PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Influence of Neuroblastoma Stage on Serum-Based Detection of MYCN Amplification 
Pediatric blood & cancer  2009;53(3):329-331.
Background
MYCN oncogene amplification has been defined as the most important prognostic factor for neuroblastoma, the most common solid extracranial neoplasm in children. High copy numbers are strongly associated with rapid tumor progression and poor outcome, independently of tumor stage or patient age, and this has become an important factor in treatment stratification.
Procedure
By Real Time Quantitative PCR analysis, we evaluated the clinical relevance of circulating MYCN DNA of 267 patients with locoregional or metastatic neuroblastoma in children less than 18 months of age.
Results
For patients in this age group with INSS stage 4 or 4S NB and stage 3 patients, serum-based determination of MYCN DNA sequences had good sensitivity (85%, 83% and 75% respectively) and high specificity (100%) when compared to direct tumor gene determination. In contrast, the approach showed low sensitivity patients with stage 1 and 2 disease.
Conclusion
Our results show that the sensitivity of the serum-based MYCN DNA sequence determination depends on the stage of the disease. However, this simple, reproducible assay may represent a reasonably sensitive and very specific tool to assess tumor MYCN status in cases with stage 3 and metastatic disease for whom a wait and see strategy is often recommended.
doi:10.1002/pbc.22009
PMCID: PMC2857568  PMID: 19301388
Circulating DNA; MYCN amplification; neuroblastoma
2.  Effect of bortezomib on human neuroblastoma: analysis of molecular mechanisms involved in cytotoxicity 
Molecular Cancer  2008;7:50.
Background
Bortezomib, a specific and selective inhibitor of the 26S proteasome with antitumor activity against a wide range of malignancies, has been approved for the treatment of relapsed or refractory multiple myeloma and other cancers. Recently, bortezomib has been identified as an effective inhibitor of neuroblastoma cell growth and angiogenesis.
Results
In the present study, we demonstrate that some neuroblastoma cell lines are actually resistant to bortezomib. We have sought to characterize the main pathway by which proteasome inhibition leads to apoptosis, and to define the mechanism responsible for resistance to bortezomib in neuroblastoma cells. Our results show that SB202190, an inhibitor of mitogen-activated protein kinase (MAPK) p38, enhances the ability of bortezomib to induce apoptosis by preventing the phosphorylation of the heat shock protein (HSP) 27.
Conclusion
This study opens the way to further clinical investigations and suggests a potential benefit of using a combination of bortezomib with an inhibitor of p38 MAPK for the treatment of neuroblastoma relapse.
doi:10.1186/1476-4598-7-50
PMCID: PMC2442611  PMID: 18534018

Results 1-2 (2)