PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Fatal and Unanticipated Cardiorespiratory Disease in a Two-Year-Old Child with Hurler Syndrome Following Successful Stem Cell Transplant 
JIMD Reports  2013;10:119-123.
A 2-year-old female with Hurler syndrome (mucopolysaccharidosis type 1) died suddenly within 3 months of successful unrelated fully matched cord blood transplant, having received weekly enzyme replacement therapy (ERT) prior to transplant. Though an infectious aetiology was clinically suspected to be the cause of her unanticipated acute deterioration and untimely demise, autopsy findings suggested that a combination of pre-existing but sub-clinical Hurler related cardiopulmonary pathology and superimposed transplant related pulmonary venopathy as the basis of her death. This case highlights the limitations of ERT in ameliorating cardiorespiratory disease and the failure of standard pre-transplant investigations to detect significant abnormality related to her underlying condition. It also reinforces the importance of autopsy in explaining unanticipated events.
doi:10.1007/8904_2013_213
PMCID: PMC3755573  PMID: 23475750
2.  Enzyme replacement therapy and/or hematopoietic stem cell transplantation at diagnosis in patients with mucopolysaccharidosis type I: results of a European consensus procedure 
Background
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder that results in the accumulation of glycosaminoglycans causing progressive multi-organ dysfunction. Its clinical spectrum is very broad and varies from the severe Hurler phenotype (MPS I-H) which is characterized by early and progressive central nervous system (CNS) involvement to the attenuated Scheie phenotype (MPS I-S) with no CNS involvement. Indication, optimal timing, safety and efficacy of the two available treatment options for MPS I, enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT), are subject to continuing debate. A European consensus procedure was organized to reach consensus about the use of these two treatment strategies.
Methods
A panel of specialists, including 8 specialists for metabolic disorders and 7 bone marrow transplant physicians, all with acknowledged expertise in MPS I, participated in a modified Delphi process to develop consensus-based statements on MPS I treatment. Fifteen MPS I case histories were used to initiate the discussion and to anchor decisions around either treatment mode. Before and at the meeting all experts gave their opinion on the cases (YES/NO transplantation) and reasons for their decisions were collected. A set of draft statements on MPS I treatment options composed by a planning committee were discussed and revised during the meeting until full consensus.
Results
Full consensus was reached on several important issues, including the following: 1) The preferred treatment for patients with MPS I-H diagnosed before age 2.5 yrs is HSCT; 2) In individual patients with an intermediate phenotype HSCT may be considered if there is a suitable donor. However, there are no data on efficacy of HSCT in patients with this phenotype; 3) All MPS I patients including those who have not been transplanted or whose graft has failed may benefit significantly from ERT; 4) ERT should be started at diagnosis and may be of value in patients awaiting HSCT.
Conclusions
This multidisciplinary consensus procedure yielded consensus on the main issues related to therapeutic choices and research for MPS I. This is an important step towards an international, collaborative approach, the only way to obtain useful evidence in rare diseases.
doi:10.1186/1750-1172-6-55
PMCID: PMC3170181  PMID: 21831279
3.  MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2 
Molecular Cancer  2010;9:83.
Background
Neuroblastoma is a paediatric cancer of the sympathetic nervous system. The single most important genetic indicator of poor clinical outcome is amplification of the MYCN transcription factor. One of many down-stream MYCN targets is miR-184, which is either directly or indirectly repressed by this transcription factor, possibly due to its pro-apoptotic effects when ectopically over-expressed in neuroblastoma cells. The purpose of this study was to elucidate the molecular mechanism by which miR-184 conveys pro-apoptotic effects.
Results
We demonstrate that the knock-down of endogenous miR-184 has the opposite effect of ectopic up-regulation, leading to enhanced neuroblastoma cell numbers. As a mechanism of how miR-184 causes apoptosis when over-expressed, and increased cell numbers when inhibited, we demonstrate direct targeting and degradation of AKT2, a major downstream effector of the phosphatidylinositol 3-kinase (PI3K) pathway, one of the most potent pro-survival pathways in cancer. The pro-apoptotic effects of miR-184 ectopic over-expression in neuroblastoma cell lines is reproduced by siRNA inhibition of AKT2, while a positive effect on cell numbers similar to that obtained by the knock-down of endogenous miR-184 can be achieved by ectopic up-regulation of AKT2. Moreover, co-transfection of miR-184 with an AKT2 expression vector lacking the miR-184 target site in the 3'UTR rescues cells from the pro-apoptotic effects of miR-184.
Conclusions
MYCN contributes to tumorigenesis, in part, by repressing miR-184, leading to increased levels of AKT2, a direct target of miR-184. Thus, two important genes with positive effects on cell growth and survival, MYCN and AKT2, can be linked into a common genetic pathway through the actions of miR-184. As an inhibitor of AKT2, miR-184 could be of potential benefit in miRNA mediated therapeutics of MYCN amplified neuroblastoma and other forms of cancer.
doi:10.1186/1476-4598-9-83
PMCID: PMC2864218  PMID: 20409325
4.  Widespread Dysregulation of MiRNAs by MYCN Amplification and Chromosomal Imbalances in Neuroblastoma: Association of miRNA Expression with Survival 
PLoS ONE  2009;4(11):e7850.
MiRNAs regulate gene expression at a post-transcriptional level and their dysregulation can play major roles in the pathogenesis of many different forms of cancer, including neuroblastoma, an often fatal paediatric cancer originating from precursor cells of the sympathetic nervous system. We have analyzed a set of neuroblastoma (n = 145) that is broadly representative of the genetic subtypes of this disease for miRNA expression (430 loci by stem-loop RT qPCR) and for DNA copy number alterations (array CGH) to assess miRNA involvement in disease pathogenesis. The tumors were stratified and then randomly split into a training set (n = 96) and a validation set (n = 49) for data analysis. Thirty-seven miRNAs were significantly over- or under-expressed in MYCN amplified tumors relative to MYCN single copy tumors, indicating a potential role for the MYCN transcription factor in either the direct or indirect dysregulation of these loci. In addition, we also determined that there was a highly significant correlation between miRNA expression levels and DNA copy number, indicating a role for large-scale genomic imbalances in the dysregulation of miRNA expression. In order to directly assess whether miRNA expression was predictive of clinical outcome, we used the Random Forest classifier to identify miRNAs that were most significantly associated with poor overall patient survival and developed a 15 miRNA signature that was predictive of overall survival with 72.7% sensitivity and 86.5% specificity in the validation set of tumors. We conclude that there is widespread dysregulation of miRNA expression in neuroblastoma tumors caused by both over-expression of the MYCN transcription factor and by large-scale chromosomal imbalances. MiRNA expression patterns are also predicative of clinical outcome, highlighting the potential for miRNA mediated diagnostics and therapeutics.
doi:10.1371/journal.pone.0007850
PMCID: PMC2773120  PMID: 19924232

Results 1-4 (4)