PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Using combination therapy to override stromal-mediated chemoresistance in mutant FLT3-positive AML: Synergism between FLT3 inhibitors, dasatinib/multi-targeted inhibitors, and JAK inhibitors 
Leukemia  2012;26(10):2233-2244.
Acute myeloid leukemia (AML) progenitors are frequently characterized by activating mutations in the receptor tyrosine kinase FLT3. Protein tyrosine kinases are integral components of signaling cascades that play a role in both FLT3-mediated transformation as well as viability pathways that are advantageous to leukemic cell survival. The bone marrow microenvironment can diminish AML sensitivity to tyrosine kinase inhibitors (TKIs). We hypothesized that inhibition of protein kinases in addition to FLT3 may be effective in overriding drug resistance in AML. We used a cell-based model mimicking stromal protection as part of an unbiased high-throughput chemical screen to identify kinase inhibitors with the potential to override microenvironment-mediated drug resistance in mutant FLT3-positive AML. Several related multi-targeted kinase inhibitors, including dasatinib, with the capability of reversing microenvironment-induced resistance to FLT3 inhibition were identified and validated. We validated synergy in vitro and demonstrated effective combination potential in vivo. In particular Janus kinase (JAK) inhibitors were effective in overriding stromal protection and potentiating FLT3 inhibition in primary AML and cell lines. These results hint at a novel concept of using combination therapy to override drug resistance in mutant FLT3-positive AML in the bone marrow niche and suppress or eradicate residual disease.
doi:10.1038/leu.2012.96
PMCID: PMC4054699  PMID: 22469781
acute myeloid leukemia; FLT3 inhibitor; multi-targeted kinase inhibitor; mutant FLT3; PKC412; AC220; stromal-mediated chemoresistance; drug resistance; synergy
2.  TYK2-STAT1-BCL2 Pathway Dependence in T-Cell Acute Lymphoblastic Leukemia 
Cancer discovery  2013;3(5):564-577.
Targeted molecular therapy has yielded remarkable outcomes in certain cancers, but specific therapeutic targets remain elusive for many others. As a result of two independent RNA interference (RNAi) screens, we identified pathway dependence on a member of the JAK tyrosine kinase family, TYK2, and its downstream effector STAT1 in T-cell acute lymphoblastic leukemia (T-ALL). Gene knockdown experiments consistently demonstrated TYK2 dependence in both T-ALL primary specimens and cell lines, and a small-molecule inhibitor of JAK kinase activity induced T-ALL cell death. Activation of this TYK2-STAT1 pathway i n T-ALL cell lines occurs by gain-of-function TYK2 mutations or activation of IL-10 receptor signaling, and this pathway mediates T-ALL cell survival through upregulation of the anti-apoptotic protein BCL2. These findings indicate that in many T-ALL cases, the leukemic cells are dependent upon the TYK2-STAT1-BCL2 pathway for continued survival, supporting the development of molecular therapies targeting TYK2 and other components of this pathway.
doi:10.1158/2159-8290.CD-12-0504
PMCID: PMC3651770  PMID: 23471820
Tyrosine kinase; TYK2; STAT1; BCL2; T-ALL
3.  KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-ALL and AML 
British journal of haematology  2013;161(1):117-127.
Summary
This study explored the anti-leukaemic efficacy of novel irreversible inhibitors of the major nuclear export receptor, chromosome region maintenance 1 (CRM1, also termed XPO1). We found that these novel CRM1 antagonists, termed SINE (Selective Inhibitors of Nuclear Export), induced rapid apoptosis at low nanomolar concentrations in a panel of 14 human T-cell acute lymphoblastic leukaemia (T-ALL) cell lines representing different molecular subtypes of the disease. To assess in vivo anti-leukaemia cell activity, we engrafted immunodeficient mice intravenously with the human T-ALL MOLT-4 cells, which harbour activating mutations of NOTCH1 and NRAS as well as loss of function of the CDKN2A, PTEN and TP53 tumour suppressors and express a high level of oncogenic transcription factor TAL1. Importantly, we examined the in vivo anti-leukaemic efficacy of the clinical SINE compound KPT-330 against TALL and acute myeloid leukaemia (AML) cells. These studies demonstrated striking in vivo activity of KPT-330 against T-ALL and AML cells, with little toxicity to normal murine haematopoietic cells. Taken together, our results show that SINE CRM1 antagonists represent promising “first-in-class” drugs with a novel mechanism of action and wide therapeutic index, and imply that drugs of this class show promise for the targeted therapy of T-ALL and AML.
doi:10.1111/bjh.12231
PMCID: PMC3980736  PMID: 23373539
4.  The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia 
The Journal of Experimental Medicine  2013;210(8):1545-1557.
miR-223 is upregulated by the transcription factor TAL1 in human T-ALL cells and suppress the FBXW7 tumor suppressor.
The oncogenic transcription factor TAL1/SCL is aberrantly expressed in 60% of cases of human T cell acute lymphoblastic leukemia (T-ALL) and initiates T-ALL in mouse models. By performing global microRNA (miRNA) expression profiling after depletion of TAL1, together with genome-wide analysis of TAL1 occupancy by chromatin immunoprecipitation coupled to massively parallel DNA sequencing, we identified the miRNA genes directly controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. The most dynamically regulated miRNA was miR-223, which is bound at its promoter and up-regulated by the TAL1 complex. miR-223 expression mirrors TAL1 levels during thymic development, with high expression in early thymocytes and marked down-regulation after the double-negative-2 stage of maturation. We demonstrate that aberrant miR-223 up-regulation by TAL1 is important for optimal growth of TAL1-positive T-ALL cells and that sustained expression of miR-223 partially rescues T-ALL cells after TAL1 knockdown. Overexpression of miR-223 also leads to marked down-regulation of FBXW7 protein expression, whereas knockdown of TAL1 leads to up-regulation of FBXW7 protein levels, with a marked reduction of its substrates MYC, MYB, NOTCH1, and CYCLIN E. We conclude that TAL1-mediated up-regulation of miR-223 promotes the malignant phenotype in T-ALL through repression of the FBXW7 tumor suppressor.
doi:10.1084/jem.20122516
PMCID: PMC3727321  PMID: 23857984
5.  The Requirement for Cyclin D Function in Tumor Maintenance 
Cancer cell  2012;22(4):438-451.
SUMMARY
D-cyclins represent components of cell cycle machinery. To test the efficacy of targeting D-cyclins in cancer treatment, we engineered mouse strains which allow acute and global ablation of individual D-cyclins in a living animal. Ubiquitous shutdown of cyclin D1 or inhibition of cyclin D-associated kinase activity in mice bearing ErbB2-driven mammary carcinomas triggered tumor cell senescence, without compromising the animals’ health. Ablation of cyclin D3 in mice bearing Notch1-driven T-cell acute lymphoblastic leukemias (T-ALL) triggered tumor cell apoptosis. Such selective killing of leukemic cells can also be achieved by inhibiting cyclin D-associated kinase activity in mouse and human T-ALL models. Inhibition of cyclin D-kinase activity represents a highly-selective anti-cancer strategy that specifically targets cancer cells without significantly affecting normal tissues.
doi:10.1016/j.ccr.2012.09.015
PMCID: PMC3487466  PMID: 23079655
6.  PIDD Death-Domain Phosphorylation by ATM Controls Prodeath Versus Prosurvival PIDDosome Signaling 
Molecular cell  2012;47(5):681-693.
Summary
Biochemical evidence implicates the death-domain (DD) protein PIDD as a molecular switch capable of signaling cell survival or death in response to genotoxic stress. PIDD activity is determined by binding-partner selection at its DD: whereas recruitment of RIP1 triggers prosurvival NF-κB signaling, recruitment of RAIDD activates proapoptotic caspase-2 via PIDDosome formation. However, it remains unclear how interactor selection, and thus fate decision, are regulated at the PIDD platform. We show that the PIDDosome functions in the ‘Chk1-suppressed’ apoptotic response to DNA damage, a conserved ATM/ATR–caspase-2 pathway antagonized by Chk1. In this pathway, ATM phosphorylates PIDD on Thr788 within the DD. This phosphorylation is necessary and sufficient for RAIDD binding and caspase-2 activation. Conversely, nonphosphorylatable PIDD fails to bind RAIDD or activate caspase-2, and recruits prosurvival RIP1 instead. Thus, ATM phosphorylation of the PIDD DD enables a binary switch through which cells elect to survive or die upon DNA injury.
doi:10.1016/j.molcel.2012.06.024
PMCID: PMC3444620  PMID: 22854598
7.  Core Transcriptional Regulatory Circuit Controlled by the TAL1 Complex in Human T-cell Acute Lymphoblastic Leukemia 
Cancer cell  2012;22(2):209-221.
SUMMARY
The oncogenic transcription factor TAL1/SCL is aberrantly expressed in over 40% of cases of human T-cell acute lymphoblastic leukemia (T-ALL), emphasizing its importance in the molecular pathogenesis of T-ALL. Here we identify the core transcriptional regulatory circuit controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3 and RUNX1. We show that TAL1 forms a positive interconnected auto-regulatory loop with GATA3 and RUNX1, and that the TAL1 complex directly activates the MYB oncogene, forming a positive feed-forward regulatory loop that reinforces and stabilizes the TAL1-regulated oncogenic program. One of the critical downstream targets in this circuitry is the TRIB2 gene, which is oppositely regulated by TAL1 and E2A/HEB and is essential for the survival of T-ALL cells.
doi:10.1016/j.ccr.2012.06.007
PMCID: PMC3422504  PMID: 22897851
8.  The ALKF1174L mutation potentiates the oncogenic activity of MYCN in neuroblastoma 
Cancer cell  2012;22(1):117-130.
SUMMARY
The ALKF1174L mutation is associated with intrinsic and acquired resistance to crizotinib and cosegregates with MYCN in neuroblastoma. In this study, we generated a mouse model overexpressing ALKF1174L in the neural crest. Compared to ALKF1174L and MYCN alone, coexpression of these two oncogenes led to the development of neuroblastomas with earlier onset, higher penetrance and enhanced lethality. ALKF1174L/MYCN tumors exhibited increased MYCN dosage due to ALKF1174L-induced activation of the PI3K/AKT/mTOR and MAPK pathways, coupled with suppression of MYCN pro-apoptotic effects. Combined treatment with the ATP-competitive mTOR inhibitor Torin2, overcame the resistance of ALKF1174L/MYCN tumors to crizotinib. Our findings demonstrate a pathogenic role for ALKF1174L in neuroblastomas overexpressing MYCN and suggest a strategy for improving targeted therapy for ALK-positive neuroblastoma.
doi:10.1016/j.ccr.2012.06.001
PMCID: PMC3417812  PMID: 22789543
9.  Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia 
Nature medicine  2012;18(7):1118-1122.
Although the treatment of acute myeloid leukemia (AML) has improved significantly, more than half of all patients develop disease that is refractory to intensive chemotherapy1,2. Functional genomics approaches offer a means to discover specific molecules mediating aberrant growth and survival of cancer cells3–8. Thus, using a loss-of-function RNA interference genomic screen, we identified aberrant expression of the hepatocyte growth factor (HGF) as a critical factor in AML pathogenesis. We found HGF expression leading to autocrine activation of its receptor tyrosine kinase, MET, in nearly half of the AML cell lines and clinical samples studied. Genetic depletion of HGF or MET potently inhibited the growth and survival of HGF-expressing AML cells. However, leukemic cells treated with the specific MET kinase inhibitor crizotinib developed resistance due to compensatory upregulation of HGF expression, leading to restoration of MET signaling. In cases of AML where MET is coactivated with other tyrosine kinases, such as fibroblast growth factor receptor 1 (FGFR1)9, concomitant inhibition of FGFR1 and MET blocked compensatory HGF upregulation, resulting in sustained logarithmic cell kill both in vitro and in xenograft models in vivo. Our results demonstrate widespread dependence of AML cells on autocrine activation of MET, as well as the importance of compensatory upregulation of HGF expression in maintaining leukemogenic signaling by this receptor. We anticipate that these findings will lead to the design of additional strategies to block adaptive cellular responses that drive compensatory ligand expression as an essential component of the targeted inhibition of oncogenic receptors in human cancers.
doi:10.1038/nm.2819
PMCID: PMC3438345  PMID: 22683780
10.  T-Lymphoblastic Lymphoma Cells Express High Levels of BCL2, S1P1 and ICAM1 Leading to a Blockade of Tumor Cell Intravasation 
Cancer cell  2010;18(4):353-366.
Summary
The molecular events underlying the progression of T-lymphoblastic lymphoma (T-LBL) to acute T-lymphoblastic leukemia (T-ALL) remain elusive. In our zebrafish model, concomitant overexpression of bcl-2 with Myc accelerated T-LBL onset while inhibiting progression to T-ALL. The T-LBL cells failed to invade the vasculature and showed evidence of increased homotypic cell-cell adhesion and autophagy. Further analysis using clinical biopsy specimens revealed autophagy and increased levels of BCL2, S1P1 and ICAM1 in human T-LBL compared to T-ALL. Inhibition of S1P1 signaling in T-LBL cells led to decreased homotypic adhesion in vitro and increased tumor cell intravasation in vivo. Thus, blockade of intravasation and hematologic dissemination in T-LBL is due to elevated S1P1 signaling, increased expression of ICAM1 and augmented homotypic cell-cell adhesion.
doi:10.1016/j.ccr.2010.09.009
PMCID: PMC3003429  PMID: 20951945
11.  Repression of tumor suppressor miR-451 is essential for NOTCH1-induced oncogenesis in T-ALL 
miR-451 represses expression of Myc and acts as a tumor suppressor in murine and human T cell acute lymphoblastic leukemia.
The NOTCH1 signaling pathway is a critical determinant of cell fate decisions and drives oncogenesis through mechanisms that are incompletely understood. Using an established mouse model of T cell acute lymphoblastic leukemia (T-ALL), here we report that induction of intracellular Notch1 (ICN1) leads to repression of miR-451 and miR-709. ICN1 decreases expression of these miRNAs by inducing degradation of the E2a tumor suppressor, which transcriptionally activates the genes encoding miR-451 and miR-709. Both miR-451 and miR-709 directly repress Myc expression. In addition, miR-709 directly represses expression of the Akt and Ras-GRF1 oncogenes. We also show that repression of miR-451 and miR-709 expression is required for initiation and maintenance of mouse T-ALL. miR-451 but not miR-709 is conserved in humans, and human T-ALLs with activating NOTCH1 mutations have decreased miR-451 and increased MYC levels compared with T-ALLs with wild-type NOTCH1. Thus, miR-451 and miR-709 function as potent suppressors of oncogenesis in NOTCH1-induced mouse T-ALL, and miR-451 influences MYC expression in human T-ALL bearing NOTCH1 mutations.
doi:10.1084/jem.20102384
PMCID: PMC3135352  PMID: 21464222
12.  Absence of Biallelic TCRγ Deletion Predicts Early Treatment Failure in Pediatric T-Cell Acute Lymphoblastic Leukemia 
Journal of Clinical Oncology  2010;28(24):3816-3823.
Purpose
To identify children with T-cell acute lymphoblastic leukemia (T-ALL) at high risk of induction chemotherapy failure by using DNA copy number analysis of leukemic cells collected at diagnosis.
Patients and Methods
Array comparative genomic hybridization (CGH) was performed on genomic DNA extracted from diagnostic lymphoblasts from 47 children with T-ALL treated on Children's Oncology Group Study P9404 or Dana-Farber Cancer Institute Protocol 00-01. These samples represented nine patients who did not achieve an initial complete remission, 13 who relapsed, and 25 who became long-term, event-free survivors. The findings were confirmed in an independent cohort of patients by quantitative DNA polymerase chain reaction (DNA-PCR), an assay that is well suited for clinical application.
Results
Analysis of the CGH findings in patients in whom induction chemotherapy failed compared with those in whom induction chemotherapy was successful identified the absence of biallelic TCRγ locus deletion (ABD), a characteristic of early thymocyte precursors before V(D)J recombination, as the most robust predictor of induction failure (P < .001). This feature was also associated with markedly inferior event-free (P = .002) and overall survival (P < .001) rates: 25% versus 58% and 25% versus 72%, respectively. Using a rapid and inexpensive quantitative DNA-PCR assay, we validated ABD as a predictor of a poor response to induction chemotherapy in an independent series of patients.
Conclusion
Lymphoblasts from children with T-ALL should be evaluated at diagnosis for deletion within the TCRγ locus. Patients lacking biallelic deletion, which confers a high probability of induction failure with contemporary therapy, should be assigned to alternative therapy in the context of a prospective clinical trial.
doi:10.1200/JCO.2010.28.3390
PMCID: PMC2940399  PMID: 20644084
13.  Phosphatase-dependent and -independent Functions of Shp2 in Neural Crest Cells Underlie LEOPARD Syndrome Pathogenesis 
Developmental cell  2010;18(5):750-762.
SUMMARY
The tyrosine phosphatase SHP2 (PTPN11) regulates cellular proliferation, survival, migration and differentiation during development. Germline mutations in PTPN11 cause Noonan and LEOPARD syndromes, which have overlapping clinical features. Paradoxically, Noonan syndrome mutations increase SHP2 phosphatase activity, while LEOPARD syndrome mutants are catalytically impaired, raising the possibility that SHP2 has phosphatase-independent roles. By comparing shp2-deficient zebrafish embryos with those injected with mRNA encoding LEOPARD syndrome point mutations, we identify a phosphatase- and Erk-dependent role for Shp2 in neural crest specification and migration. We also identify an unexpected phosphatase-and Erk-independent function, mediated through its SH2 domains, which is evolutionarily conserved and prevents p53-mediated apoptosis in the brain and neural crest. Our results indicate that previously enigmatic aspects of LEOPARD syndrome pathogenesis can be explained by the combined effects of loss of Shp2 catalytic function and retention of an SH2 domain-mediated role that is essential for neural crest cell survival.
doi:10.1016/j.devcel.2010.03.009
PMCID: PMC3035154  PMID: 20493809
14.  ATM-deficient thymic lymphoma is associated with aberrant tcrd rearrangement and gene amplification 
The Journal of Experimental Medicine  2010;207(7):1369-1380.
Ataxia telangiectasia mutated (ATM) deficiency predisposes humans and mice to T lineage lymphomas with recurrent chromosome 14 translocations involving the T cell receptor α/δ (Tcra/d) locus. Such translocations have been thought to result from aberrant repair of DNA double-strand breaks (DSBs) during Tcra locus V(D)J recombination, and to require the Tcra enhancer (Eα) for Tcra rearrangement or expression of the translocated oncogene. We now show that, in addition to the known chromosome 14 translocation, ATM-deficient mouse thymic lymphomas routinely contain a centromeric fragment of chromosome 14 that spans up to the 5′ boundary of the Tcra/d locus, at which position a 500-kb or larger region centromeric to Tcra/d is routinely amplified. In addition, they routinely contain a large deletion of the telomeric end of one copy of chromosome 12. In contrast to prior expectations, the recurrent translocations and amplifications involve V(D)J recombination–initiated breaks in the Tcrd locus, as opposed to the Tcra locus, and arise independently of the Eα. Overall, our studies reveal previously unexpected mechanisms that contribute to the oncogenic transformation of ATM-deficient T lineage cells.
doi:10.1084/jem.20100285
PMCID: PMC2901073  PMID: 20566716
15.  Emi1 Maintains Genomic Integrity during Zebrafish Embryogenesis and Cooperates with p53 in Tumor Suppression▿  
Molecular and Cellular Biology  2009;29(21):5911-5922.
A growing body of evidence indicates that early mitotic inhibitor 1 (Emi1) is essential for genomic stability, but how this function relates to embryonic development and cancer pathogenesis remains unclear. We have identified a zebrafish mutant line in which deficient emi1 gene expression results in multilineage hematopoietic defects and widespread developmental defects that are p53 independent. Cell cycle analyses of Emi1-depleted zebrafish or human cells showed chromosomal rereplication, and metaphase preparations from mutant zebrafish embryos revealed rereplicated, unsegregated chromosomes and polyploidy. Furthermore, EMI1-depleted mammalian cells relied on topoisomerase IIα-dependent mitotic decatenation to progress through metaphase. Interestingly, the loss of a single emi1 allele in the absence of p53 enhanced the susceptibility of adult fish to neural sheath tumorigenesis. Our results cast Emi1 as a critical regulator of genomic fidelity during embryogenesis and suggest that the factor may act as a tumor suppressor.
doi:10.1128/MCB.00558-09
PMCID: PMC2772726  PMID: 19704007
16.  Chk1 Suppresses a Caspase-2 Apoptotic Response to DNA Damage that Bypasses p53, Bcl-2, and Caspase-3 
Cell  2008;133(5):864-877.
SUMMARY
Evasion of DNA damage-induced cell death, via mutation of the p53 tumor suppressor or overexpression of prosurvival Bcl-2 family proteins, is a key step toward malignant transformation and therapeutic resistance. We report that depletion or acute inhibition of checkpoint kinase 1 (Chk1) is sufficient to restore γ-radiation-induced apoptosis in p53 mutant zebrafish embryos. Surprisingly, caspase-3 is not activated prior to DNA fragmentation, in contrast to classical intrinsic or extrinsic apoptosis. Rather, an alternative apoptotic program is engaged that cell autonomously requires atm (ataxia telangiectasia mutated), atr (ATM and Rad3-related) and caspase-2, and is not affected by p53 loss or overexpression of bcl-2/xl. Similarly, Chk1 inhibitor-treated human tumor cells hyperactivate ATM, ATR, and caspase-2 after γ-radiation and trigger a caspase-2-dependent apoptotic program that bypasses p53 deficiency and excess Bcl-2. The evolutionarily conserved “Chk1-suppressed” pathway defines a novel apoptotic process, whose responsiveness to Chk1 inhibitors and insensitivity to p53 and BCL2 alterations have important implications for cancer therapy.
doi:10.1016/j.cell.2008.03.037
PMCID: PMC2719897  PMID: 18510930
17.  Activating mutations in ALK provide a therapeutic target in neuroblastoma 
Nature  2008;455(7215):975-978.
Neuroblastoma, an embryonal tumor of the peripheral sympathetic nervous system, accounts for approximately 15% of all deaths due to childhood cancer1. High-risk neuroblastomas, prevalent in the majority of patients, are rapidly progressive; even with intensive myeloablative chemotherapy, relapse is common and almost uniformly fatal2,3. Here we report the detection of previously unknown mutations in the ALK gene, which encodes a receptor tyrosine kinase, in 8% of primary neuroblastomas. Five non-synonymous sequence variations were identified in the kinase domain of ALK, of which three were somatic and two were germline. The most frequent mutation, F1174L, was also identified in three different neuroblastoma cell lines. ALK cDNAs encoding the F1174L and R1275Q variants, but not the wild-type ALK cDNA, transformed IL-3-dependent murine hematopoietic Ba/F3 cells to cytokine-independent growth. Ba/F3 cells expressing these mutations were sensitive to a small-molecule inhibitor of ALK, TAE6844. Furthermore, two human neuroblastoma cell lines harboring the F1174L mutation were sensitive to the inhibitor. Cytotoxicity was associated with increased levels of apoptosis as measured by TUNEL-labeling. shRNA-mediated knockdown of ALK expression in neuroblastoma cell lines with the F1174L mutation also resulted in apoptosis and impaired cell proliferation. Thus, activating alleles of the ALK receptor tyrosine kinase are present in primary neuroblastoma tumors and in established neuroblastoma cell lines, and confer sensitivity to ALK inhibition with small molecules, providing a molecular rationale for targeted therapy of this disease.
doi:10.1038/nature07397
PMCID: PMC2587486  PMID: 18923525
18.  RelA-Associated Inhibitor Blocks Transcription of Human Immunodeficiency Virus Type 1 by Inhibiting NF-κB and Sp1 Actions 
Journal of Virology  2002;76(16):8019-8030.
RelA-associated inhibitor (RAI) is an inhibitor of nuclear factor κB (NF-κB) newly identified by yeast two-hybrid screen as an interacting protein of the p65 (RelA) subunit. In this study, we attempted to examine the effect of RAI on transcription and replication of human immunodeficiency virus type 1 (HIV-1). We found that RAI inhibited gene expression from the HIV-1 long terminal repeat (LTR) even at the basal level. Upon in vitro DNA-binding reactions, RAI could directly block the DNA-binding of p65 subunit of NF-κB but not that of the p50 subunit or AP1. We found that RAI could also inhibit the DNA-binding of Sp1 and thus inhibit the basal HIV-1 promoter activity. We further examined the effects of RAI on Sp1 and found that RAI colocalizes with Sp1 in the nucleus and interacts with Sp1 in vitro and in vivo. Moreover, we found that RAI efficiently blocked the HIV-1 replication when cotransfected with a full-length HIV-1 clone. These findings indicate that RAI acts as an efficient inhibitor of HIV-1 gene expression in which both NF-κB and Sp1 play major roles.
doi:10.1128/JVI.76.16.8019-8030.2002
PMCID: PMC155123  PMID: 12134007

Results 1-18 (18)