Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Normalization of Obesity-Associated Insulin Resistance through Immunotherapy: CD4+ T Cells Control Glucose Homeostasis 
Nature medicine  2009;15(8):921-929.
Progressive obesity and its associated metabolic syndromes represent a globally growing challenge, yet mechanistic understanding and current therapeutics are unsatisfactory. We discovered that CD4+ T-lymphocytes, resident in visceral adipose tissue (VAT), control insulin-resistance in diet-induced obese (DIO) mice and likely humans. DIO VAT-associated T cells display biased TCR-Vα repertoires suggesting antigen-specific expansion. CD4+ T-lymphocyte control of glucose homeostasis is compromised in DIO when VAT accumulates pathogenic IFNγ-secreting Th1 cells, overwhelming static numbers of Th2 (CD4+GATA-3+) and regulatory Foxp3+ T cells. CD4+ T cell transfer into DIO, lymphocyte-free RAGnull mice reversed weight gain and insulin resistance predominately through Th2 cells. Brief systemic treatment with αCD3 antibody or its F(ab′)2 fragment, restores the Th1/Foxp3+ balance and reverses insulin resistance for months, despite continuing high-fat diet. The progression of obesity-associated metabolic abnormalities is physiologically under CD4+ T cell control, with expansion of adipose tissue-resident T cells that can be manipulated by immunotherapy.
PMCID: PMC3063199  PMID: 19633657 CAMSID: cams1704
2.  Modifier gene study of meconium ileus in cystic fibrosis: statistical considerations and gene mapping results 
Human genetics  2009;126(6):763-778.
Cystic fibrosis (CF) is a monogenic disease due to mutations in the CFTR gene. Yet, variability in CF disease presentation is presumed to be affected by modifier genes, such as those recently demonstrated for the pulmonary aspect. Here, we conduct a modifier gene study for meconium ileus (MI), an intestinal obstruction that occurs in 16–20% of CF newborns, providing linkage and association results from large family and case–control samples. Linkage analysis of modifier traits is different than linkage analysis of primary traits on which a sample was ascertained. Here, we articulate a source of confounding unique to modifier gene studies and provide an example of how one might overcome the confounding in the context of linkage studies. Our linkage analysis provided evidence of a MI locus on chromosome 12p13.3, which was segregating in up to 80% of MI families with at least one affected offspring (HLOD = 2.9). Fine mapping of the 12p13.3 region in a large case–control sample of pancreatic insufficient Canadian CF patients with and without MI pointed to the involvement of ADIPOR2 in MI (p = 0.002). This marker was substantially out of Hardy–Weinberg equilibrium in the cases only, and provided evidence of a cohort effect. The association with rs9300298 in the ADIPOR2 gene at the 12p13.3 locus was replicated in an independent sample of CF families. A protective locus, using the phenotype of no-MI, mapped to 4q13.3 (HLOD = 3.19), with substantial heterogeneity. A candidate gene in the region, SLC4A4, provided preliminary evidence of association (p = 0.002), warranting further follow-up studies. Our linkage approach was used to direct our fine-mapping studies, which uncovered two potential modifier genes worthy of follow-up.
PMCID: PMC2888886  PMID: 19662435
3.  Complex two-gene modulation of lung disease severity in children with cystic fibrosis 
The Journal of Clinical Investigation  2008;118(3):1040-1049.
Although cystic fibrosis (CF) is a monogenic disease, its clinical manifestations are influenced in a complex manner. Severity of lung disease, the main cause of mortality among CF patients, is likely modulated by several genes. The mannose-binding lectin 2 (MBL2) gene encodes an innate immune response protein and has been implicated as a pulmonary modifier in CF. However, reports have been conflicting, and interactions with other modifiers have not been investigated. We therefore evaluated the association of MBL2 with CF pulmonary phenotype in a cohort of 1,019 Canadian pediatric CF patients. MBL2 genotypes were combined into low-, intermediate-, and high-expression groups based on MBL2 levels in plasma. Analysis of age at first infection with Pseudomonas aeruginosa demonstrated that MBL2 deficiency was significantly associated with earlier onset of infection. This MBL2 effect was amplified in patients with high-producing genotypes of transforming growth factor beta 1 (TGFB1). Similarly, MBL2 deficiency was associated with more rapid decline of pulmonary function, most significantly in those carrying the high-producing TGFB1 genotype. These findings provide evidence of gene-gene interaction in the pathogenesis of CF lung disease, whereby high TGF-β1 production enhances the modulatory effect of MBL2 on the age of first bacterial infection and the rate of decline of pulmonary function.
PMCID: PMC2248329  PMID: 18292811

Results 1-3 (3)