PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (379)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Lattice Light Sheet Microscopy: Imaging Molecules to Embryos at High Spatiotemporal Resolution 
Science (New York, N.Y.)  2014;346(6208):1257998.
Although fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, too small, or occur too rapidly to see clearly with existing tools. We crafted ultra-thin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of volumes, often at sub-second intervals, at the diffraction limit and beyond. We applied this to systems spanning four orders of magnitude in space and time, including the diffusion of single transcription factor molecules in stem cell spheroids, the dynamic instability of mitotic microtubules, the immunological synapse, neutrophil motility in a 3D matrix, and embryogenesis in Caenorhabditis elegans and Drosophila melanogaster. The results provide a visceral reminder of the beauty and complexity of living systems.
doi:10.1126/science.1257998
PMCID: PMC4336192  PMID: 25342811
2.  MTA1 and MTA3 Regulate HIF1a Expression in Hypoxia-Treated Human Trophoblast Cell Line HTR8/Svneo 
Hypoxia plays an important role in placental trophoblast differentiation and function during early pregnancy. Hypoxia-inducible factor 1 alpha (HIF1a) is known to regulate cellular adaption to hypoxic conditions. However, our current understanding of the role of HIF1a in trophoblast physiology is far from complete. Metastasis Associated Protein 1 and 3 (MTA1 and MTA3) are components of the Nucleosome Remodeling and Deacetylase (NuRD) complex, a chromatin remodeling complex, and are highly expressed in term placental trophoblasts. However, the role of MTA1 and MTA3 in the hypoxic placental environment of early pregnancy is unknown. In the present study, we examined the association among MTA1, MTA3 and HIF1a expression under hypoxic conditions in trophoblasts both in vivo and in vitro. We first investigated the localization of MTA1 and MTA3 with HIF1a expression in the placental trophoblast of 1st trimester placenta via immunohistochemistry. Our data reveals that under physiologically hypoxic environment, MTA1 and MTA3 along with HIF1a are highly expressed by villous trophoblasts. Next, we investigated the effect of hypoxia on these genes in vitro using the first trimester-derived HTR8/SVneo cell line and observed up-regulation of MTA1 and MTA3 as well as HIF1a protein following hypoxia treatment. To investigate the direct effect of MTA1 and MTA3 upon HIF1a, we over-expressed MTA1 and MTA3 genes in HTR8/SVneo cells respectively and examined protein levels of HIF1a via Western blot as well as HIF1a target gene expression using a luciferase assay driven by a hypoxia-response element promoter (HRE-luciferase). We found that over-expressions of MTA1 and MTA3 up-regulate both HIF1a protein level and HRE-luciferase activity under hypoxic condition. In summary, both MTA1 and MTA3 are induced by hypoxia and up-regulate HIF1a expression and HIF1a target gene expression in trophoblasts. These data suggest that MTA1 and MTA3 play critical roles in trophoblast function and differentiation during early pregnancy.
PMCID: PMC4332396
Chromatin remodeling; Trophoblast; Hypoxia
3.  GATA Transcription Factors in Pregnancy 
GATA transcription factors are Zinc finger members which perform a variety of important functions within the 3-germ layers as well as in extra embryonic endoderm during embryonic development. Distinct roles for GATA transcription factors have previously been identified in hematopoietic, the cardiac vascular system, the central neural system, as well as respiratory and intestinal systems. However, the role of GATA transcription factors in trophoblast lineage and placental development is far more complete. This review focuses on the roles of GATA transcription factors during pregnancy: the establishment of trophoblast lineage, trophoectoderm maintenance, trophoblast differentiation and the pathogenesis of placenta-related diseases of pregnancy.
PMCID: PMC4319706
GATA transcription factors; Trophoblast; Pregnancy
4.  Parameters of Dynamic Contrast-Enhanced MRI as Imaging Markers for Angiogenesis and Proliferation in Human Breast Cancer 
Background
Breast cancer is the most common malignancy and the leading cause of cancer death in women worldwide; however, early diagnosis has been difficult due to its complex pathological structure. This study evaluated the value of morphological examination in conjunction with dynamic contrast-enhanced MRI (DCE-MRI) for more precise diagnosis of breast cancer, as well as their correlation with angiogenesis and proliferation biomarkers.
Material/Methods
DCE-MRI parameters (including Ktrans: volume transfer coefficient reflecting vascular permeability, Kep: flux rate constant, Ve: extracellular volume ratio reflecting vascular permeability, and ADC: apparent diffusion coefficient) were obtained from 124 patients with breast cancer (124 lesions). Microvessel density (MVD) was evaluated by the immunohistochemical analysis of tumor vessels for CD31 and CD105 expression. The proliferation was assessed by analyzing Ki67.
Results
Ktrans values were in the order of: malignant lesions > benign lesions > normal glands. Similar results were observed for Kep. The opposite changes were seen with Ve. Ktrans and Kep values were significantly higher in invasive ductal carcinoma (IDC) and ductal carcinoma in situ (DCIS) than in mammary ductal dysplasia (MDD; ANOVA followed by Dunnett’s test). In sharp contrast, ADC values were lower in IDC and DCIS than in MDD, and Ve was not significantly different among the three groups. The data from MIP (maximum intensity projection) showed that benign breast lesions had no or only one blood vessel, whereas malignant lesions had two or more blood vessels. In addition, expression of CD105 and Ki67, the commonly recognized markers for angiogenesis and proliferation, respectively, were closely correlated with MRI parameters as revealed by Pearson analysis.
Conclusions
Determination of Ktrans, Kep and ADC values permits estimation of tumor angiogenesis and proliferation in breast cancer and DCE-MRI parameters can be used as imaging biomarkers to predict patient prognosis and the biologic aggressiveness of the tumor.
doi:10.12659/MSM.892534
PMCID: PMC4324575  PMID: 25640082
Cell Proliferation; Magnetic Resonance Imaging; Neovascularization, Pathologic
5.  Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder 
Nature genetics  2011;44(1):78-84.
Attention deficit hyperactivity disorder (ADHD) is a common, heritable neuropsychiatric disorder of unknown etiology. We performed a whole-genome copy number variation (CNV) study on 1,013 cases with ADHD and 4,105 healthy children of European ancestry using 550,000 SNPs. We evaluated statistically significant findings in multiple independent cohorts, with a total of 2,493 cases with ADHD and 9,222 controls of European ancestry, using matched platforms. CNVs affecting metabotropic glutamate receptor genes were enriched across all cohorts (P = 2.1 × 10−9). We saw GRM5 (encoding glutamate receptor, metabotropic 5) deletions in ten cases and one control (P = 1.36 × 10−6). We saw GRM7 deletions in six cases, and we saw GRM8 deletions in eight cases and no controls. GRM1 was duplicated in eight cases. We experimentally validated the observed variants using quantitative RT-PCR. A gene network analysis showed that genes interacting with the genes in the GRM family are enriched for CNVs in ~10% of the cases (P = 4.38 × 10−10) after correction for occurrence in the controls. We identified rare recurrent CNVs affecting glutamatergic neurotransmission genes that were overrepresented in multiple ADHD cohorts.
doi:10.1038/ng.1013
PMCID: PMC4310555  PMID: 22138692
6.  A Pathway-Centric Survey of Somatic Mutations in Chinese Patients with Colorectal Carcinomas 
PLoS ONE  2015;10(1):e0116753.
Previous genetic studies on colorectal carcinomas (CRC) have identified multiple somatic mutations in four candidate pathways (TGF-β, Wnt, P53 and RTK-RAS pathways) on populations of European ancestry. However, it is under-studied whether other populations harbor different sets of hot-spot somatic mutations in these pathways and other oncogenes. In this study, to evaluate the mutational spectrum of novel somatic mutations, we assessed 41 pairs of tumor-stroma tissues from Chinese patients with CRC, including 29 colon carcinomas and 12 rectal carcinomas. We designed Illumina Custom Amplicon panel to target 43 genes, including genes in the four candidate pathways, as well as several known oncogenes for other cancers. Candidate mutations were validated by Sanger sequencing, and we further used SIFT and PolyPhen-2 to assess potentially functional mutations. We discovered 3 new somatic mutations in gene APC, TCF7L2, and PIK3CA that had never been reported in the COSMIC or NCI-60 databases. Additionally, we confirmed 6 known somatic mutations in gene SMAD4, APC, FBXW7, BRAF and PTEN in Chinese CRC patients. While most were previously reported in CRC, one mutation in PTEN was reported only in malignant endometrium cancer. Our study confirmed the existence of known somatic mutations in the four candidate pathways for CRC in Chinese patients. We also discovered a number of novel somatic mutations in these pathways, which may have implications for the pathogenesis of CRC.
doi:10.1371/journal.pone.0116753
PMCID: PMC4305320  PMID: 25617745
7.  Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma 
Background
Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) has been demonstrated to be an important player in various human malignancies; it is thought to promote tumor growth by cell cycle regulating. However, the roles of MALAT1 in esophageal squamous cell carcinoma(ESCC), and the mechanisms involved in cell cycle regulation remain poorly understood. Moreover, the factors contributing to its up-regulation in tumor tissues are still largely unclear.
Methods
Expression of MALAT1 was determined from cell lines and clinical samples by qRT-PCR. The effects of MALAT1 knockdown on cell proliferation, cell cycle, apoptosis, migration, and invasion were evaluated by in vitro and in vivo assays. The potential protein expression changes were investigated by Western-blotting. The methylation status of the CpG island in the MALAT1 promoter was explored by bisulfite sequencing, while the copy numbers in tumor tissues and blood samples were detected by a well-established AccuCopyTM method.
Results
MALAT1 was over-expressed in 46.3% of ESCC tissues, mostly in the high-stage tumor samples. Enhanced MALAT1 expression levels were positively correlated with clinical stages, primary tumor size, and lymph node metastasis. Inhibition of MALAT1 suppressed tumor proliferation in vitro and in vivo, as well as the migratory and invasive capacity. MALAT1 depletion also induced G2/M phase arrest and increased the percentage of apoptotic cells. Western-blotting results implicated that the ATM-CHK2 pathway which is associated with G2/M arrest was phosphorylated by MALAT1 knockdown. No effects of CpG island methylation status on MALAT1 expression were found, whereas amplification of MALAT1 was found in 22.2% of tumor tissues, which correlated significantly with its over-expression. However, neither association between tissue copy number amplification and germline copy number variation, nor correlation between germline copy number variation and ESCC risk were identified in the case–control study.
Conclusions
Our data suggest that MALAT1 serves as an oncogene in ESCC, and it regulates ESCC growth by modifying the ATM-CHK2 pathway. Moreover, amplification of MALAT1 in tumor tissues may play an important role for its up-regulation, and it seems that the gene amplification in tumor tissues emerges during ESCC progression, but is not derived from germline origins.
Electronic supplementary material
The online version of this article (doi:10.1186/s13046-015-0123-z) contains supplementary material, which is available to authorized users.
doi:10.1186/s13046-015-0123-z
PMCID: PMC4322446  PMID: 25613496
Long noncoding RNA; MALAT1; Esophageal cancer; Copy number; Cell cycle arrest
8.  Complete Genome Sequence of the Fish Pathogen Yersinia ruckeri Strain SC09, Isolated from Diseased Ictalurus punctatus in China 
Genome Announcements  2015;3(1):e01327-14.
Yersinia ruckeri SC09 is a Gram-negative bacterium isolated from a moribund Ictalurus punctatus collected in Jianyang, China. Here, we report the complete genome sequence of this microorganism to facilitate the investigation of its pathogenicity and to reevaluate its taxonomic position.
doi:10.1128/genomeA.01327-14
PMCID: PMC4290980  PMID: 25573927
9.  Molecular mechanism of ERK dephosphorylation by striatal-enriched protein tyrosine phosphatase (STEP) 
Journal of neurochemistry  2013;128(2):315-329.
Striatal-enriched tyrosine phosphatase (STEP) is an important regulator of neuronal synaptic plasticity, and its abnormal level or activity contributes to cognitive disorders. One crucial downstream effector and direct substrate of STEP is extracellular signal-regulated protein kinase (ERK), which has important functions in spine stabilisation and action potential transmission. The inhibition of STEP activity toward phospho-ERK has the potential to treat neuronal diseases, but the detailed mechanism underlying the dephosphorylation of phospho-ERK by STEP is not known. Therefore, we examined STEP activity toward pNPP, phospho-tyrosine-containing peptides, and the full-length phospho-ERK protein using STEP mutants with different structural features. STEP was found to be a highly efficient ERK tyrosine phosphatase that required both its N-terminal regulatory region and key residues in its active site. Specifically, both KIM and KIS of STEP were required for ERK interaction. In addition to the N-terminal KIS region, S245, hydrophobic residues L249/L251, and basic residues R242/R243 located in the KIM region were important in controlling STEP activity toward phospho-ERK. Further kinetic experiments revealed subtle structural differences between STEP and HePTP that affected the interactions of their KIMs with ERK. Moreover, STEP recognised specific positions of a phospho-ERK peptide sequence through its active site, and the contact of STEP F311 with phospho-ERK V205 and T207 were crucial interactions. Taken together, our results not only provide the information for interactions between ERK and STEP, but will also help in the development of specific strategies to target STEP-ERK recognition, which could serve as a potential therapy for neurological disorders.
doi:10.1111/jnc.12463
PMCID: PMC3947313  PMID: 24117863
ERK; phosphorylation; phosphatase; synaptic plasticity; Striatal enriched tyrosine phosphatases (STEP); neurological disorders
10.  Global methylation silencing of clustered proto-cadherin genes in cervical cancer: serving as diagnostic markers comparable to HPV 
Cancer Medicine  2014;4(1):43-55.
Epigenetic remodeling of cell adhesion genes is a common phenomenon in cancer invasion. This study aims to investigate global methylation of cell adhesion genes in cervical carcinogenesis and to apply them in early detection of cancer from cervical scraping. Genome-wide methylation array was performed on an investigation cohort, including 16 cervical intraepithelial neoplasia 3 (CIN3) and 20 cervical cancers (CA) versus 12 each of normal, inflammation and CIN1 as controls. Twelve members of clustered proto-cadherin (PCDH) genes were collectively methylated and silenced, which were validated in cancer cells of the cervix, endometrium, liver, head and neck, breast, and lung. In an independent cohort including 107 controls, 66 CIN1, 85 CIN2/3, and 38 CA, methylated PCDHA4 and PCDHA13 were detected in 2.8%, 24.2%, 52.9%, and 84.2% (P < 10−25), and 2.8%, 24.2%, 50.6%, and 94.7% (P < 10−29), respectively. In diagnosis of CIN2 or more severe lesion of the cervix, a combination test of methylated PCDHA4 or PCDHA13 from cervical scraping had a sensitivity, specificity, positive predictive value, and negative predictive value of 74.8%, 80.3%, 73%, and 81.8%, respectively. Testing of this combination from cervical scraping is equally sensitive but more specific than human papillomavirus (HPV) test in diagnosis of CIN2 or more severe lesions. The study disclosed a collective methylation of PCDH genes in cancer of cervix and other sites. At least two of them can be promising diagnostic markers for cervical cancer noninferior to HPV.
doi:10.1002/cam4.335
PMCID: PMC4312117  PMID: 25418975
Cancer biomarker; cervical cancer; clustered proto-cadherin; DNA methylation; HPV
11.  Identification of quantitative trait loci for phosphorus use efficiency traits in rice using a high density SNP map 
BMC Genetics  2014;15(1):155.
Background
Soil phosphorus (P) deficiency is one of the major limiting factors to crop production. The development of crop varieties with improved P use efficiency (PUE) is an important strategy for sustainable agriculture. The objectives of this research were to identify quantitative trait loci (QTLs) linked to PUE traits using a high-density single nucleotide polymorphism (SNP) map and to estimate the epistatic interactions and environmental effects in rice (Oryza sativa L.).
Results
We conducted a two-year field experiment under low and normal P conditions using a recombinant inbred population of rice derived from Zhenshan 97 and Minghui 63 (indica). We investigated three yield traits, biomass (BIOM), harvest index (HI), and grain yield (Yield), and eight PUE traits: total P uptake (PUP), P harvest index (PHI), grain P use efficiency (gPUE) based on P accumulation in grains, straw P use efficiency (strPUE) based on P accumulation in straw, P use efficiency for biomass (PUEb) and for grain yield (PUEg) based on P accumulation in the whole plant, P translocation (PT), and P translocation efficiency (PTE). Of the 36 QTLs and 24 epistatic interactions identified, 26 QTLs and 12 interactions were detected for PUE traits. The environment affected seven QTLs and three epistatic interactions. Four QTLs (qPHI1 and qPHI2 for PHI, qPUEg2 for PUEg, and qPTE8 for PTE) with strong effects were environmentally independent. By comparing our results with similar QTLs in previous studies, three QTLs for PUE traits (qPUP1 and qPUP10 for PUP, and qPHI6 for PHI) were found across various genetic backgrounds. Seven regions were shared by QTLs for yield and PUE traits.
Conclusion
Most QTLs linked to PUE traits were different from those linked to yield traits, suggesting different genetic controls underlying these two traits. Those chromosomal regions with large effects that are not affected by different environments are promising for improving P use efficiency. The seven regions shared by QTLs linked to yield and PUE traits imply the possibility of the simultaneous improvement of yield and PUE traits.
doi:10.1186/s12863-014-0155-y
PMCID: PMC4311488  PMID: 25551672
Genotype by environment interaction; Phosphorus use efficiency; Quantitative trait loci; Recombinant inbred lines; Rice; Single nucleotide polymorphism
12.  Prediction of piRNAs using transposon interaction and a support vector machine 
BMC Bioinformatics  2014;15(1):419.
Background
Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNA primarily expressed in germ cells that can silence transposons at the post-transcriptional level. Accurate prediction of piRNAs remains a significant challenge.
Results
We developed a program for piRNA annotation (Piano) using piRNA-transposon interaction information. We downloaded 13,848 Drosophila piRNAs and 261,500 Drosophila transposons. The piRNAs were aligned to transposons with a maximum of three mismatches. Then, piRNA-transposon interactions were predicted by RNAplex. Triplet elements combining structure and sequence information were extracted from piRNA-transposon matching/pairing duplexes. A support vector machine (SVM) was used on these triplet elements to classify real and pseudo piRNAs, achieving 95.3 ± 0.33% accuracy and 96.0 ± 0.5% sensitivity. The SVM classifier can be used to correctly predict human, mouse and rat piRNAs, with overall accuracy of 90.6%. We used Piano to predict piRNAs for the rice stem borer, Chilo suppressalis, an important rice insect pest that causes huge yield loss. As a result, 82,639 piRNAs were predicted in C. suppressalis.
Conclusions
Piano demonstrates excellent piRNA prediction performance by using both structure and sequence features of transposon-piRNAs interactions. Piano is freely available to the academic community at http://ento.njau.edu.cn/Piano.html.
Electronic supplementary material
The online version of this article (doi:10.1186/s12859-014-0419-6) contains supplementary material, which is available to authorized users.
doi:10.1186/s12859-014-0419-6
PMCID: PMC4308892  PMID: 25547961
piRNAs; piRNA prediction; Support vector machine (SVM); Chilo suppressalis; Drosophila melanogaster; Homo sapiens; Mus musculus; Rattus norvegicus
13.  Genome-Wide Linkage Scan Identifies Two Novel Genetic Loci for Coronary Artery Disease: In GeneQuest Families 
PLoS ONE  2014;9(12):e113935.
Coronary artery disease (CAD) is the leading cause of death worldwide. Recent genome-wide association studies (GWAS) identified >50 common variants associated with CAD or its complication myocardial infarction (MI), but collectively they account for <20% of heritability, generating a phenomena of “missing heritability”. Rare variants with large effects may account for a large portion of missing heritability. Genome-wide linkage studies of large families and follow-up fine mapping and deep sequencing are particularly effective in identifying rare variants with large effects. Here we show results from a genome-wide linkage scan for CAD in multiplex GeneQuest families with early onset CAD and MI. Whole genome genotyping was carried out with 408 markers that span the human genome by every 10 cM and linkage analyses were performed using the affected relative pair analysis implemented in GENEHUNTER. Affected only nonparametric linkage (NPL) analysis identified two novel CAD loci with highly significant evidence of linkage on chromosome 3p25.1 (peak NPL  = 5.49) and 3q29 (NPL  = 6.84). We also identified four loci with suggestive linkage on 9q22.33, 9q34.11, 17p12, and 21q22.3 (NPL  = 3.18–4.07). These results identify novel loci for CAD and provide a framework for fine mapping and deep sequencing to identify new susceptibility genes and novel variants associated with risk of CAD.
doi:10.1371/journal.pone.0113935
PMCID: PMC4259362  PMID: 25485937
14.  Nasopharyngeal carcinoma in children and adolescents - a single institution experience of 158 patients 
Background
To evaluate the clinical features, treatment results, prognostic factors and late toxicities of nasopharyngeal carcinoma in children and adolescents.
Methods
Between January 1990 and January 2011, 158 NPC patients younger than 20 years old were treated in our institution, and the patient’s clinical characteristics, treatment modalities, outcomes and prognostic factors were retrospectively analyzed.
Results
There were 9 (5.7%) patients in stage II, 60 (38.0%) in stage III and 89 (56.3%) in stage IV according to the UICC2002 staging system. Neck mass (32.3%), headache (21.5%) and nasal obstruction (15.2%) were the most common chief complaints. With a median follow-up time of 62.5 months (range 2.0-225.0 months), the 5-year overall survival (OS) rate, local-regional control (LRC) rate and distant metastasis-free survival (DMFS) rate were 82.6%, 94.9% and 76.4%, respectively. There were 43 (27.2%) patients failed during the follow up, with seven local-regional recurrences and 38 distant metastases. In univariate analysis, the 5-year OS of T4 and T1-3 were 75% and 87.9%, p = 0.01, stage IV and stage II-III were 77.1% and 90%, p = 0.04, respectively. In multivariate analysis, T4 (p = 0.02) and stage IV (p = 0.04) were the independent adverse prognostic factors for OS. Significant reduction in trismus (27.3% v 3.6%, p = 0.03) and G2 xerostomia (37.9% v 10.3%, p = 0.02) was observed in patients treated by IMRT.
Conclusions
Most childhood and adolescence nasopharyngeal carcinoma patients were locally advanced diseases at first diagnosed. The treatment results of radiotherapy, with or without chemotherapy, are excellent in our institution. Reducing distant metastasis with new strategies and late toxicities with intensity-modulated radiotherapy are the future directions for the treatment of adolescent nasopharyngeal carcinoma.
doi:10.1186/s13014-014-0274-7
PMCID: PMC4264314  PMID: 25477058
Nasopharyngeal carcinoma; Childhood; Adolescence; Radiotherapy; Prognosis
15.  Identifying ligand binding sites and poses using GPU-accelerated Hamiltonian replica exchange molecular dynamics 
We present a method to identify small molecule ligand binding sites and orientations to a given protein crystal structure using GPU-accelerated Hamiltonian replica exchange molecular dynamics simulations. The Hamiltonians used vary from the physical end state of protein interacting with the ligand to a unphysical end state where the ligand does not interact with the protein. As replicas explore the space of Hamiltonians interpolating between these states the ligand can rapidly escape local minima and explore potential binding sites. Geometric restraints keep the ligands within the protein volume, and a potential energy pathway designed to increase phase space overlap between intermediates ensures good mixing. Because of the rigorous statistical mechanical nature of the Hamiltonian exchange framework, we can also extract binding free energy estimates at all putative binding sites, which agree well with free energies computed from occupation probabilities. We present results of this methodology on the T4 lysozyme L99A model system with four ligands, including one non-binder as a control. We find that our methodology identifies the crystallographic binding sites consistently and accurately for the small number of ligands considered here and gives free energies consistent with experiment. We are also able to analyze the contribution of individual binding sites on the overall binding affinity. Our methodology points to near term potential applications in early-stage drug discovery.
doi:10.1007/s10822-013-9689-8
PMCID: PMC4154199  PMID: 24297454
ligand binding; binding site identification; GPU-accelerated molecular dynamics; Hamiltonian replica exchange; free energy calculation
16.  “Genotype-first” approaches on a curious case of idiopathic progressive cognitive decline 
BMC Medical Genomics  2014;7(1):66.
Background
In developing countries, many cases with rare neurological diseases remain undiagnosed due to limited diagnostic experience. We encountered a case in China where two siblings both began to develop idiopathic progressive cognitive decline starting from age six, and were suspected to have an undiagnosed neurological disease.
Methods
Initial clinical assessments included review of medical history, comprehensive physical examination, genetic testing for metabolic diseases, blood tests and brain imaging. We performed exome sequencing with Agilent SureSelect exon capture and Illumina HiSeq2000 platform, followed by variant annotation and selection of rare, shared mutations that fit a recessive model of inheritance. To assess functional impacts of candidate variants, we performed extensive biochemical tests in blood and urine, and examined their possible roles by protein structure modeling.
Results
Exome sequencing identified NAGLU as the most likely candidate gene with compound heterozygous mutations (chr17:40695717C > T and chr17:40693129A > G in hg19 coordinate), which were documented to be pathogenic. Sanger sequencing confirmed the recessive patterns of inheritance, leading to a genetic diagnosis of Sanfilippo syndrome (mucopolysaccharidosis IIIB). Biochemical tests confirmed the complete loss of activity of alpha-N-acetylglucosaminidase (encoded by NAGLU) in blood, as well as significantly elevated dermatan sulfate and heparan sulfate in urine. Structure modeling revealed the mechanism on how the two variants affect protein structural stability.
Conclusions
Successful diagnosis of a rare genetic disorder with an atypical phenotypic presentation confirmed that such “genotype-first” approaches can particularly succeed in areas of the world with insufficient medical genetics expertise and with cost-prohibitive in-depth phenotyping.
doi:10.1186/s12920-014-0066-9
PMCID: PMC4267425  PMID: 25466957
17.  Precise inference of copy number alterations in tumor samples from SNP arrays 
Bioinformatics  2013;29(23):2964-2970.
Motivation: The accurate detection of copy number alterations (CNAs) in human genomes is important for understanding susceptibility to cancer and mechanisms of tumor progression. CNA detection in tumors from single nucleotide polymorphism (SNP) genotyping arrays is a challenging problem due to phenomena such as aneuploidy, stromal contamination, genomic waves and intra-tumor heterogeneity, issues that leading methods do not optimally address.
Results: Here we introduce methods and software (PennCNV-tumor) for fast and accurate CNA detection using signal intensity data from SNP genotyping arrays. We estimate stromal contamination by applying a maximum likelihood approach over multiple discrete genomic intervals. By conditioning on signal intensity across the genome, our method accounts for both aneuploidy and genomic waves. Finally, our method uses a hidden Markov model to integrate multiple sources of information, including total and allele-specific signal intensity at each SNP, as well as physical maps to make posterior inferences of CNAs. Using real data from cancer cell-lines and patient tumors, we demonstrate substantial improvements in accuracy and computational efficiency compared with existing methods.
Availability: Source code, documentation and example datasets are freely available at http://sourceforge.net/projects/penncnv-2.
Contact: gary.k.chen@usc.edu or kaichop@gmail.com
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btt521
PMCID: PMC3834792  PMID: 24021380
18.  Rapid Adaptive Optical Recovery of Optimal Resolution over LargeVolumes 
Nature methods  2014;11(6):625-628.
Using a de-scanned, laser-induced guide star and direct wavefront sensing, we demonstrate adaptive correction of complex optical aberrations at high numerical aperture and a 14 ms update rate. This permits us to compensate for the rapid spatial variation in aberration often encountered in biological specimens, and recover diffraction-limited imaging over large (> 240 μm)3 volumes. We applied this to image fine neuronal processes and subcellular dynamics within the zebrafish brain.
doi:10.1038/nmeth.2925
PMCID: PMC4069208  PMID: 24727653
19.  Enhanced Cellular Responses and Distinct Gene Profiles in Human Fetoplacental Artery Endothelial Cells under Chronic Low Oxygen1  
Biology of Reproduction  2013;89(6):133.
ABSTRACT
Fetoplacental endothelial cells are exposed to oxygen levels ranging from 2% to 8% in vivo. However, little is known regarding endothelial function within this range of oxygen because most laboratories use ambient air (21% O2) as a standard culture condition (SCN). We asked whether human umbilical artery endothelial cells (HUAECs) that were steadily exposed to the physiological chronic normoxia (PCN, 3% O2) for ∼20–25 days differed in their proliferative and migratory responses to FGF2 and VEGFA as well as in their global gene expression compared with those in the SCN. We observed that PCN enhanced FGF2- and VEGFA-stimulated cell proliferation and migration. In oxygen reversal experiments (i.e., when PCN cells were exposed to SCN for 24 h and vice versa), we found that preexposure to 21% O2 decreased the migratory ability, but not the proliferative ability, of the PCN-HUAECs in response to FGF2 and VEGFA. These PCN-enhanced cellular responses were associated with increased protein levels of HIF1A and NOS3, but not FGFR1, VEGFR1, and VEGFR2. Microarray analysis demonstrated that PCN up-regulated 74 genes and down-regulated 86, 14 of which were directly regulated by hypoxia-inducible factors as evaluated using in silico analysis. Gene function analysis further indicated that the PCN-regulated genes were highly related to cell proliferation and migration, consistent with the results from our functional assays. Given that PCN significantly alters cellular responses to FGF2 and VEGFA as well as transcription in HUAECs, it is likely that we may need to reexamine the current cellular and molecular mechanisms controlling fetoplacental endothelial functions, which were largely derived from endothelial models established under ambient O2.
Chronic low oxygen enhances human endothelial cell proliferation and migration and alters gene expression.
doi:10.1095/biolreprod.113.110551
PMCID: PMC4076354  PMID: 24152727
angiogenesis; artery endothelial cells; growth factors; physiological chronic low oxygen; transcriptome
20.  Ancient DNA provides new insight into the maternal lineages and domestication of Chinese donkeys 
BMC Evolutionary Biology  2014;14(1):246.
Background
The donkey (Equus asinus) is an important domestic animal that provides a reliable source of protein and method of transportation for many human populations. However, the process of domestication and the dispersal routes of the Chinese donkey are still unclear, as donkey remains are sparse in the archaeological record and often confused with horse remains. To explore the maternal origins and dispersal route of Chinese donkeys, both mitochondrial DNA D-loop and cytochrome b gene fragments of 21 suspected donkey remains from four archaeological sites in China were amplified and sequenced.
Results
Molecular methods of species identification show that 17 specimens were donkeys and three samples had the maternal genetic signature of horses. One sample that dates to about 20,000 years before present failed to amplify. In this study, the phylogenetic analysis reveals that ancient Chinese donkeys have high mitochondrial DNA diversity and two distinct mitochondrial maternal lineages, known as the Somali and Nubian lineages. These results indicate that the maternal origin of Chinese domestic donkeys was probably related to the African wild ass, which includes the Nubian wild ass (Equus africanus africanus) and the Somali wild ass (Equus africanus somaliensis). Combined with historical records, the results of this study implied that domestic donkeys spread into west and north China before the emergence of the Han dynasty. The number of Chinese domestic donkeys had increased primarily to meet demand for the expansion of trade, and they were likely used as commodities or for shipping goods along the Silk Road during the Tang Dynasty, when the Silk Road reached its golden age.
Conclusions
This study is the first to provide valuable ancient animal DNA evidence for early trade between African and Asian populations. The ancient DNA analysis of Chinese donkeys also sheds light on the dynamic process of the maternal origin, domestication, and dispersal route of ancient Chinese donkeys.
doi:10.1186/s12862-014-0246-4
PMCID: PMC4263014  PMID: 25433485
Chinese domestic donkeys; Ancient DNA; Mitochondrial DNA; D-loop; Cytochrome b gene; Maternal lineage; The Silk Road
21.  Study on the Reutilization of Clear Fracturing Flowback Fluids in Surfactant Flooding with Additives for Enhanced Oil Recovery (EOR) 
PLoS ONE  2014;9(11):e113723.
An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES) with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS) for enhanced oil recovery (EOR). The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT) between recycling system and oil can be reduced by 2 orders of magnitude to 10−3 mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS) on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical.
doi:10.1371/journal.pone.0113723
PMCID: PMC4237460  PMID: 25409507
22.  SPRY1 promotes the degradation of uPAR and inhibits uPAR-mediated cell adhesion and proliferation 
Urokinase plasminogen activator receptor (uPAR) is a GPI anchored cell surface protein that is closely associated with invasion, migration, and metastasis of cancer cells. Many functional extracellular proteins and transmembrane receptors interact with uPAR. However, few studies have examined the association of uPAR with cytoplasm proteins. We previously used yeast two-hybrid screening to isolate several novel uPAR-interacting cytoplasmic proteins, including Sprouty1 (SPRY1), an inhibitor of the (Ras-mitogen-activated protein kinase) MAPK pathway. In this study, we show that SPRY1 interacts with uPAR and directs it toward lysosomal-mediated degradation. Overexpression of SPRY1 decreased the cell surface and cytoplasmic uPAR protein level. Moreover, SPRY1 overexpression augmented uPAR-induced cell adhesion to vitronectin as well as proliferation of cancer cells. Our results also further support the critical role of SPRY1 contribution to tumor growth. In a subcutaneous tumor model, overexpression of SPRY1 in HCT116 or A549 xenograft in athymic nude mice led to great suppression of tumor growth. These results show that SPRY1 may affect tumor cell function through direct interaction with uPAR and promote its lysosomal degradation.
PMCID: PMC4266704  PMID: 25520860
SPRY1; uPAR; degradation; adhesion; proliferation
24.  Bioelectric Characterization of Epithelia from Neonatal CFTR Knockout Ferrets 
Cystic fibrosis (CF) is a life-shortening, recessive, multiorgan genetic disorder caused by the loss of CF transmembrane conductance regulator (CFTR) chloride channel function found in many types of epithelia. Animal models that recapitulate the human disease phenotype are critical to understanding pathophysiology in CF and developing therapies. CFTR knockout ferrets manifest many of the phenotypes observed in the human disease, including lung infections, pancreatic disease and diabetes, liver disease, malnutrition, and meconium ileus. In the present study, we have characterized abnormalities in the bioelectric properties of the trachea, stomach, intestine, and gallbladder of newborn CF ferrets. Short-circuit current (ISC) analysis of CF and wild-type (WT) tracheas revealed the following similarities and differences: (1) amiloride-sensitive sodium currents were similar between genotypes; (2) responses to 4,4′-diisothiocyano-2,2′-stilbene disulphonic acid were 3.3-fold greater in CF animals, suggesting elevated baseline chloride transport through non-CFTR channels in a subset of CF animals; and (3) a lack of 3-isobutyl-1-methylxanthine (IBMX)/forskolin–stimulated and N-(2-Naphthalenyl)-((3,5-dibromo-2,4-dihydroxyphenyl)methylene)glycine hydrazide (GlyH-101)–inhibited currents in CF animals due to the lack of CFTR. CFTR mRNA was present throughout all levels of the WT ferret and IBMX/forskolin–inducible ISC was only observed in WT animals. However, despite the lack of CFTR function in the knockout ferret, the luminal pH of the CF ferret gallbladder, stomach, and intestines was not significantly changed relative to WT. The WT stomach and gallbladder exhibited significantly enhanced IBMX/forskolin ISC responses and inhibition by GlyH-101 relative to CF samples. These findings demonstrate that multiple organs affected by disease in the CF ferret have bioelectric abnormalities consistent with the lack of cAMP-mediated chloride transport.
doi:10.1165/rcmb.2012-0433OC
PMCID: PMC3931095  PMID: 23782101
cystic fibrosis; animal model; ferret; intestine; trachea
25.  An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells 
Cancer letters  2013;340(1):63-71.
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer.
doi:10.1016/j.canlet.2013.06.026
PMCID: PMC3781955  PMID: 23851185
ITE; Aryl hydrocarbon receptor; Ovarian cancer cells; Growth

Results 1-25 (379)