PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  NF-κB–YY1–miR-29 Regulatory Circuitry in Skeletal Myogenesis and Rhabdomyosarcoma 
Cancer cell  2008;14(5):10.1016/j.ccr.2008.10.006.
SUMMARY
Studies support the importance of microRNAs in physiological and pathological processes. Here we describe the regulation and function of miR-29 in myogenesis and Rhabdomyosarcoma (RMS). Results demonstrate that in myoblasts miR-29 is repressed by NF-κB acting through YY1 and the Polycomb. During myogenesis, NF-κB and YY1 downregulation causes derepression of miR-29, which in turn accelerates differentiation by targeting its repressor YY1. However, in RMS cells and primary tumors that possess impaired differentiation, miR-29 is epigenetically silenced by an activated NF-κB-YY1 pathway. Reconstitution of miR-29 in RMS in mice inhibits tumor growth and stimulates differentiation, suggesting that miR-29 acts as a tumor suppressor through its pro-myogenic function. Together, results identify a NF-κB–YY1–miR-29 regulatory circuit whose disruption may contribute to RMS.
SIGNIFICANCE
MicroRNAs regulate skeletal myogenesis, but their impact in muscle diseases is not well understood. Here we describe miR-29 as an enhancer of myogenic differentiation and a suppressor of RMS. We find that miR-29 exists in a regulatory circuit involving NF-κB and YY1. In myoblasts NF-B acts through YY1 to epigenetically suppress miR-29, while during differentiation miR-29 is induced to facilitate myogenesis by a negative feedback on YY1. Significantly, RMS tumors lose miR-29 due to an elevation in NF-B and YY1, and readjustment of miR-29 levels in RMS stimulates differentiation. Thus, myogenesis is dependent on NF-κB–YY1–miR-29 circuitry whose dysfunction may contribute to RMS pathogenesis. Such findings offer potential avenues for the diagnosis and treatment of muscle relevant cancers.
doi:10.1016/j.ccr.2008.10.006
PMCID: PMC3829205  PMID: 18977326
microRNA; differentiation; myogenesis; YY1; NF-kappaB; Rhabdomyosarcoma
2.  IL6 sensitizes prostate cancer to the antiproliferative effect of IFNα2 through IRF9 
Endocrine-Related Cancer  2013;20(5):677-689.
Development and progression of prostate cancer (PCa) are associated with chronic inflammation. The cytokine interleukin 6 (IL6) can influence progression, differentiation, survival, and angiogenesis of PCa. To identify novel pathways that are triggered by IL6, we performed a gene expression profiling of two PCa cell lines, LNCaP and MDA PCa 2b, treated with 5 ng/ml IL6. Interferon (IFN) regulatory factor 9 (IRF9) was identified as one of the most prevalent IL6-regulated genes in both cell lines. IRF9 is a mediator of type I IFN signaling and acts together with STAT1 and 2 to activate transcription of IFN-responsive genes. The IL6 regulation of IRF9 was confirmed at mRNA and protein levels by quantitative real-time PCR and western blot respectively in both cell lines and could be blocked by the anti-IL6 antibody Siltuximab. Three PCa cell lines, PC3, Du-145, and LNCaP-IL6+, with an autocrine IL6 loop displayed high expression of IRF9. A tissue microarray with 36 PCa tissues showed that IRF9 protein expression is moderately elevated in malignant areas and positively correlates with the tissue expression of IL6. Downregulation and overexpression of IRF9 provided evidence for an IFN-independent role of IRF9 in cellular proliferation of different PCa cell lines. Furthermore, expression of IRF9 was essential to mediate the antiproliferative effects of IFNα2. We concluded that IL6 is an inducer of IRF9 expression in PCa and a sensitizer for the antiproliferative effects of IFNα2.
doi:10.1530/ERC-13-0222
PMCID: PMC3753051  PMID: 23913484
IRF9; IL6; prostate cancer; IFNα2; inflammation
3.  Melphalan exposure induces an Interleukin-6 deficit in bone marrow stromal cells and osteoblasts 
Cytokine  2012;58(2):245-252.
Bone marrow stromal cells (BMSC) and osteoblasts are critical components of the microenvironment that support hematopoietic recovery following bone marrow transplantation. Aggressive chemotherapy not only affects tumor cells, but also influences additional structural and functional components of the microenvironment. Successful reconstitution of hematopoiesis following stem cell or bone marrow transplantation after aggressive chemotherapy is dependent upon components of the microenvironment maintaining their supportive function. This includes secretion of soluble factors and expression of cellular adhesion molecules that impact on development of hematopoietic cells. In the current study, we investigated the effects of chemotherapy treatment on BMSC and human osteoblast (HOB) expression of Interleukin-6 (IL-6) as one regulatory factor.
IL-6 is a pleiotrophic cytokine which has diverse effects on hematopoietic cell development. In the current study we demonstrate that exposure of BMSC or HOB to melphalan leads to decreases in IL-6 protein expression. Decreased IL-6 protein is the most pronounced following melphalan exposure compared to several other chemotherapeutic agents tested. We also observed that melphalan decreased IL-6 mRNA in both BMSC and HOB. Finally, using a model of BMSC or HOB co-cultured with myeloma cells exposed to melphalan, we observed that IL-6 protein was also decreased, consistent with treatment of adherent cells alone. Collectively, these observations are of dual significance. First, suggesting that chemotherapy induced IL-6 deficits in the bone marrow occur which may result in defective hematopoietic support of early progenitor cells. In contrast, the decrease in IL-6 protein may be a beneficial mechanism by which melphalan acts as a valuable therapeutic agent for treatment of multiple myeloma, where IL-6 present in the bone marrow acts as a proliferative factor and contributes to disease progression. Taken together, these data emphasize the responsiveness of the microenvironment to diverse stress that is important to consider in therapeutic settings.
doi:10.1016/j.cyto.2012.01.012
PMCID: PMC3319530  PMID: 22356805
Interleukin-6; melphalan; bone marrow microenvironment; osteoblast; bone marrow stromal cell; chemotherapy
4.  Correction: Mesenchymal Stem Cell Transition to Tumor-Associated Fibroblasts Contributes to Fibrovascular Network Expansion and Tumor Progression 
PLoS ONE  2013;8(3):10.1371/annotation/4ab4c130-16cb-41f0-9507-b00ce070fbc6.
doi:10.1371/annotation/4ab4c130-16cb-41f0-9507-b00ce070fbc6
PMCID: PMC3609724
5.  Interleukin-6 Receptor Polymorphism Is Prevalent in HIV-negative Castleman Disease and Is Associated with Increased Soluble Interleukin-6 Receptor Levels 
PLoS ONE  2013;8(1):e54610.
Multicentric Castleman Disease is largely driven by increased signaling in the pathway for the plasma cell growth factor interleukin-6. We hypothesized that interleukin-6/interleukin-6 receptor/gp130 polymorphisms contribute to increased interleukin-6 and/or other components of the interleukin-6 signaling pathway in HIV-negative Castleman Disease patients. The study group was composed of 58 patients and 50 healthy donors of a similar racial/ethnic profile. Of seven polymorphisms chosen for analysis, we observed an increased frequency between patients and controls of the minor allele of interleukin-6 receptor polymorphism rs4537545, which is in linkage disequilibrium with interleukin-6 receptor polymorphism rs2228145. Further, individuals possessing at least one copy of the minor allele of either polymorphism expressed higher levels of soluble interleukin-6 receptor. These elevated interleukin-6 receptor levels may contribute to increased interleukin-6 activity through the trans-signaling pathway. These data suggest that interleukin-6 receptor polymorphism may be a contributing factor in Castleman Disease, and further research is warranted.
doi:10.1371/journal.pone.0054610
PMCID: PMC3553080  PMID: 23372742
6.  Prognostic significance of interleukin-6 single nucleotide polymorphism genotypes in neuroblastoma: rs1800795 (promoter) and rs8192284 (receptor) 
Purpose
Neuroblastoma is a childhood cancer of the sympathetic nervous system and many patients present with high risk disease. Risk stratification, based on pathology and tumor-derived biomarkers, has improved prediction of clinical outcomes, but overall survival rates remain unfavorable and new therapeutic targets are needed. Some studies suggest a link between interleukin-6 and more aggressive behavior in neuroblastoma tumor cells. Therefore, we examined the impact of two IL-6 single nucleotide polymorphisms (SNP) on neuroblastoma disease progression.
Experimental design
DNA samples from 96 high risk neuroblastoma patients were screened for two SNP that are known to regulate the serum levels of IL-6 and the soluble IL-6 receptor (IL-6R), rs1800795 and rs8192284 respectively. The genotype for each SNP was determined in a blinded fashion and independent statistical analysis was performed to determine SNP-related event free survival (EFS) and overall survival (OS) rates.
Results
The rs1800795 IL-6 promoter SNP is an independent prognostic factor for EFS and OS in -high risk neuroblastoma patients. In contrast, the rs8192284 IL-6 receptor SNP revealed no prognostic value.
Conclusions
The rs1800795 SNP (-174 IL-6 (G>C) represents a novel and independent prognostic marker for both EFS and OS in high risk neuroblastoma. Since the rs1800795 SNP (-174 IL-6 (G>C) has been shown to correlate with production of IL-6, this cytokine may represent a target for development of new therapies in neuroblastoma.
doi:10.1158/1078-0432.CCR-08-2953
PMCID: PMC2740837  PMID: 19671870
7.  Mesenchymal Stem Cell Transition to Tumor-Associated Fibroblasts Contributes to Fibrovascular Network Expansion and Tumor Progression 
PLoS ONE  2009;4(4):e4992.
Background
Tumor associated fibroblasts (TAF), are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells, and even blood vessel associated cells. The production of growth factors, cytokines, chemokines, matrix-degrading enzymes, and immunomodulatory mechanisms by these cells augment tumor progression by providing a suitable environment. There are several suggested origins of the TAF including tissue-resident, circulating, and epithelial-to-mesenchymal-transitioned cells.
Methodology/Principal Findings
We provide evidence that TAF are derived from mesenchymal stem cells (MSC) that acquire a TAF phenotype following exposure to or systemic recruitment into adenocarcinoma xenograft models including breast, pancreatic, and ovarian. We define the MSC derived TAF in a xenograft ovarian carcinoma model by the immunohistochemical presence of 1) fibroblast specific protein and fibroblast activated protein; 2) markers phenotypically associated with aggressiveness, including tenascin-c, thrombospondin-1, and stromelysin-1; 3) production of pro-tumorigenic growth factors including hepatocyte growth factor, epidermal growth factor, and interleukin-6; and 4) factors indicative of vascularization, including alpha-smooth muscle actin, desmin, and vascular endothelial growth factor. We demonstrate that under long-term tumor conditioning in vitro, MSC express TAF–like proteins. Additionally, human MSC but not murine MSC stimulated tumor growth primarily through the paracrine production of secreted IL6.
Conclusions/Significance
Our results suggest the dependence of in vitro Skov-3 tumor cell proliferation is due to the presence of tumor-stimulated MSC secreted IL6. The subsequent TAF phenotype arises from the MSC which ultimately promotes tumor growth through the contribution of microvascularization, stromal networks, and the production of tumor-stimulating paracrine factors.
doi:10.1371/journal.pone.0004992
PMCID: PMC2661372  PMID: 19352430
8.  STAT3 can be activated through paracrine signaling in breast epithelial cells 
BMC Cancer  2008;8:302.
Background
Many cancers, including breast cancer, have been identified with increased levels of phosphorylated or the active form of Signal Transducers and Activators of Transcription 3 (STAT3) protein. However, whether the tumor microenvironment plays a role in this activation is still poorly understood.
Methods
Conditioned media, which contains soluble factors from MDA-MB-231 and MDA-MB-468 breast cancer cells and breast cancer associated fibroblasts, was added to MCF-10A breast epithelial and MDA-MB-453 breast cancer cells. The stimulation of phosphorylated STAT3 (p-STAT3) levels by conditioned media was assayed by Western blot in the presence or absence of neutralized IL-6 antibody, or a JAK/STAT3 inhibitor, JSI-124. The stimulation of cell proliferation in MCF-10A cells by conditioned media in the presence or absence of JSI-124 was subjected to MTT analysis. IL-6, IL-10, and VEGF levels were determined by ELISA analysis.
Results
Our results demonstrated that conditioned media from cell lines with constitutively active STAT3 are sufficient to induce p-STAT3 levels in various recipients that do not possess elevated p-STAT3 levels. This signaling occurs through the JAK/STAT3 pathway, leading to STAT3 phosphorylation as early as 30 minutes and is persistent for at least 24 hours. ELISA analysis confirmed a correlation between elevated levels of IL-6 production and p-STAT3. Neutralization of the IL-6 ligand or gp130 was sufficient to block increased levels of p-STAT3 (Y705) in treated cells. Furthermore, soluble factors within the MDA-MB-231 conditioned media were also sufficient to stimulate an increase in IL-6 production from MCF-10A cells.
Conclusion
These results demonstrate STAT3 phosphorylation in breast epithelial cells can be stimulated by paracrine signaling through soluble factors from both breast cancer cells and breast cancer associated fibroblasts with elevated STAT3 phosphorylation. The induction of STAT3 phosphorylation is through the IL-6/JAK pathway and appears to be associated with cell proliferation. Understanding how IL-6 and other soluble factors may lead to STAT3 activation via the tumor microenvironment will provide new therapeutic regimens for breast carcinomas and other cancers with elevated p-STAT3 levels.
doi:10.1186/1471-2407-8-302
PMCID: PMC2582243  PMID: 18939993

Results 1-8 (8)