Search tips
Search criteria

Results 1-20 (20)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Age-Dependent Prognostic Effect by Mitosis-Karyorrhexis Index in Neuroblastoma: A Report from the Children’s Oncology Group 
Prognostic effects of Mitosis-Karyorrhexis Index (MKI) used in the International Neuroblastoma Pathology Classification (INPC) are age-dependent. A total of 4,282 neuroblastomas reviewed at the Children’s Oncology Group Neuroblastoma Pathology Reference Laboratory (8/1/2001–3/31/2012) included 2,365 low-MKI (L-MKI), 1,068 intermediate-MKI (I-MKI), and 849 high-MKI (H-MKI) tumors. Cox proportional hazards models were fit to determine age cut-offs at which the relative risk of event/death was maximized in each MKI class. Backward-selected Cox models were fit to determine the prognostic strength of the age cut-offs for survival in the presence of other prognostic factors. The age cut-offs used in the INPC for L-MKI tumors (<60 months, n = 2,710, 84.0% ± 1.0% event-free survival [EFS], 93.8 ± 0.7% overall survival [OS] vs ≥60 months, n = 195, 49.8% ± 4.6% EFS, 71.7% ± 4.1% OS; P < 0.0001) and I-MKI tumors (<18 months, n = 568, 83.8% ± 2% EFS, 93.7% ± 1.3% OS vs ≥18 months, n = 500, 51.4% ± 2.9% EFS, 66.7% ± 2.7% OS; P < 0.0001) were within the effective range for distinguishing prognostic groups. As for H-MKI tumors (no cut-off age in the INPC, 51.0% ± 2.2% EFS, 64.4% ± 2.1% OS), a new cut-off of 3–4 months was suggested (<4 months, n = 38, 82.3% ± 8.4% EFS, 81.8% ± 8.5% OS vs ≥4 months, n = 811, 49.6% ± 2.2% EFS, 63.7% ± 2.1% OS, P = 0.0034 and 0.0437, respectively). Multivariate analyses revealed that cut-offs of 60 and 18 months for L-MKI and I-MKI tumors, respectively, were independently prognostic. However, the cut-off of 4 months for H-MKI tumors did not reach statistical significance in the presence of other factors. The age cut-offs for MKI classes (60 months for L-MKI, 18 months for I-MKI, no cut-off for H-MKI) in the current INPC are reasonable and effective for distinguishing prognostic groups with increased risk of event/death for older patients.
PMCID: PMC4340697  PMID: 25207821
age cut-off; International Neuroblastoma Pathology Classification; mitosis-karyorrhexis index; neuroblastoma; prognosis
2.  Mcl1 downregulation sensitizes neuroblastoma to cytotoxic chemotherapy and small molecule Bcl2-family antagonists 
Cancer biology & therapy  2009;8(16):1587-1595.
Neuroblastoma (NB) is a common, highly lethal pediatric cancer, with treatment failures largely attributable to the emergence of chemoresistance. The pro-survival Bcl2 homology (BH) proteins critically regulate apoptosis, and may represent important therapeutic targets for restoring drug sensitivity in NB. We used a human NB tumor tissue microarray to survey the expression of pro-survival BH proteins Mcl1 and Bcl2, and correlated expression to clinical prognostic factors and survival. Primary NB tumors heterogeneously expressed Mcl1 or Bcl2, with high expression correlating to high-risk phenotype. Co-expression is infrequent (11%), but correlates to reduced survival. Using RNA interference, we investigated the functional relevance of Mcl1 and Bcl2 in high-risk NB cell lines (SK-N-AS, IMR-5, NLF). Mcl1 knockdown induced apoptosis in all NB cell lines, while Bcl2 knockdown inhibited only NLF, suggesting functional heterogeneity Finally, we determined the relevance of Mcl1 in resistance to conventional chemotherapy (etoposide, doxorubicin) and small molecule Bcl2-family antagonists (ABT-737 and AT-101). Mcl1 silencing augmented sensitivity to chemotherapeutics 2- to 300-fold, while Bcl2 silencing did not, even in Bcl2-sensitive NLF cells. Resistance to ABT-737, which targets Bcl2/-w/-x, was overcome by Mcl1 knockdown. AT-101, which also neutralizes Mcl1, had single-agent cytotoxicity, further augmented by Mcl1 knockdown. In conclusion, Mcl1 appears a predominant pro-survival protein contributing to chemoresistance in NB, and Mcl1 inactivation may represent a novel therapeutic strategy. Optimization of compounds with higher Mcl1 affinity, or combination with additional Mcl1 antagonists, may enhance the clinical utility of this approach.
PMCID: PMC3770183  PMID: 19556859
embryonal tumors; Bcl2 family; oncogene; experimental therapeutics; Bcl2 antagonists; neuroblastoma; Mcl1
3.  BH3 Response Profiles From Neuroblastoma Mitochondria Predict Activity of Small Molecule Bcl-2 Family Antagonists 
Cell death and differentiation  2009;17(5):872-882.
Bcl-2 family proteins regulate mitochondrial apoptosis downstream of diverse stressors. Cancer cells frequently deregulate Bcl-2 proteins leading to chemoresistance. We have optimized a platform for solid tumors in which Bcl-2 family resistance patterns are inferred. Functional mitochondria were isolated from neuroblastoma cell lines, exposed to distinct BH3-domain peptides, and assayed for cytochrome c release. Such BH3 profiles revealed three patterns of cytochrome c response. A subset had a dominant NoxaBH3 response implying Mcl1-dependence. These cells were more sensitive to small molecules that antagonize Mcl1 (AT-101) than those that antagonize Bcl-2, Bcl-xL and Bcl-w (ABT-737). A second subset had a dominant BikBH3 response, implying a Bcl-xL/-w dependence, and was exquisitely sensitive to ABT-737 (IC50 <200 nM). Finally, most neuroblastoma cell lines derived at relapse were relatively resistant to pro-death BH3 peptides and Bcl-2 antagonists. Our findings define heterogeneity for apoptosis resistance in neuroblastoma, help triage emerging Bcl-2 antagonists for clinical use, and provide a platform for studies to characterize post-therapy resistance mechanisms for neuroblastoma and other solid tumors.
PMCID: PMC3690273  PMID: 19893570
Bcl-2 homology proteins; experimental therapeutics; chemoresistance; BH3 mimetics; neuroblastoma
4.  Mitochondrial Bcl-2 family dynamics define therapy response and resistance in neuroblastoma 
Cancer Research  2012;72(10):2565-2577.
Neuroblastoma is a childhood tumor in which transient therapeutic responses are typically followed by recurrence with lethal chemoresistant disease. In this study, we characterized the apoptotic responses in diverse neuroblastomas using an unbiased mitochondrial functional assay. We defined the apoptotic set-point of neuroblastomas using responses to distinct BH3 death domains providing a BH3 response profile, and directly confirmed survival dependencies. We found that viable neuroblastoma cells and primary tumors are primed for death with tonic sequestration of Bim, a direct activator of apoptosis, by either Bcl-2 or Mcl-1, providing a survival dependency that predicts the activity of Bcl-2 antagonists. The Bcl-2/Bcl-xL/Bcl-w inhibitor ABT-737 showed single agent activity against only Bim:Bcl-2 primed tumor xenografts. Durable complete regressions were achieved in combination with non-curative chemotherapy even for highest-risk molecular subtypes with MYCN amplification and activating ALK mutations. Furthermore, the use of unique isogenic cell lines from patients at diagnosis and at the time of relapse showed that therapy resistance was not mediated by upregulation of Bcl-2 homologues or loss of Bim priming, but by repressed Bak/Bax activation. Together, our findings provide a classification system that identifies tumors with clinical responses to Bcl-2 antagonists, defines Mcl-1 as the principal mediator of Bcl-2 antagonist resistance at diagnosis, and isolates the therapy resistant phenotype to the mitochondria.
PMCID: PMC3354953  PMID: 22589275
Bcl-2 homology proteins; mitochondrial profiling; animal models; Bcl-2 antagonist
5.  Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies 
Science translational medicine  2014;6(224):224ra24.
The development of noninvasive methods to detect and monitor tumors continues to be a major challenge in oncology. We used digital polymerase chain reaction–based technologies to evaluate the ability of circulating tumor DNA (ctDNA) to detect tumors in 640 patients with various cancer types. We found that ctDNA was detectable in >75% of patients with advanced pancreatic, ovarian, colorectal, bladder, gastroesophageal, breast, melanoma, hepatocellular, and head and neck cancers, but in less than 50% of primary brain, renal, prostate, or thyroid cancers. In patients with localized tumors, ctDNA was detected in 73, 57, 48, and 50% of patients with colorectal cancer, gastroesophageal cancer, pancreatic cancer, and breast adenocarcinoma, respectively. ctDNA was often present in patients without detectable circulating tumor cells, suggesting that these two biomarkers are distinct entities. In a separate panel of 206 patients with metastatic colorectal cancers, we showed that the sensitivity of ctDNA for detection of clinically relevant KRAS gene mutations was 87.2% and its specificity was 99.2%. Finally, we assessed whether ctDNA could provide clues into the mechanisms underlying resistance to epidermal growth factor receptor blockade in 24 patients who objectively responded to therapy but subsequently relapsed. Twenty-three (96%) of these patients developed one or more mutations in genes involved in the mitogen-activated protein kinase pathway. Together, these data suggest that ctDNA is a broadly applicable, sensitive, and specific biomarker that can be used for a variety of clinical and research purposes in patients with multiple different types of cancer.
PMCID: PMC4017867  PMID: 24553385
6.  miRNA Expression Profiling Enables Risk Stratification in Archived and Fresh Neuroblastoma Tumor Samples 
More accurate assessment of prognosis is important to further improve the choice of risk-related therapy in neuroblastoma (NB) patients. In this study, we aimed to establish and validate a prognostic miRNA signature for children with NB and tested it in both fresh frozen and archived formalin-fixed paraffin-embedded (FFPE) samples.
Experimental Design
Four hundred-thirty human mature miRNAs were profiled in two patient subgroups with maximally divergent clinical courses. Univariate logistic regression analysis was used to select miRNAs correlating with NB patient survival. A 25-miRNA gene signature was built using 51 training samples, tested on 179 test samples, and validated on an independent set of 304 fresh frozen tumor samples and 75 archived FFPE samples.
The 25-miRNA signature significantly discriminates the test patients with respect to progression-free and overall survival (P < 0.0001), both in the overall population and in the cohort of high-risk patients. Multivariate analysis indicates that the miRNA signature is an independent predictor of patient survival after controlling for current risk factors. The results were confirmed in an external validation set. In contrast to a previously published mRNA classifier, the 25-miRNA signature was found to be predictive for patient survival in a set of 75 FFPE neuroblastoma samples.
In this study, we present the largest NB miRNA expression study so far, including more than 500 NB patients. We established and validated a robust miRNA classifier, able to identify a cohort of high-risk NB patients at greater risk for adverse outcome using both fresh frozen and archived material.
PMCID: PMC4008338  PMID: 22031095
7.  Peripheral Neuroblastic Tumors with Genotype-Phenotype Discordance: A Report from the Children’s Oncology Groupand the International Neuroblastoma Pathology Committee 
Pediatric blood & cancer  2012;60(3):363-370.
Of 4,706 peripheral neuroblastic tumors (pNTs) registered on the Children’s Cancer Group and Children’s Oncology Group Neuroblastoma Study between 1989 and 2010, 51 cases (1.1%) had genotype-phenotype discordance characterized by MYCN amplification (indicating poor prognosis) and Favorable Histology (indicating better prognosis).
To distinguish prognostic subgroups in the genotype-phenotype discordant pNTs, two subgroups, “conventional” and “bull’s eye”, were identified based on the nuclear morphology. The “conventional” tumors (35 cases) included: Neuroblastoma, Poorly differentiated subtype (NB-PD, 26 cases) with “salt-and-pepper” nuclei; Neuroblastoma, Differentiating subtype (4 cases); Ganglioneuroblastoma, Intermixed (3 cases); and Ganglioneuroma, Maturing subtype (2 cases). The “bull’s eye” tumors included NB-PD with prominent nucleoli (16 cases). Clinicopathologic characteristics of these two subgroups were analyzed. N-myc protein expression was tested immunohistochemically on available tumors.
No significant difference was found between these two subgroups in the distribution of prognostic factors such as age at diagnosis, clinical stage, histopathology category/subtype, mitosis-karyorrhexis index, ploidy, 1p LOH, and unbalanced 11qLOH. However, prognosis of the patients with “conventional” tumors (5-year EFS 85.7±12.2%; OS 89.3±10.3%) was significantly better than those with “bull’s eye” tumors (EFS 31.3±13.0%; OS 42.9±16.2%) (P=0.0010 and 0.0008, respectively). Immunohistochemically all (11/11) tested “conventional” tumors were negative, and 10/11 tested “bull’s eye” tumors were positive for N-myc protein expression.
Based on the presence or absence of prominent nucleoli (the putative site of RNA synthesis/accumulation leading to N-myc protein expression), two prognostic subgroups, “conventional” with a better prognosis and “bull’s eye” with a poor prognosis, were distinguished among the genotype-phenotype discordant pNTs.
PMCID: PMC3397468  PMID: 22744966
neuroblastoma; International Neuroblastoma Pathology Classification; MYCN; genotype-phenotype correlation; prognosis; immunohistochemistry
8.  Molecular Pathways: Disrupting polyamine homeostasis as a therapeutic strategy for neuroblastoma 
MYC genes are deregulated in a plurality of human cancers. Through direct and indirect mechanisms the MYC network regulates the expression of >15% of the human genome, including both protein-coding and non-coding RNAs. This complexity has complicated efforts to define the principal pathways mediating MYC’s oncogenic activity. MYC plays a central role providing for the bioenergetic and biomass needs of proliferating cells, and polyamines are essential cell constituents supporting many of these functions. The rate-limiting enzyme in polyamine biosynthesis, ODC, is a bona fide MYC target, as are other regulatory enzymes in this pathway. A wealth of data link enhanced polyamine biosynthesis to cancer progression, and polyamine-depletion may limit malignant transformation of pre-neoplastic lesions. Studies using transgenic cancer models also supports that the effect of MYC on tumor initiation and progression can be attenuated through repression of polyamine production. High-risk neuroblastomas (an often lethal embryonal tumor in which MYC activation is paramount) deregulate numerous polyamine enzymes to promote expansion of intracellular polyamine pools. Selective inhibition of key enzymes in this pathway, e.g., using DFMO and/or SAM486, reduces tumorigenesis and synergizes with chemotherapy to regress tumors in pre-clinical models. Here we review the potential clinical application of these and additional polyamine-depletion agents to neuroblastoma and other advanced cancers in which MYC is operative.
PMCID: PMC2923453  PMID: 19789308
Putrescine; Spermidine; Spermine; experimental therapeutics; MYC; MYCN; embryonal tumors
9.  ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma 
Cancer research  2008;68(23):9735-9745.
Neuroblastoma is a frequently lethal childhood tumor in which MYC gene deregulation, commonly as MYCN amplification, portends poor outcome. Identifying the requisite biopathways downstream of MYC may provide therapeutic opportunities. We used transcriptome analyses to show that MYCN-amplified neuroblastomas have co-ordinately deregulated myriad polyamine enzymes (including ODC1, SRM, SMS, AMD1, OAZ2, and SMOX) to enhance polyamine biosynthesis. High-risk tumors without MYCN amplification also overexpress ODC1, the rate-limiting enzyme in polyamine biosynthesis, when compared with lower risk tumors, suggesting this pathway may be pivotal. Indeed, elevated ODC1 (independent of MYCN amplification) was associated with reduced survival in a large independent neuroblastoma cohort. As polyamines are essential for cell survival and linked to cancer progression, we studied polyamine antagonism to test for metabolic dependence on this pathway in neuroblastoma. The Odc inhibitor α-difluoromethylornithine (DFMO) inhibited neuroblast proliferation in vitro and suppressed oncogenesis in vivo. DFMO treatment of neuroblastoma-prone genetically-engineered mice (TH-MYCN GEM) extended tumor latency and survival in homozygous mice, and prevented oncogenesis in hemizygous mice. In the latter, transient Odc ablation permanently prevented tumor onset consistent with a time-limited window for embryonal tumor initiation. Importantly, we show that DFMO augments anti-tumor efficacy of conventional cytotoxics in vivo. This work implicates polyamine biosynthesis as an arbiter of MYCN oncogenesis and demonstrates initial efficacy for polyamine depletion strategies in neuroblastoma, a strategy that may have utility for this and other MYC-driven embryonal tumors.
PMCID: PMC2596661  PMID: 19047152
Embryonal tumors; metabolomics; polyamines; oncogene; experimental therapeutics
10.  The genetic landscape of high-risk neuroblastoma 
Nature genetics  2013;45(3):279-284.
Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%1. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 cases using a combination of whole exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low median exonic mutation frequency of 0.60 per megabase (0.48 non-silent), and remarkably few recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, an additional 7.1% had focal deletions), MYCN (1.7%, a recurrent p.Pro44Leu alteration), and NRAS (0.83%). Rare, potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1, and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges current therapeutic strategies reliant upon frequently altered oncogenic drivers.
PMCID: PMC3682833  PMID: 23334666
11.  Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma 
Nature genetics  2012;45(1):12-17.
Neuroblastomas are tumors of peripheral sympathetic neurons and are the most common solid tumor in children. To determine the genetic basis for neuroblastoma we performed whole-genome sequencing (6 cases), exome sequencing (16 cases), genome-wide rearrangement analyses (32 cases), and targeted analyses of specific genomic loci (40 cases) using massively parallel sequencing. On average each tumor had 19 somatic alterations in coding genes (range, 3–70). Among genes not previously known to be involved in neuroblastoma, chromosomal deletions and sequence alterations of chromatin remodeling genes, ARID1A and ARID1B, were identified in 8 of 71 tumors (11%) and were associated with early treatment failure and decreased survival. Using tumor-specific structural alterations, we developed an approach to identify rearranged DNA fragments in sera, providing personalized biomarkers for minimal residual disease detection and monitoring. These results highlight dysregulation of chromatin remodeling in pediatric tumorigenesis and provide new approaches for the management of neuroblastoma patients.
PMCID: PMC3557959  PMID: 23202128
12.  ATF4 Regulates MYC-mediated Neuroblastoma Cell Death upon Glutamine Deprivation 
Cancer cell  2012;22(5):631-644.
Oncogenic Myc alters mitochondrial metabolism, making it dependent on exogenous glutamine (Gln) for cell survival. Accordingly, Gln deprivation selectively induces apoptosis in MYC-overexpressing cells via unknown mechanisms. Using MYCN-amplified neuroblastoma as a model, we identify PUMA, NOXA and TRB3 as executors of Gln-starved cells. Gln depletion in MYC-transformed cells induces apoptosis through ATF4-dependent, but p53-independent, PUMA and NOXA induction. MYC-transformed cells depend on both glutamate-oxaloacetate transaminase and glutamate dehydrogenase to maintain Gln homeostasis and suppress apoptosis. Consequently, either ATF4 agonists or glutaminolysis inhibitors potently induce apoptosis in vitro and inhibit tumor growth in vivo. These results reveal mechanisms whereby Myc sensitizes cells to apoptosis and validate ATF4 agonists and inhibitors of Gln metabolism as potential Myc-selective cancer therapeutics.
PMCID: PMC3510660  PMID: 23153536
13.  Evaluation of Norepinephrine Transporter Expression and Metaiodobenzylguanidine Avidity in Neuroblastoma: A Report from the Children's Oncology Group 
Purpose. 123I-metaiodobenzylguanidine (MIBG) is used for the diagnostic evaluation of neuroblastoma. We evaluated the relationship between norepinephrine transporter (NET) expression and clinical MIBG uptake. Methods. Quantitative reverse transcription PCR (N = 82) and immunohistochemistry (IHC; N = 61) were performed for neuroblastoma NET mRNA and protein expression and correlated with MIBG avidity on diagnostic scans. The correlation of NET expression with clinical features was also performed. Results. Median NET mRNA expression level for the 19 MIBG avid patients was 12.9% (range 1.6–73.7%) versus 5.9% (range 0.6–110.0%) for the 8 nonavid patients (P = 0.31). Median percent NET protein expression was 50% (range 0–100%) in MIBG avid patients compared to 10% (range 0–80%) in nonavid patients (P = 0.027). MYCN amplified tumors had lower NET protein expression compared to nonamplified tumors (10% versus 50%; P = 0.0002). Conclusions. NET protein expression in neuroblastoma correlates with MIBG avidity. MYCN amplified tumors have lower NET protein expression.
PMCID: PMC3463166  PMID: 23050139
14.  Polyamine pathway inhibition as a novel therapeutic approach to treating neuroblastoma 
Frontiers in Oncology  2012;2:162.
Polyamines are highly regulated essential cations that are elevated in rapidly proliferating tissues, including diverse cancers. Expression analyses in neuroblastomas suggest that up-regulation of polyamine pro-synthetic enzymes and down-regulation of catabolic enzymes is associated with poor prognosis. Polyamine sufficiency may be required for MYCN oncogenicity in MYCN amplified neuroblastoma, and targeting polyamine homeostasis may therefore provide an attractive therapeutic approach. ODC1, an oncogenic MYCN target, is rate-limiting for polyamine synthesis, and is overexpressed in many cancers including neuroblastoma. Inhibition of ODC1 by difluoromethylornithine (DFMO) decreased tumor penetrance in TH-MYCN mice treated pre-emptively, and extended survival and synergized with chemotherapy in treating established tumors in both TH-MYCN and xenograft models. Efforts to augment DFMO activity, or otherwise maximally reduce polyamine levels, are focused on antagonizing polyamine uptake or augmenting polyamine export or catabolism. Since polyamine inhibition appears to be clinically well tolerated, these approaches, particularly when combined with chemotherapy, have great potential for improving neuroblastoma outcome in both MYCN amplified and non-MYCN amplified neuroblastomas.
PMCID: PMC3499881  PMID: 23181218
polyamines; MYCN; neuroblastoma; ODC1; DFMO
15.  Outcome Prediction of Children with Neuroblastoma using a Multigene Expression Signature, a Retrospective SIOPEN/COG/GPOH Study 
The lancet oncology  2009;10(7):663-671.
More accurate prognostic assessment of patients with neuroblastoma is required to improve the choice of risk-related therapy. The aim of this study is to develop and validate a gene expression signature for improved outcome prediction.
Fifty-nine genes were carefully selected based on an innovative data-mining strategy and profiled in the largest neuroblastoma patient series (n=579) to date using RT-qPCR starting from only 20 ng of RNA. A multigene expression signature was built using 30 training samples, tested on 313 test samples and subsequently validated in a blind study on an independent set of 236 additional tumours.
The signature accurately classifies patients with respect to overall and progression-free survival (p<0·0001). The signature has a performance, sensitivity, and specificity of 85·4% (95%CI: 77·7–93·2), 84·4% (95%CI: 66·5–94·1), and 86·5% (95%CI: 81·1–90·6), respectively to predict patient outcome. Multivariate analysis indicates that the signature is a significant independent predictor after controlling for currently used riskfactors. Patients with high molecular risk have a higher risk to die from disease and for relapse/progression than patients with low molecular risk (odds ratio of 19·32 (95%CI: 6·50–57·43) and 3·96 (95%CI: 1·97–7·97) for OS and PFS, respectively). Patients with increased risk for adverse outcome can also be identified within the current treatment groups demonstrating the potential of this signature for improved clinical management. These results were confirmed in the validation study in which the signature was also independently statistically significant in a model adjusted for MYCN status, age, INSS stage, ploidy, INPC grade of differentiation, and MKI. The high patient/gene ratio (579/59) underlies the observed statistical power and robustness.
A 59-gene expression signature predicts outcome of neuroblastoma patients with high accuracy. The signature is an independent risk predictor, identifying patients with increased risk in the current clinical risk groups. The applied method and signature is suitable for routine lab testing and ready for evaluation in prospective studies.
The Belgian Foundation Against Cancer, found of public interest (project SCIE2006-25), the Children Cancer Fund Ghent, the Belgian Society of Paediatric Haematology and Oncology, the Belgian Kid’s Fund and the Fondation Nuovo-Soldati (JV), the Fund for Scientific Research Flanders (KDP, JH), the Fund for Scientific Research Flanders (grant number: G•0198•08), the Institute for the Promotion of Innovation by Science and Technology in Flanders, Strategisch basisonderzoek (IWT-SBO 60848), the Fondation Fournier Majoie pour l’Innovation, the Instituto Carlos III,RD 06/0020/0102 Spain, the Italian Neuroblastoma Foundation, the European Community under the FP6 (project: STREP: EET-pipeline, number: 037260), and the Belgian program of Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office, Science Policy Programming.
PMCID: PMC3045079  PMID: 19515614
16.  Clinicopathological Characteristics of Ganglioneuroma and Ganglioneuroblastoma: A Report from the CCG and COG 
Pediatric blood & cancer  2009;53(4):563-569.
The International Neuroblastoma Pathology Classification (INPC) was the first to clearly define prognostic subgroups in ganglioneuroma (GN) and ganglioneuroblastoma (GNB).
Histopathology and tumor resectability of 552 GN/GNB cases from the CCG (Children’s Cancer Group) and COG (Children’s Oncology Group) neuroblastoma studies were reviewed. The results were analyzed along with clinical information and biological data of the cases.
According to the INPC, 300 tumors were classified into the Favorable Histology (FH) group and 252 were into the Unfavorable Histology (UH) group. Tumors in the FH group included 43 ganglioneuroma-maturing (GN-M), 198 ganglioneuroblastoma-intermixed (GNB-I), and 59 ganglioneuroblastoma-nodular, favorable subset (GNB-N-FS), and were often (91%) resected completely by single or multiple surgical procedures. Patients with the FH tumors had an excellent prognosis with no tumor-related deaths. The UH group included ganglioneuroblastoma-nodular, unfavorable subset (GNB-N-US) tumors. Patients with the UH tumors had a high incidence (53%) of distant metastasis at the time of diagnosis, and their prognosis significantly depended on clinical stage (5-year EFS: 80.1% for non-stage 4 patients; 16.7% for stage 4 patients): Complete primary tumor resection was not beneficial to those GNB-N-US patients, regardless of whether metastasis was present or not. MYCN amplification was detected in 4 tumors in the FH group and 6 tumors in the UH group. The majority (160/191, 84%) of GN-M and GNB-I tumors had a diploid pattern determined by flow cytometry.
Stringent application of the INPC along with clinical staging was critical for prognostic evaluation of the patients with this group of tumors.
PMCID: PMC2730988  PMID: 19530234
Ganglioneuroma; Ganglioneuroblastoma; International Neuroblastoma Pathology Classification; Clinical Staging; Tumor Resectability; Prognosis
17.  Influence of Neuroblastoma Stage on Serum-Based Detection of MYCN Amplification 
Pediatric blood & cancer  2009;53(3):329-331.
MYCN oncogene amplification has been defined as the most important prognostic factor for neuroblastoma, the most common solid extracranial neoplasm in children. High copy numbers are strongly associated with rapid tumor progression and poor outcome, independently of tumor stage or patient age, and this has become an important factor in treatment stratification.
By Real Time Quantitative PCR analysis, we evaluated the clinical relevance of circulating MYCN DNA of 267 patients with locoregional or metastatic neuroblastoma in children less than 18 months of age.
For patients in this age group with INSS stage 4 or 4S NB and stage 3 patients, serum-based determination of MYCN DNA sequences had good sensitivity (85%, 83% and 75% respectively) and high specificity (100%) when compared to direct tumor gene determination. In contrast, the approach showed low sensitivity patients with stage 1 and 2 disease.
Our results show that the sensitivity of the serum-based MYCN DNA sequence determination depends on the stage of the disease. However, this simple, reproducible assay may represent a reasonably sensitive and very specific tool to assess tumor MYCN status in cases with stage 3 and metastatic disease for whom a wait and see strategy is often recommended.
PMCID: PMC2857568  PMID: 19301388
Circulating DNA; MYCN amplification; neuroblastoma
18.  Clusterin, a Haploinsufficient Tumor Suppressor Gene in Neuroblastomas 
Clusterin expression in various types of human cancers may be higher or lower than in normal tissue, and clusterin may promote or inhibit apoptosis, cell motility, and inflammation. We investigated the role of clusterin in tumor development in mouse models of neuroblastoma.
We assessed expression of microRNAs in the miR-17-92 cluster by real-time reverse transcription–polymerase chain reaction in MYCN-transfected SH-SY5Y and SH-EP cells and inhibited expression by transfection with microRNA antisense oligonucleotides. Tumor development was studied in mice (n = 66) that were heterozygous or homozygous for the MYCN transgene and/or for the clusterin gene; these mice were from a cross between MYCN-transgenic mice, which develop neuroblastoma, and clusterin-knockout mice. Tumor growth and metastasis were studied in immunodeficient mice that were injected with human neuroblastoma cells that had enhanced (by clusterin transfection, four mice per group) or reduced (by clusterin short hairpin RNA [shRNA] transfection, eight mice per group) clusterin expression. All statistical tests were two-sided.
Clusterin expression increased when expression of MYCN-induced miR-17-92 microRNA cluster in SH-SY5Y neuroblastoma cells was inhibited by transfection with antisense oligonucleotides compared with scrambled oligonucleotides. Statistically significantly more neuroblastoma-bearing MYCN-transgenic mice were found in groups with zero or one clusterin allele than in those with two clusterin alleles (eg, 12 tumor-bearing mice in the zero-allele group vs three in the two-allele group, n = 22 mice per group; relative risk for neuroblastoma development = 4.85, 95% confidence interval [CI] = 1.69 to 14.00; P = .005). Five weeks after injection, fewer clusterin-overexpressing LA-N-5 human neuroblastoma cells than control cells were found in mouse liver or bone marrow, but statistically significantly more clusterin shRNA-transfected HTLA230 cells (3.27%, with decreased clusterin expression) than control-transfected cells (1.53%) were found in the bone marrow (difference = 1.74%, 95% CI = 0.24% to 3.24%, P = .026).
We report, to our knowledge, the first genetic evidence that clusterin is a tumor and metastasis suppressor gene.
PMCID: PMC2720718  PMID: 19401549
19.  Isolation and Characterization of a Novel Francisella sp. from Human Cerebrospinal Fluid and Blood▿  
Journal of Clinical Microbiology  2008;46(7):2428-2431.
We describe the isolation of a Francisella sp. from normally sterile sites in acutely ill patients in two different states within 2 years. Microbiologic and molecular analyses indicate that this organism represents a novel Francisella sp. Clinicians and microbiologists should be aware of this new potential pathogen, as infection may be more common than recognized.
PMCID: PMC2446908  PMID: 18495864
20.  Mutations in PIK3CA are infrequent in neuroblastoma 
BMC Cancer  2006;6:177.
Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported.
Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines) were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain "hot spots" where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras) and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice.
We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%). Neither mutation (R524M and E982D) has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively). Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes) in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model.
These data suggest that activating mutations in the Ras/Raf-MAPK/PI3K signaling cascades occur infrequently in neuroblastoma. Further, despite compelling evidence for MYC and RAS cooperation in vitro and in vivo to promote tumourigenesis, activation of RAS signal transduction does not constitute a preferred secondary pathway in neuroblastomas with MYCN deregulation in either human tumors or murine models.
PMCID: PMC1533846  PMID: 16822308

Results 1-20 (20)