PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  miRNA Expression Profiling Enables Risk Stratification in Archived and Fresh Neuroblastoma Tumor Samples 
Purpose
More accurate assessment of prognosis is important to further improve the choice of risk-related therapy in neuroblastoma (NB) patients. In this study, we aimed to establish and validate a prognostic miRNA signature for children with NB and tested it in both fresh frozen and archived formalin-fixed paraffin-embedded (FFPE) samples.
Experimental Design
Four hundred-thirty human mature miRNAs were profiled in two patient subgroups with maximally divergent clinical courses. Univariate logistic regression analysis was used to select miRNAs correlating with NB patient survival. A 25-miRNA gene signature was built using 51 training samples, tested on 179 test samples, and validated on an independent set of 304 fresh frozen tumor samples and 75 archived FFPE samples.
Results
The 25-miRNA signature significantly discriminates the test patients with respect to progression-free and overall survival (P < 0.0001), both in the overall population and in the cohort of high-risk patients. Multivariate analysis indicates that the miRNA signature is an independent predictor of patient survival after controlling for current risk factors. The results were confirmed in an external validation set. In contrast to a previously published mRNA classifier, the 25-miRNA signature was found to be predictive for patient survival in a set of 75 FFPE neuroblastoma samples.
Conclusions
In this study, we present the largest NB miRNA expression study so far, including more than 500 NB patients. We established and validated a robust miRNA classifier, able to identify a cohort of high-risk NB patients at greater risk for adverse outcome using both fresh frozen and archived material.
doi:10.1158/1078-0432.CCR-11-0610
PMCID: PMC4008338  PMID: 22031095
2.  Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers 
Genome Biology  2012;13(10):R95.
Background
Accurate outcome prediction in neuroblastoma, which is necessary to enable the optimal choice of risk-related therapy, remains a challenge. To improve neuroblastoma patient stratification, this study aimed to identify prognostic tumor DNA methylation biomarkers.
Results
To identify genes silenced by promoter methylation, we first applied two independent genome-wide methylation screening methodologies to eight neuroblastoma cell lines. Specifically, we used re-expression profiling upon 5-aza-2'-deoxycytidine (DAC) treatment and massively parallel sequencing after capturing with a methyl-CpG-binding domain (MBD-seq). Putative methylation markers were selected from DAC-upregulated genes through a literature search and an upfront methylation-specific PCR on 20 primary neuroblastoma tumors, as well as through MBD- seq in combination with publicly available neuroblastoma tumor gene expression data. This yielded 43 candidate biomarkers that were subsequently tested by high-throughput methylation-specific PCR on an independent cohort of 89 primary neuroblastoma tumors that had been selected for risk classification and survival. Based on this analysis, methylation of KRT19, FAS, PRPH, CNR1, QPCT, HIST1H3C, ACSS3 and GRB10 was found to be associated with at least one of the classical risk factors, namely age, stage or MYCN status. Importantly, HIST1H3C and GNAS methylation was associated with overall and/or event-free survival.
Conclusions
This study combines two genome-wide methylation discovery methodologies and is the most extensive validation study in neuroblastoma performed thus far. We identified several novel prognostic DNA methylation markers and provide a basis for the development of a DNA methylation-based prognostic classifier in neuroblastoma.
doi:10.1186/gb-2012-13-10-r95
PMCID: PMC3491423  PMID: 23034519
3.  The microRNA body map: dissecting microRNA function through integrative genomics 
Nucleic Acids Research  2011;39(20):e136.
While a growing body of evidence implicates regulatory miRNA modules in various aspects of human disease and development, insights into specific miRNA function remain limited. Here, we present an innovative approach to elucidate tissue-specific miRNA functions that goes beyond miRNA target prediction and expression correlation. This approach is based on a multi-level integration of corresponding miRNA and mRNA gene expression levels, miRNA target prediction, transcription factor target prediction and mechanistic models of gene network regulation. Predicted miRNA functions were either validated experimentally or compared to published data. The predicted miRNA functions are accessible in the miRNA bodymap, an interactive online compendium and mining tool of high-dimensional newly generated and published miRNA expression profiles. The miRNA bodymap enables prioritization of candidate miRNAs based on their expression pattern or functional annotation across tissue or disease subgroup. The miRNA bodymap project provides users with a single one-stop data-mining solution and has great potential to become a community resource.
doi:10.1093/nar/gkr646
PMCID: PMC3203610  PMID: 21835775
4.  A 6-gene signature identifies four molecular subgroups of neuroblastoma 
Background
There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis.
Results
The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p < 0.05, one-way ANOVA test). PCA clusters p1, p2, and p3 were found to correspond well to the postulated subtypes 1, 2A, and 2B, respectively. Remarkably, a fourth novel cluster was detected in all three independent data sets. This cluster comprised mainly 11q-deleted MNA-negative tumours with low expression of ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and/or dead of disease, p < 0.05, Fisher's exact test).
Conclusions
Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics.
doi:10.1186/1475-2867-11-9
PMCID: PMC3095533  PMID: 21492432
5.  Outcome Prediction of Children with Neuroblastoma using a Multigene Expression Signature, a Retrospective SIOPEN/COG/GPOH Study 
The lancet oncology  2009;10(7):663-671.
BACKGROUND
More accurate prognostic assessment of patients with neuroblastoma is required to improve the choice of risk-related therapy. The aim of this study is to develop and validate a gene expression signature for improved outcome prediction.
METHODS
Fifty-nine genes were carefully selected based on an innovative data-mining strategy and profiled in the largest neuroblastoma patient series (n=579) to date using RT-qPCR starting from only 20 ng of RNA. A multigene expression signature was built using 30 training samples, tested on 313 test samples and subsequently validated in a blind study on an independent set of 236 additional tumours.
FINDINGS
The signature accurately classifies patients with respect to overall and progression-free survival (p<0·0001). The signature has a performance, sensitivity, and specificity of 85·4% (95%CI: 77·7–93·2), 84·4% (95%CI: 66·5–94·1), and 86·5% (95%CI: 81·1–90·6), respectively to predict patient outcome. Multivariate analysis indicates that the signature is a significant independent predictor after controlling for currently used riskfactors. Patients with high molecular risk have a higher risk to die from disease and for relapse/progression than patients with low molecular risk (odds ratio of 19·32 (95%CI: 6·50–57·43) and 3·96 (95%CI: 1·97–7·97) for OS and PFS, respectively). Patients with increased risk for adverse outcome can also be identified within the current treatment groups demonstrating the potential of this signature for improved clinical management. These results were confirmed in the validation study in which the signature was also independently statistically significant in a model adjusted for MYCN status, age, INSS stage, ploidy, INPC grade of differentiation, and MKI. The high patient/gene ratio (579/59) underlies the observed statistical power and robustness.
INTERPRETATION
A 59-gene expression signature predicts outcome of neuroblastoma patients with high accuracy. The signature is an independent risk predictor, identifying patients with increased risk in the current clinical risk groups. The applied method and signature is suitable for routine lab testing and ready for evaluation in prospective studies.
FUNDING
The Belgian Foundation Against Cancer, found of public interest (project SCIE2006-25), the Children Cancer Fund Ghent, the Belgian Society of Paediatric Haematology and Oncology, the Belgian Kid’s Fund and the Fondation Nuovo-Soldati (JV), the Fund for Scientific Research Flanders (KDP, JH), the Fund for Scientific Research Flanders (grant number: G•0198•08), the Institute for the Promotion of Innovation by Science and Technology in Flanders, Strategisch basisonderzoek (IWT-SBO 60848), the Fondation Fournier Majoie pour l’Innovation, the Instituto Carlos III,RD 06/0020/0102 Spain, the Italian Neuroblastoma Foundation, the European Community under the FP6 (project: STREP: EET-pipeline, number: 037260), and the Belgian program of Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office, Science Policy Programming.
doi:10.1016/S1470-2045(09)70154-8
PMCID: PMC3045079  PMID: 19515614
6.  Measurable impact of RNA quality on gene expression results from quantitative PCR 
Nucleic Acids Research  2011;39(9):e63.
Compromised RNA quality is suggested to lead to unreliable results in gene expression studies. Therefore, assessment of RNA integrity and purity is deemed essential prior to including samples in the analytical pipeline. This may be of particular importance when diagnostic, prognostic or therapeutic conclusions depend on such analyses. In this study, the comparative value of six RNA quality parameters was determined using a large panel of 740 primary tumour samples for which real-time quantitative PCR gene expression results were available. The tested parameters comprise of microfluidic capillary electrophoresis based 18S/28S rRNA ratio and RNA Quality Index value, HPRT1 5′–3′ difference in quantification cycle (Cq) and HPRT1 3′ Cq value based on a 5′/3′ ratio mRNA integrity assay, the Cq value of expressed Alu repeat sequences and a normalization factor based on the mean expression level of four reference genes. Upon establishment of an innovative analytical framework to assess impact of RNA quality, we observed a measurable impact of RNA quality on the variation of the reference genes, on the significance of differential expression of prognostic marker genes between two cancer patient risk groups, and on risk classification performance using a multigene signature. This study forms the basis for further rational assessment of reverse transcription quantitative PCR based results in relation to RNA quality.
doi:10.1093/nar/gkr065
PMCID: PMC3089491  PMID: 21317187
7.  The emerging molecular pathogenesis of neuroblastoma: implications for improved risk assessment and targeted therapy 
Genome Medicine  2009;1(7):74.
Neuroblastoma is one of the most common solid tumors of childhood, arising from immature sympathetic nervous system cells. The clinical course of patients with neuroblastoma is highly variable, ranging from spontaneous regression to widespread metastatic disease. Although the outcome for children with cancer has improved considerably during the past decades, the prognosis of children with aggressive neuroblastoma remains dismal. The clinical heterogeneity of neuroblastoma mirrors the biological and genetic heterogeneity of these tumors. Ploidy and MYCN amplification have been used as genetic markers for risk stratification and therapeutic decision making, and, more recently, gene expression profiling and genome-wide DNA copy number analysis have come into the picture as sensitive and specific tools for assessing prognosis. The applica tion of new genetic tools also led to the discovery of an important familial neuroblastoma cancer gene, ALK, which is mutated in approximately 8% of sporadic tumors, and genome-wide association studies have unveiled loci with risk alleles for neuroblastoma development. For some of the genomic regions that are deleted in some neuroblastomas, on 1p, 3p and 11q, candidate tumor suppressor genes have been identified. In addition, evidence has emerged for the contribution of epigenetic disturbances in neuroblastoma oncogenesis. As in other cancer entities, altered microRNA expression is also being recognized as an important player in neuroblastoma. The recent successes in unraveling the genetic basis of neuroblastoma are now opening opportunities for development of targeted therapies.
doi:10.1186/gm74
PMCID: PMC2717400  PMID: 19638189
8.  RNA pre-amplification enables large-scale RT-qPCR gene-expression studies on limiting sample amounts 
BMC Research Notes  2009;2:235.
Background
The quantitative polymerase chain reaction (qPCR) is a widely utilized method for gene-expression analysis. However, insufficient material often compromises large-scale gene-expression studies. The aim of this study is to evaluate an RNA pre-amplification method to produce micrograms of cDNA as input for qPCR.
Findings
The linear isothermal Ribo-SPIA pre-amplification method (WT-Ovation; NuGEN) was first evaluated by measuring the expression of 20 genes in RNA samples from six neuroblastoma cell lines and of 194 genes in two commercially available reference RNA samples before and after pre-amplification, and subsequently applied on a large panel of 738 RNA samples extracted from neuroblastoma tumours. All RNA samples were evaluated for RNA integrity and purity. Starting from 5 to 50 nanograms of total RNA the sample pre-amplification method was applied, generating approximately 5 microgams of cDNA, sufficient to measure more than 1000 target genes. The results obtained from this study show a constant yield of pre-amplified cDNA independent of the amount of input RNA; preservation of differential gene-expression after pre-amplification without introduction of substantial bias; no co-amplification of contaminating genomic DNA; no necessity to purify the pre-amplified material; and finally the importance of good RNA quality to enable pre-amplification.
Conclusion
Application of this unbiased and easy to use sample pre-amplification technology offers great advantage to generate sufficient material for diagnostic and prognostic work-up and enables large-scale qPCR gene-expression studies using limited amounts of sample material.
doi:10.1186/1756-0500-2-235
PMCID: PMC2789097  PMID: 19930725
9.  External oligonucleotide standards enable cross laboratory comparison and exchange of real-time quantitative PCR data 
Nucleic Acids Research  2009;37(21):e138.
The quantitative polymerase chain reaction (qPCR) is widely utilized for gene expression analysis. However, the lack of robust strategies for cross laboratory data comparison hinders the ability to collaborate or perform large multicentre studies conducted at different sites. In this study we introduced and validated a workflow that employs universally applicable, quantifiable external oligonucleotide standards to address this question. Using the proposed standards and data-analysis procedure, we obtained a perfect concordance between expression values from eight different genes in 366 patient samples measured on three different qPCR instruments and matching software, reagents, plates and seals, demonstrating the power of this strategy to detect and correct inter-run variation and to enable exchange of data between different laboratories, even when not using the same qPCR platform.
doi:10.1093/nar/gkp721
PMCID: PMC2790878  PMID: 19734345

Results 1-9 (9)