Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Activating mutations in ALK provide a therapeutic target in neuroblastoma 
Nature  2008;455(7215):975-978.
Neuroblastoma, an embryonal tumor of the peripheral sympathetic nervous system, accounts for approximately 15% of all deaths due to childhood cancer1. High-risk neuroblastomas, prevalent in the majority of patients, are rapidly progressive; even with intensive myeloablative chemotherapy, relapse is common and almost uniformly fatal2,3. Here we report the detection of previously unknown mutations in the ALK gene, which encodes a receptor tyrosine kinase, in 8% of primary neuroblastomas. Five non-synonymous sequence variations were identified in the kinase domain of ALK, of which three were somatic and two were germline. The most frequent mutation, F1174L, was also identified in three different neuroblastoma cell lines. ALK cDNAs encoding the F1174L and R1275Q variants, but not the wild-type ALK cDNA, transformed IL-3-dependent murine hematopoietic Ba/F3 cells to cytokine-independent growth. Ba/F3 cells expressing these mutations were sensitive to a small-molecule inhibitor of ALK, TAE6844. Furthermore, two human neuroblastoma cell lines harboring the F1174L mutation were sensitive to the inhibitor. Cytotoxicity was associated with increased levels of apoptosis as measured by TUNEL-labeling. shRNA-mediated knockdown of ALK expression in neuroblastoma cell lines with the F1174L mutation also resulted in apoptosis and impaired cell proliferation. Thus, activating alleles of the ALK receptor tyrosine kinase are present in primary neuroblastoma tumors and in established neuroblastoma cell lines, and confer sensitivity to ALK inhibition with small molecules, providing a molecular rationale for targeted therapy of this disease.
PMCID: PMC2587486  PMID: 18923525
2.  Synthesis and SAR of 3,5-diamino-piperidine derivatives: Novel antibacterial translation inhibitors as aminoglycoside mimetics 
Aminoglycoside antibiotics target an internal RNA loop within the bacterial ribosomal decoding site. Here, we described the synthesis and SAR of novel 3,5-diamino-piperidine derivatives as aminoglycoside mimetics, and show they act as inhibitors of bacterial translation and growth.
PMCID: PMC1858661  PMID: 17188860
Aminoglycosides; Antibiotics; Translation inhibitors; 2-deoxy-streptamine; Ribosome; Decoding site; 3; 5-diamino-piperidine
3.  Structure-Guided Discovery of Novel Aminoglycoside Mimetics as Antibacterial Translation Inhibitors 
Antimicrobial Agents and Chemotherapy  2005;49(12):4942-4949.
We report the structure-guided discovery, synthesis, and initial characterization of 3,5-diamino-piperidinyl triazines (DAPT), a novel translation inhibitor class that targets bacterial rRNA and exhibits broad-spectrum antibacterial activity. DAPT compounds were designed as structural mimetics of aminoglycoside antibiotics which bind to the bacterial ribosomal decoding site and thereby interfere with translational fidelity. We found that DAPT compounds bind to oligonucleotide models of decoding-site RNA, inhibit translation in vitro, and induce translation misincorporation in vivo, in agreement with a mechanism of action at the ribosomal decoding site. The novel DAPT antibacterials inhibit growth of gram-positive and gram-negative bacteria, including the respiratory pathogen Pseudomonas aeruginosa, and display low toxicity to human cell lines. In a mouse protection model, an advanced DAPT compound demonstrated efficacy against an Escherichia coli infection at a 50% protective dose of 2.4 mg/kg of body weight by single-dose intravenous administration.
PMCID: PMC1315978  PMID: 16304156

Results 1-3 (3)