria consistent with disease. Assessment of disease penetrance in 2,188 fathers of cystic fibrosis patients enabled assignment of 12 of the remaining 32 variants as neutral while the other 20 variants remained indeterminate. This study illustrates that sourcing data directly from well-phenotyped subjects can address the gap in our ability to interpret clinically-relevant genomic variation.
PMCID: PMC3874936  PMID: 23974870
A subset (~3–5%) of patients with cystic fibrosis (CF) develops severe liver disease (CFLD) with portal hypertension.
To assess whether any of 9 polymorphisms in 5 candidate genes (SERPINA1, ACE, GSTP1, MBL2, and TGFB1) are associated with severe liver disease in CF patients.
Design, Setting, and Participants
A 2-stage design was used in this case–control study. CFLD subjects were enrolled from 63 U.S., 32 Canadian, and 18 CF centers outside of North America, with the University of North Carolina at Chapel Hill (UNC) as the coordinating site. In the initial study, we studied 124 CFLD patients (enrolled 1/1999–12/2004) and 843 CF controls (patients without CFLD) by genotyping 9 polymorphisms in 5 genes previously implicated as modifiers of liver disease in CF. In the second stage, the SERPINA1 Z allele and TGFB1 codon 10 genotype were tested in an additional 136 CFLD patients (enrolled 1/2005–2/2007) and 1088 CF controls.
Main Outcome Measures
We compared differences in distribution of genotypes in CF patients with severe liver disease versus CF patients without CFLD.
The initial study showed CFLD to be associated with the SERPINA1 (also known as α1-antiprotease and α1-antitrypsin) Z allele (P value=3.3×10−6; odds ratio (OR) 4.72, 95% confidence interval (CI) 2.31–9.61), and with transforming growth factor β-1 (TGFB1) codon 10 CC genotype (P=2.8×10−3; OR 1.53, CI 1.16–2.03). In the replication study, CFLD was associated with the SERPINA1 Z allele (P=1.4×10−3; OR 3.42, CI 1.54–7.59), but not with TGFB1 codon 10. A combined analysis of the initial and replication studies by logistic regression showed CFLD to be associated with SERPINA1 Z allele (P=1.5×10−8; OR 5.04, CI 2.88–8.83).
The SERPINA1 Z allele is a risk factor for liver disease in CF. Patients who carry the Z allele are at greater odds (OR ~5) to develop severe liver disease with portal hypertension.
PMCID: PMC3711243  PMID: 19738092
3.  A Novel Lung Disease Phenotype Adjusted for Mortality Attrition for Cystic Fibrosis Genetic Modifier Studies 
Pediatric pulmonology  2011;46(9):857-869.
Genetic studies of lung disease in Cystic Fibrosis are hampered by the lack of a severity measure that accounts for chronic disease progression and mortality attrition. Further, combining analyses across studies requires common phenotypes that are robust to study design and patient ascertainment.
Using data from the North American Cystic Fibrosis Modifier Consortium (Canadian Consortium for CF Genetic Studies, Johns Hopkins University CF Twin and Sibling Study, and University of North Carolina/Case Western Reserve University Gene Modifier Study), the authors calculated age-specific CF percentile values of FEV1 which were adjusted for CF age-specific mortality data.
The phenotype was computed for 2061 patients representing the Canadian CF population, 1137 extreme phenotype patients in the UNC/Case Western study, and 1323 patients from multiple CF sib families in the CF Twin and Sibling Study. Despite differences in ascertainment and median age, our phenotype score was distributed in all three samples in a manner consistent with ascertainment differences, reflecting the lung disease severity of each individual in the underlying population. The new phenotype score was highly correlated with the previously recommended complex phenotype, but the new phenotype is more robust for shorter follow-up and for extreme ages.
A disease progression and mortality adjusted phenotype reduces the need for stratification or additional covariates, increasing statistical power and avoiding possible distortions. This approach will facilitate large scale genetic and environmental epidemiological studies which will provide targeted therapeutic pathways for the clinical benefit of patients with CF.
PMCID: PMC3130075  PMID: 21462361
Forced Expiratory Volume; Age Effects; Severity of Illness Index
4.  Multiple apical plasma membrane constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis 
Nature Genetics  2012;44(5):562-569.
Variants associated with meconium ileus in cystic fibrosis (CF) were identified in 3,763 patients by GWAS. Five SNPs at two loci near SLC6A14 (min P=1.28×10−12 at rs3788766), chr Xq23-24 and SLC26A9 (min P=9.88×10−9 at rs4077468), chr 1q32.1 accounted for ~5% of the phenotypic variability, and were replicated in an independent patient collection (n=2,372; P=0.001 and 0.0001 respectively). By incorporating that disease-causing mutations in CFTR alter electrolyte and fluid flux across epithelia into an hypothesis-driven genome-wide analysis (GWAS-HD), we identified the same SLC6A14 and SLC26A9 associated SNPs, while establishing evidence for the involvement of SNPs in a third solute carrier gene, SLC9A3. In addition, GWAS-HD provided evidence of association between meconium ileus and multiple constituents of the apical plasma membrane where CFTR resides (P=0.0002, testing 155 apical genes jointly and replicated, P=0.022). These findings suggest that modulating activities of apical membrane constituents could complement current therapeutic paradigms for cystic fibrosis.
PMCID: PMC3371103  PMID: 22466613
5.  Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2 
Nature Genetics  2011;43(6):539-546.
A combined genome-wide association and linkage study was used to identify loci causing variation in CF lung disease severity. A significant association (P=3. 34 × 10-8) near EHF and APIP (chr11p13) was identified in F508del homozygotes (n=1,978). The association replicated in F508del homozygotes (P=0.006) from a separate family-based study (n=557), with P=1.49 × 10-9 for the three-study joint meta-analysis. Linkage analysis of 486 sibling pairs from the family-based study identified a significant QTL on chromosome 20q13.2 (LOD=5.03). Our findings provide insight into the causes of variation in lung disease severity in CF and suggest new therapeutic targets for this life-limiting disorder.
PMCID: PMC3296486  PMID: 21602797
6.  Normalization of Obesity-Associated Insulin Resistance through Immunotherapy: CD4+ T Cells Control Glucose Homeostasis 
Nature medicine  2009;15(8):921-929.
Progressive obesity and its associated metabolic syndromes represent a globally growing challenge, yet mechanistic understanding and current therapeutics are unsatisfactory. We discovered that CD4+ T-lymphocytes, resident in visceral adipose tissue (VAT), control insulin-resistance in diet-induced obese (DIO) mice and likely humans. DIO VAT-associated T cells display biased TCR-Vα repertoires suggesting antigen-specific expansion. CD4+ T-lymphocyte control of glucose homeostasis is compromised in DIO when VAT accumulates pathogenic IFNγ-secreting Th1 cells, overwhelming static numbers of Th2 (CD4+GATA-3+) and regulatory Foxp3+ T cells. CD4+ T cell transfer into DIO, lymphocyte-free RAGnull mice reversed weight gain and insulin resistance predominately through Th2 cells. Brief systemic treatment with αCD3 antibody or its F(ab′)2 fragment, restores the Th1/Foxp3+ balance and reverses insulin resistance for months, despite continuing high-fat diet. The progression of obesity-associated metabolic abnormalities is physiologically under CD4+ T cell control, with expansion of adipose tissue-resident T cells that can be manipulated by immunotherapy.
PMCID: PMC3063199  PMID: 19633657 CAMSID: cams1704
7.  Modifier gene study of meconium ileus in cystic fibrosis: statistical considerations and gene mapping results 
Human genetics  2009;126(6):763-778.
Cystic fibrosis (CF) is a monogenic disease due to mutations in the CFTR gene. Yet, variability in CF disease presentation is presumed to be affected by modifier genes, such as those recently demonstrated for the pulmonary aspect. Here, we conduct a modifier gene study for meconium ileus (MI), an intestinal obstruction that occurs in 16–20% of CF newborns, providing linkage and association results from large family and case–control samples. Linkage analysis of modifier traits is different than linkage analysis of primary traits on which a sample was ascertained. Here, we articulate a source of confounding unique to modifier gene studies and provide an example of how one might overcome the confounding in the context of linkage studies. Our linkage analysis provided evidence of a MI locus on chromosome 12p13.3, which was segregating in up to 80% of MI families with at least one affected offspring (HLOD = 2.9). Fine mapping of the 12p13.3 region in a large case–control sample of pancreatic insufficient Canadian CF patients with and without MI pointed to the involvement of ADIPOR2 in MI (p = 0.002). This marker was substantially out of Hardy–Weinberg equilibrium in the cases only, and provided evidence of a cohort effect. The association with rs9300298 in the ADIPOR2 gene at the 12p13.3 locus was replicated in an independent sample of CF families. A protective locus, using the phenotype of no-MI, mapped to 4q13.3 (HLOD = 3.19), with substantial heterogeneity. A candidate gene in the region, SLC4A4, provided preliminary evidence of association (p = 0.002), warranting further follow-up studies. Our linkage approach was used to direct our fine-mapping studies, which uncovered two potential modifier genes worthy of follow-up.
PMCID: PMC2888886  PMID: 19662435
8.  Exon skipping through the creation of a putative exonic splicing silencer as a consequence of the cystic fibrosis mutation R553X 
Journal of Medical Genetics  2007;44(5):341-346.
Nonsense mutations that occur more than 50 bases upstream of terminal spliced junctions are generally thought to lead to degradation of the corresponding transcripts by the process of nonsense‐mediated mRNA decay. It has also been proposed that some nonsense mutations may affect splicing by the process of nonsense‐associated altered splicing (NAS), or by the disruption of a splicing regulatory element. In this study, the effect of the R553X mutation on the splicing of exon 11 of the cystic fibrosis transmembrane conductance regulator gene was investigated. Evidence that R553X causes exon 11 to skip through the creation of a putative exonic splicing silencer (ESS) was provided. The putative ESS appears to be active when located immediately upstream of a 5′ splice site. These findings argue against the possibility that R553X‐associated exon 11 skipping is caused by NAS. The study further suggests that aminoglycoside antibiotic treatment would not be effective for patients with the R553X mutation, owing to the skipping of exon 11, and further emphasises the need for detailed mechanistic characterisation of the consequences of nonsense disease mutations.
PMCID: PMC2597982  PMID: 17475917
9.  Complex two-gene modulation of lung disease severity in children with cystic fibrosis 
The Journal of Clinical Investigation  2008;118(3):1040-1049.
Although cystic fibrosis (CF) is a monogenic disease, its clinical manifestations are influenced in a complex manner. Severity of lung disease, the main cause of mortality among CF patients, is likely modulated by several genes. The mannose-binding lectin 2 (MBL2) gene encodes an innate immune response protein and has been implicated as a pulmonary modifier in CF. However, reports have been conflicting, and interactions with other modifiers have not been investigated. We therefore evaluated the association of MBL2 with CF pulmonary phenotype in a cohort of 1,019 Canadian pediatric CF patients. MBL2 genotypes were combined into low-, intermediate-, and high-expression groups based on MBL2 levels in plasma. Analysis of age at first infection with Pseudomonas aeruginosa demonstrated that MBL2 deficiency was significantly associated with earlier onset of infection. This MBL2 effect was amplified in patients with high-producing genotypes of transforming growth factor beta 1 (TGFB1). Similarly, MBL2 deficiency was associated with more rapid decline of pulmonary function, most significantly in those carrying the high-producing TGFB1 genotype. These findings provide evidence of gene-gene interaction in the pathogenesis of CF lung disease, whereby high TGF-β1 production enhances the modulatory effect of MBL2 on the age of first bacterial infection and the rate of decline of pulmonary function.
PMCID: PMC2248329  PMID: 18292811
10.  Mutations in the Cystic Fibrosis Transmembrane Regulator Gene and In Vivo Transepithelial Potentials 
Aim: To examine the relationship between cystic fibrosis transmembrane regulator gene mutations (CFTR) and in vivo transepithelial potentials.
Methods: We prospectively evaluated 162 men including 31 healthy subjects, 21 obligate heterozygotes, 60 with congenital bilateral absence of the vas deferens (CBAVD) and 50 with CF by extensive CFTR genotyping, sweat chloride and nasal potential difference testing.
Results: Six (10%) men with CBAVD carried no CFTR mutations, 18 (30%) carried one mutation, including the 5T variant, and 36 (60%) carried mutations on both alleles, for a significantly higher rate carrying one or more mutations than healthy controls (90% versus 19%, p < 0.001). There was an overlapping spectrum of ion channel measurements among the men with CBAVD, ranging from values in the control and obligate heterozygote range at one extreme, to values in the CF range at the other. All pancreatic-sufficient patients with CF and 34 of 36 patients with CBAVD with mutations on both alleles carried at least one mild mutation. However, the distribution of mild mutations in the two groups differed greatly. Genotyping, sweat chloride and nasal potential difference (alone or in combination) excluded CF in all CBAVD men with no mutations. CF was confirmed in 56% and 67% of CBAVD men carrying 1 and 2 CFTR mutations, respectively.
Conclusion: Abnormalities of CFTR transepithelial function correlate with the number and severity of CFTR gene mutations.
PMCID: PMC2648063  PMID: 16840743
CFTR mutations; congenital bilateral absence of the vas deferens; cystic fibrosis; nasal potential difference; sweat chloride

Results 1-10 (10)