Search tips
Search criteria

Results 1-20 (20)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  MBL-II-141, a chromone derivative, enhances irinotecan (CPT-11) anticancer efficiency in ABCG2-positive xenografts 
Oncotarget  2015;5(23):11957-11970.
ABCG2 is responsible for the multidrug resistance (MDR) phenotype, and strongly modulates cancer outcomes. Its high expression at a number of physiological barriers, including blood-brain and intestinal barriers, impacts on drug pharmacokinetics parameters. We characterized MBL-II-141, a specific and potent ABCG2 inhibitor. Combination of 10 mg/kg MBL-II-141 with the anticancer agent CPT-11 completely blocked the growth of 90% freshly implanted ABCG2-positive tumors. Moreover, the same combination slowed the growth of already established tumors. As required for preclinical development, we defined the main pharmacokinetics parameters of MBL-II-141 and its influence on the kinetics of CPT-11 and its active metabolite SN-38 in mice. MBL-II-141 distribution into the brain occurred at a low, but detectable, level. Interestingly, preliminary data suggested that MBL-II-141 is well tolerated (at 50 mg/kg) and absorbed upon force-feeding. MBL-II-141 induced a potent sensitization of ABCG2-positive xenografts to CPT-11 through in vivo ABCG2 inhibition. MBL-II-141 strongly increased CPT-11 levels in the brain, and therefore would be a valuable agent to improve drug distribution into the brain to efficiently treat aggressive gliomas. Safety and other pharmacological data strongly support the reglementary preclinical development of MBL-II-141.
PMCID: PMC4323000  PMID: 25474134
ABCG2; MDR phenotype; Inhibitors; Chemosensitization
2.  ABCG2, a novel antigen to sort luminal progenitors of BRCA1- breast cancer cells 
Molecular Cancer  2014;13(1):213.
Tumor-initiating cells (TICs), aka “cancer stem cells”, are believed to fuel tumors and to sustain therapy resistance and systemic metastasis. Breast cancer is the first human carcinoma in which a subpopulation of cells displaying a specific CD44+/CD24-/low/ESA+ antigenic phenotype was found to have TIC properties. However, CD44+/CD24-/low/ESA+ is not a universal marker phenotype of TICs in all breast cancer subtypes. The aim of this study was to identify novel antigens with which to isolate the TIC population of the basal-A/basal-like breast cancer cell lines.
We used polychromatic flow-cytometry to characterize the cell surface of several breast cancer cell lines that may represent different tumor molecular subtypes. We next used fluorescence-activated cell sorting to isolate the cell subpopulations of interest from the cell lines. Finally, we explored the stem-like and tumorigenic properties of the sorted cell subpopulations using complementary in vitro and in vivo approaches: mammosphere formation assays, soft-agar colony assays, and tumorigenic assays in NOD/SCID mice.
The CD44+/CD24+ subpopulation of the BRCA1-mutated basal-A/basal-like cell line HCC1937 is enriched in several stemness markers, including the ABCG2 transporter (i.e., the CD338 antigen). Consistently, CD338-expressing cells were also enriched in CD24 expression, suggesting that coexpression of these two antigenic markers may segregate TICs in this cell line. In support of ABCG2 expression in TICs, culturing of HCC1937 cells in ultra-low adherent conditions to enrich them in precursor/stem-cells resulted in an increase in CD338-expressing cells. Furthermore, CD338-expressing cells, unlike their CD338-negative counterparts, displayed stemness and transformation potential, as assessed in mammosphere and colony formation assays. Lastly, CD338-expressing cells cultured in ultra-low adherent conditions maintained the expression of CD326/EpCAM and CD49f/α6-integrin, which is a combination of antigens previously assigned to luminal progenitors.
Collectively, our data suggest that CD338 expression is specific to the tumor-initiating luminal progenitor subpopulation of BRCA1-mutated cells and is a novel antigen with which to sort this subpopulation.
Electronic supplementary material
The online version of this article (doi:10.1186/1476-4598-13-213) contains supplementary material, which is available to authorized users.
PMCID: PMC4176869  PMID: 25216750
Basal-like breast cancer (BLBC); Tumor-initiating cells (TICs); CD338/ABGG2; Antigenic phenotype
3.  Epithelial-mesenchymal transition transcription factors and miRNAs: “Plastic surgeons” of breast cancer 
Growing evidence suggests that breast cancer cell plasticity arises due to a partial reactivation of epithelial-mesenchymal transition (EMT) programs in order to give cells pluripotency, leading to a stemness-like phenotype. A complete EMT would be a dead end program that would render cells unable to fully metastasize to distant organs. Evoking the EMT-mesenchymal-to-epithelial transition (MET) cascade promotes successful colonization of distal target tissues. It is unlikely that direct reprogramming or trans-differentiation without passing through a pluripotent stage would be the preferred mechanism during tumor progression. This review focuses on key EMT transcriptional regulators, EMT-transcription factors involved in EMT (TFs) and the miRNA pathway, which are deregulated in breast cancer, and discusses their implications in cancer cell plasticity. Cross-regulation between EMT-TFs and miRNAs, where miRNAs act as co-repressors or co-activators, appears to be a pivotal mechanism for breast cancer cells to acquire a stem cell-like state, which is implicated both in breast metastases and tumor recurrence. As a master regulator of miRNA biogenesis, the ribonuclease type III endonuclease Dicer plays a central role in EMT-TFs/miRNAs regulating networks. All these EMT-MET key regulators represent valuable new prognostic and predictive markers for breast cancer as well as promising new targets for drug-resistant breast cancers.
PMCID: PMC4127603  PMID: 25114847
Embryonic transcription factors; Epithelial to mesenchymal transition; Breast cancer; MicroRNAs; Dicer; Feedback loop
4.  Snail Family Members Unequally Trigger EMT and Thereby Differ in Their Ability to Promote the Neoplastic Transformation of Mammary Epithelial Cells 
PLoS ONE  2014;9(3):e92254.
By fostering cell commitment to the epithelial-to-mesenchymal transition (EMT), SNAIL proteins endow cells with motility, thereby favoring the metastatic spread of tumor cells. Whether the phenotypic change additionally facilitates tumor initiation has never been addressed. Here we demonstrate that when a SNAIL protein is ectopically produced in non-transformed mammary epithelial cells, the cells are protected from anoikis and proliferate under low-adherence conditions: a hallmark of cancer cells. The three SNAIL proteins show unequal oncogenic potential, strictly correlating with their ability to promote EMT. SNAIL3 especially behaves as a poor EMT-inducer comforting the concept that the transcription factor functionally diverges from its two related proteins.
PMCID: PMC3956896  PMID: 24638100
5.  Modulation of Oxidative Stress by Twist Oncoproteins 
PLoS ONE  2013;8(8):e72490.
Expression of developmental genes Twist1 and Twist2 is reactivated in many human tumors. Among their oncogenic activities, induction of epithelial to mesenchymal transition is believed to increase cell motility and invasiveness and may be related to acquisition of cancer stem cell phenotype. In addition, Twist proteins promote malignant conversion by overriding two oncogene-induced failsafe programs: senescence and apoptosis. Reactive oxygen species (ROS) are also important mediators of apoptosis, senescence and motility and are tightly linked to disease, notably to cancer. We report here that Twist factors and ROS are functionally linked. In wild type cells both Twist1 and Twist2 exhibit antioxidant properties. We show that Twist-driven modulation of oncogene-induced apoptosis is linked to its effects on oxidative stress. Finally, we identify several targets that mediate Twist antioxidant activity. These findings unveil a new function of Twist factors that could be important in explaining their pleiotropic role during carcinogenesis.
PMCID: PMC3742535  PMID: 23967308
6.  Variants in the Netrin-1 Receptor UNC5C Prevent Apoptosis and Increase Risk for Familial Colorectal Cancer 
Gastroenterology  2011;141(6):2039-2046.
Background & Aims
Expression of the netrin-1 dependence receptor UNC5C is reduced in many colorectal tumors; mice with the UNC5C mutations have increased progression of intestinal tumors. We investigated whether specific variants in UNC5C increase risk for colorectal cancer (CRC).
We analyzed the sequence of UNC5C in blood samples from 1801 patients with CRC and 4152 controls from 3 cohorts (France, USA, and Finland). Almost all cases from France and the USA had familial CRC; of the Finnish cases, 92/984 were familial. We analyzed whether CRC segregates with the UNC5C variant A628K in 3 families with histories of CRC. We also performed haplotype analysis, to determine the origin of this variant.
Of 817 patients with familial CRC, 14 had 1 of 4 different, unreported missense variants in UNC5C. The variants p.Asp353Asn (encodes D353N), p.Arg603Cys (encodes R603C), and p.Gln630Glu (encodes Q630E) did not occur significantly more often in cases than controls. The variant p.Ala628Lys (A628K) was detected in 3 families in the French cohort (odds ratio [OR], 8.8; Wald’s 95% confidence interval [CI], 1.47–52.93; P=.03) and in 2 families the US cohort (OR, 1.9; P=.6), but was not detected in the Finnish cohort; UNC5C A628K segregated with CRC in families. Three families with A628K had a 109 kb identical haplotype that spanned most of UNC5C, indicating recent origin of this variant in Caucasians (14 generations; 95% CI, 6–36 generations). Transfection of HEK293T cells with UNC5C-A628K significantly reduced apoptosis compared to wild-type UNC5C, measured in an assay of active caspase-3.
Inherited mutations in UNC5C prevent apoptosis and increase risk for CRC.
PMCID: PMC3221775  PMID: 21893118
Colon cancer; tumor suppression; tumorigenesis; neoplasm; UNC5H3
7.  EMT Inducers Catalyze Malignant Transformation of Mammary Epithelial Cells and Drive Tumorigenesis towards Claudin-Low Tumors in Transgenic Mice 
PLoS Genetics  2012;8(5):e1002723.
The epithelial-mesenchymal transition (EMT) is an embryonic transdifferentiation process consisting of conversion of polarized epithelial cells to motile mesenchymal ones. EMT–inducing transcription factors are aberrantly expressed in multiple tumor types and are known to favor the metastatic dissemination process. Supporting oncogenic activity within primary lesions, the TWIST and ZEB proteins can prevent cells from undergoing oncogene-induced senescence and apoptosis by abolishing both p53- and RB-dependent pathways. Here we show that they also downregulate PP2A phosphatase activity and efficiently cooperate with an oncogenic version of H-RAS in malignant transformation of human mammary epithelial cells. Thus, by down-regulating crucial tumor suppressor functions, EMT inducers make cells particularly prone to malignant conversion. Importantly, by analyzing transformed cells generated in vitro and by characterizing novel transgenic mouse models, we further demonstrate that cooperation between an EMT inducer and an active form of RAS is sufficient to trigger transformation of mammary epithelial cells into malignant cells exhibiting all the characteristic features of claudin-low tumors, including low expression of tight and adherens junction genes, EMT traits, and stem cell–like characteristics. Claudin-low tumors are believed to be the most primitive breast malignancies, having arisen through transformation of an early epithelial precursor with inherent stemness properties and metaplastic features. Challenging this prevailing view, we propose that these aggressive tumors arise from cells committed to luminal differentiation, through a process driven by EMT inducers and combining malignant transformation and transdifferentiation.
Author Summary
The epithelial-mesenchymal transition (EMT) is essential to germ layer formation and cell migration in the early vertebrate embryo. EMT is aberrantly reactivated under pathological conditions, including fibrotic disease and cancer progression. In the latter process, EMT is known to promote invasion and metastatic dissemination of tumor cells. EMT is orchestrated by a variety of embryonic transcription factors called EMT inducers. Among these, the TWIST and ZEB proteins are known to be frequently reactivated during tumor development. We here report in vitro and in vivo observations demonstrating that activation of these factors fosters cell transformation and primary tumor growth by alleviating key oncosuppressive mechanisms, thereby minimizing the number of events required for acquisition of malignant properties. In a model of breast cancer, cooperation between a single EMT inducer and a single mitogenic oncoprotein is sufficient to transform mammary epithelial cells into malignant cells and to drive the development of aggressive and undifferentiated tumors. Overall, these data underscore the oncogenic role of embryonic transcription factors in initiating the development of poor-prognosis neoplasms by promoting both cell transformation and dedifferentiation.
PMCID: PMC3359981  PMID: 22654675
8.  TWIST1 a New Determinant of Epithelial to Mesenchymal Transition in EGFR Mutated Lung Adenocarcinoma 
PLoS ONE  2012;7(1):e29954.
Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT). The aim of this study was to investigate the possible implication of TWIST1 reactivation on the acquisition of a mesenchymal phenotype in EGFR mutated lung cancer. We studied a series of consecutive lung adenocarcinoma from Caucasian non-smokers for which surgical frozen samples were available (n = 33) and showed that TWIST1 expression was linked to EGFR mutations (P<0.001), to low CDH1 expression (P<0.05) and low disease free survival (P = 0.044). To validate that TWIST1 is a driver of EMT in EGFR mutated lung cancer, we used five human lung cancer cell lines and demonstrated that EMT and the associated cell mobility were dependent upon TWIST1 expression in cells with EGFR mutation. Moreover a decrease of EGFR pathway stimulation through EGF retrieval or an inhibition of TWIST1 expression by small RNA technology reversed the phenomenon. Collectively, our in vivo and in vitro findings support that TWIST1 collaborates with the EGF pathway in promoting EMT in EGFR mutated lung adenocarcinoma and that large series of EGFR mutated lung cancer patients are needed to further define the prognostic role of TWIST1 reactivation in this subgroup.
PMCID: PMC3260187  PMID: 22272264
9.  Influence of Neuroblastoma Stage on Serum-Based Detection of MYCN Amplification 
Pediatric blood & cancer  2009;53(3):329-331.
MYCN oncogene amplification has been defined as the most important prognostic factor for neuroblastoma, the most common solid extracranial neoplasm in children. High copy numbers are strongly associated with rapid tumor progression and poor outcome, independently of tumor stage or patient age, and this has become an important factor in treatment stratification.
By Real Time Quantitative PCR analysis, we evaluated the clinical relevance of circulating MYCN DNA of 267 patients with locoregional or metastatic neuroblastoma in children less than 18 months of age.
For patients in this age group with INSS stage 4 or 4S NB and stage 3 patients, serum-based determination of MYCN DNA sequences had good sensitivity (85%, 83% and 75% respectively) and high specificity (100%) when compared to direct tumor gene determination. In contrast, the approach showed low sensitivity patients with stage 1 and 2 disease.
Our results show that the sensitivity of the serum-based MYCN DNA sequence determination depends on the stage of the disease. However, this simple, reproducible assay may represent a reasonably sensitive and very specific tool to assess tumor MYCN status in cases with stage 3 and metastatic disease for whom a wait and see strategy is often recommended.
PMCID: PMC2857568  PMID: 19301388
Circulating DNA; MYCN amplification; neuroblastoma
10.  Lobular and ductal carcinomas of the breast have distinct genomic and expression profiles 
Oncogene  2008;27(40):5359-5372.
Invasive ductal carcinomas (IDCs) and invasive lobular carcinomas (ILCs) are the two major pathological types of breast cancer. Epidemiological and histoclinical data suggest biological differences, but little is known about the molecular alterations involved in ILCs. We undertook a comparative large-scale study by both array-CGH and cDNA microarray of a set of 50 breast tumors (21 classic ILCs and 29 IDCs) selected on homogeneous histoclinical criteria. Results were validated on independent tumor sets, as well as by quantitative RT-PCR. ILCs and IDCs presented differences at both the genomic and expression levels with ILCs being less rearranged and heterogeneous than IDCs. Supervised analysis defined a 75-BACs signature discriminating accurately ILCs from IDCs. Expression profiles identified two subgroups of ILCs: typical ILCs (~50%), which were homogeneous and displayed a normal-like molecular pattern, and atypical ILCs, more heterogeneous with features intermediate between ILCs and IDCs. Supervised analysis identified a 75-gene expression signature that discriminated ILCs from IDCs, with many genes involved in cell adhesion, motility, apoptosis, protein folding, extracellular matrix, and protein phosphorylation. Although ILCs and IDCs share common alterations, our data show that ILCs and IDCs could be distinguished on the basis of their genomic and expression profiles suggesting that they evolve along distinct genetic pathways.
PMCID: PMC2902854  PMID: 18490921
Breast Neoplasms; genetics; metabolism; pathology; Cadherins; genetics; metabolism; Carcinoma, Ductal, Breast; genetics; metabolism; pathology; Carcinoma, Lobular; genetics; metabolism; pathology; Chromosomes, Artificial, Bacterial; Female; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; Mutation; genetics; Nucleic Acid Hybridization; Oligonucleotide Array Sequence Analysis; RNA, Messenger; genetics; metabolism; RNA, Neoplasm; genetics; metabolism; Reverse Transcriptase Polymerase Chain Reaction; Tumor Suppressor Protein p53; genetics; breast cancer; DNA microarray; genetic profiles; array-CGH
11.  Upstream ORF affects MYCN translation depending on exon 1b alternative splicing 
BMC Cancer  2009;9:445.
The MYCN gene is transcribed into two major mRNAs: one full-length (MYCN) and one exon 1b-spliced (MYCNΔ1b) mRNA. But nothing is known about their respective ability to translate the MYCN protein.
Plasmids were prepared to enable translation from the upstream (uORF) and major ORF of the two MYCN transcripts. Translation was studied after transfection in neuroblastoma SH-EP cell line. Impact of the upstream AUG on translation was evaluated after directed mutagenesis. Functional study with the two MYCN mRNAs was conducted by a cell viability assay. Existence of a new protein encoded by the MYCNΔ1b uORF was explored by designing a rabbit polyclonal antibody against a specific epitope of this protein.
Both are translated, but higher levels of protein were seen with MYCNΔ1b mRNA. An upstream ORF was shown to have positive cis-regulatory activity on translation from MYCN but not from MYCNΔ1b mRNA. In transfected SH-EP neuroblastoma cells, high MYCN dosage obtained with MYCNΔ1b mRNA translation induces an antiapoptotic effect after serum deprivation that was not observed with low MYCN expression obtained with MYCN mRNA. Here, we showed that MYCNOT: MYCN Overlap Transcript, a new protein of unknown function is translated from the upstream AUG of MYCNΔ1b mRNA.
Existence of upstream ORF in MYCN transcripts leads to a new level of MYCN regulation. The resulting MYCN dosage has a weak but significant anti-apoptotic activity after intrinsic apoptosis induction.
PMCID: PMC2810302  PMID: 20017904
12.  Netrin-1 acts as a survival factor for aggressive neuroblastoma 
Neuroblastoma (NB), the most frequent solid tumor of early childhood, is diagnosed as a disseminated disease in >60% of cases, and several lines of evidence support the resistance to apoptosis as a prerequisite for NB progression. We show that autocrine production of netrin-1, a multifunctional laminin-related molecule, conveys a selective advantage in tumor growth and dissemination in aggressive NB, as it blocks the proapoptotic activity of the UNC5H netrin-1 dependence receptors. We show that such netrin-1 up-regulation is a potential marker for poor prognosis in stage 4S and, more generally, in NB stage 4 diagnosed infants. Moreover, we propose that interference with the netrin-1 autocrine loop in malignant neuroblasts could represent an alternative therapeutic strategy, as disruption of this loop triggers in vitro NB cell death and inhibits NB metastasis in avian and mouse models.
PMCID: PMC2715117  PMID: 19349462
14.  Inactivation of TIF1γ Cooperates with KrasG12D to Induce Cystic Tumors of the Pancreas 
PLoS Genetics  2009;5(7):e1000575.
Inactivation of the Transforming Growth Factor Beta (TGFβ) tumor suppressor pathway contributes to the progression of Pancreatic Ductal AdenoCarcinoma (PDAC) since it is inactivated in virtually all cases of this malignancy. Genetic lesions inactivating this pathway contribute to pancreatic tumor progression in mouse models. Transcriptional Intermediary Factor 1 gamma (TIF1γ) has recently been proposed to be involved in TGFβ signaling, functioning as either a positive or negative regulator of the pathway. Here, we addressed the role of TIF1γ in pancreatic carcinogenesis. Using conditional Tif1γ knockout mice (Tif1γlox/lox), we selectively abrogated Tif1γ expression in the pancreas of Pdx1-Cre;Tif1γlox/lox mice. We also generated Pdx1-Cre;LSL-KrasG12D;Tif1γlox/lox mice to address the effect of Tif1γ loss-of-function in precancerous lesions induced by oncogenic KrasG12D. Finally, we analyzed TIF1γ expression in human pancreatic tumors. In our mouse model, we showed that Tif1γ was dispensable for normal pancreatic development but cooperated with Kras activation to induce pancreatic tumors reminiscent of human Intraductal Papillary Mucinous Neoplasms (IPMNs). Interestingly, these cystic lesions resemble those observed in Pdx1-Cre;LSL-KrasG12D;Smad4lox/lox mice described by others. However, distinctive characteristics, such as the systematic presence of endocrine pseudo-islets within the papillary projections, suggest that SMAD4 and TIF1γ don't have strictly redundant functions. Finally, we report that TIF1γ expression is markedly down-regulated in human pancreatic tumors by quantitative RT–PCR and immunohistochemistry supporting the relevance of these findings to human malignancy. This study suggests that TIF1γ is critical for tumor suppression in the pancreas, brings new insight into the genetics of pancreatic cancer, and constitutes a promising model to decipher the respective roles of SMAD4 and TIF1γ in the multifaceted functions of TGFβ in carcinogenesis and development.
Author Summary
Inactivation of the TGFβ tumor suppressor pathway contributes to the progression of Pancreatic Ductal AdenoCarcinoma (PDAC), a devastating malignancy. Transcriptional Intermediary Factor 1γ (TIF1γ) has recently been proposed to be involved in TGFβ signaling, a pathway inactivated in virtually all cases of this malignancy. To address the role of TIF1γ in pancreatic carcinogenesis, we used conditional Tif1γ knockout mice. In a genetic background expressing a constitutively active mutation of KRAS oncogene (KrasG12D) recurrently found in patients with PDAC, Tif1γ inactivation induces pancreatic precancerous lesions resembling those observed in the absence of Smad4, a key player involved TGFβ signal transduction. This observation strengthens the notion that TIF1γ plays an active role in TGFβ signaling. Interestingly, we also found that TIF1γ expression was markedly down-regulated in human pancreatic tumors supporting the relevance of our findings to human malignancy. Characterization of new players involved in the outbreak of early pancreatic lesions that will eventually evolve into invasive pancreatic cancer is crucial to detect the disease earlier and eventually develop new therapeutic drugs.
PMCID: PMC2706992  PMID: 19629168
15.  Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition 
PLoS ONE  2008;3(8):e2888.
Recently, two novel concepts have emerged in cancer biology: the role of so-called “cancer stem cells” in tumor initiation, and the involvement of an epithelial-mesenchymal transition (EMT) in the metastatic dissemination of epithelial cancer cells. Using a mammary tumor progression model, we show that cells possessing both stem and tumorigenic characteristics of “cancer stem cells” can be derived from human mammary epithelial cells following the activation of the Ras-MAPK pathway. The acquisition of these stem and tumorigenic characters is driven by EMT induction.
PMCID: PMC2492808  PMID: 18682804
16.  Effect of bortezomib on human neuroblastoma: analysis of molecular mechanisms involved in cytotoxicity 
Molecular Cancer  2008;7:50.
Bortezomib, a specific and selective inhibitor of the 26S proteasome with antitumor activity against a wide range of malignancies, has been approved for the treatment of relapsed or refractory multiple myeloma and other cancers. Recently, bortezomib has been identified as an effective inhibitor of neuroblastoma cell growth and angiogenesis.
In the present study, we demonstrate that some neuroblastoma cell lines are actually resistant to bortezomib. We have sought to characterize the main pathway by which proteasome inhibition leads to apoptosis, and to define the mechanism responsible for resistance to bortezomib in neuroblastoma cells. Our results show that SB202190, an inhibitor of mitogen-activated protein kinase (MAPK) p38, enhances the ability of bortezomib to induce apoptosis by preventing the phosphorylation of the heat shock protein (HSP) 27.
This study opens the way to further clinical investigations and suggests a potential benefit of using a combination of bortezomib with an inhibitor of p38 MAPK for the treatment of neuroblastoma relapse.
PMCID: PMC2442611  PMID: 18534018
17.  Should We Consider Cancers as Embryonic Diseases or as Consequences of Stem-Cell Deregulation? 
Clinical Medicine. Oncology  2008;2:363-366.
Cancers have long been described as the result of successive selections of somatic cells progressively acquiring growth and survival advantages. Such a model was hardly compatible with the obvious heterogeneity of the cancer cell population present in tumors. This heterogeneity rather suggests that mutations hint multipotent cells that, in addition to the resulting proliferation and survival advantages, display differentiation capabilities. Adult stem cells or progenitors display similar properties, supporting the concept that cancers actually originate from these cells. The recent observation that differentiated cells can dedifferentiate and acquire stemness properties suggests an alternative and additional explanation for the origin of “cancer-initiating” cells and reopens the debate of the contribution of somatic cells to cancer progression.
PMCID: PMC3161693  PMID: 21892299
cancer; cancer-initiating cells; embryonic genes
18.  Prognostic significance of urokinase plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in lymph node- and hormone receptor-positive breast cancer 
BMC Cancer  2006;6:216.
One of the most thoroughly studied systems in relation to its prognostic relevance in patients with breast cancer, is the plasminogen activation system that comprises of, among others, the urokinase Plasminogen Activator (uPA) and its main inhibitor, the Plasminogen Activator Inhibitor-1 (PAI-1). In this study, we investigated the prognostic value of uPA and PAI-1 at the mRNA level in lymph node- and hormone receptor-positive breast cancer.
The study included a retrospective series of 87 patients with hormone-receptor positive and axillary lymph node-positive breast cancer. All patients received radiotherapy, adjuvant anthracycline-based chemotherapy and five years of tamoxifen treatment. The median patient age was 54 and the median follow-up time was 79 months. Distant relapse occurred in 30 patients and 22 patients died from breast cancer during follow-up. We investigated the prognostic value of uPA and PAI-1 at the mRNA level as measured by real-time quantitative RT-PCR.
uPA and PAI-1 gene expression was not found to be correlated with any of the established clinical and pathological factors. Metastasis-free Survival (MFS) and Breast Cancer specific Survival (BCS) were significantly shorter in patients expressing high levels of PAI-1 mRNA (p < 0.0001; p < 0.0001; respectively). In Cox multivariate analysis, the level of PAI-1 mRNA appeared to be the strongest prognostic factor for MFS (Hazard Ratio (HR) = 10.12; p = 0.0002) and for BCS (HR = 13.17; p = 0.0003). Furthermore, uPA gene expression was not significantly associated neither with MFS (p = 0.41) nor with BCS (p = 0.19). In a Cox-multivariate regression analysis, uPA expression did not demonstrate significant independent prognostic value.
These findings indicate that high PAI-1 mRNA expression represents a strong and independent unfavorable prognostic factor for the development of metastases and for breast cancer specific survival in a population of hormone receptor- and lymph node-positive breast cancer patients.
PMCID: PMC1564186  PMID: 16945123
19.  Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions 
BMC Biotechnology  2003;3:18.
Real-time PCR is increasingly being adopted for RNA quantification and genetic analysis. At present the most popular real-time PCR assay is based on the hybridisation of a dual-labelled probe to the PCR product, and the development of a signal by loss of fluorescence quenching as PCR degrades the probe. Though this so-called 'TaqMan' approach has proved easy to optimise in practice, the dual-labelled probes are relatively expensive.
We have designed a new assay based on SYBR-Green I binding that is quick, reliable, easily optimised and compares well with the published assay. Here we demonstrate its general applicability by measuring copy number in three different genetic contexts; the quantification of a gene rearrangement (T-cell receptor excision circles (TREC) in peripheral blood mononuclear cells); the detection and quantification of GLI, MYC-C and MYC-N gene amplification in cell lines and cancer biopsies; and detection of deletions in the OPA1 gene in dominant optic atrophy.
Our assay has important clinical applications, providing accurate diagnostic results in less time, from less biopsy material and at less cost than assays currently employed such as FISH or Southern blotting.
PMCID: PMC270040  PMID: 14552656
Real-time PCR; SYBR-green; rearrangement; amplification; deletion
20.  Interhelical loops within the bHLH domain are determinant in maintaining TWIST1–DNA complexes 
The basic helix-loop-helix (bHLH) transcription factor TWIST1 is essential to embryonic development, and hijacking of its function contributes to the development of numerous cancer types. It forms either a homodimer or a heterodimeric complex with an E2A or HAND partner. These functionally distinct complexes display sometimes antagonistic functions during development, so that alterations in the balance between them lead to pronounced morphological alterations, as observed in mice and in Saethre–Chotzen syndrome patients. We, here, describe the structures of TWIST1 bHLH–DNA complexes produced in silico through molecular dynamics simulations. We highlight the determinant role of the interhelical loops in maintaining the TWIST1–DNA complex structures and provide a structural explanation for the loss of function associated with several TWIST1 mutations/insertions observed in Saethre–Chotzen syndrome patients.
An animated interactive 3D complement (I3DC) is available in Proteopedia at
PMCID: PMC3869052  PMID: 23527594
TWIST; dimerization; DNA interaction; homology models; 3D-models; molecular dynamics; embryonic transcription factors; bHLH

Results 1-20 (20)