Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Integrative genomics identifies LMO1 as a neuroblastoma oncogene 
Nature  2010;469(7329):216-220.
Neuroblastoma is a childhood cancer of the sympathetic nervous system that accounts for approximately 10% of all paediatric oncology deaths1,2. To identify genetic risk factors for neuroblastoma, we performed a genome-wide association study (GWAS) on 2,251 patients and 6,097 control subjects of European ancestry from four case series. Here we report a significant association within LIM domain only 1 (LMO1) at 11p15.4 (rs110419, combined P = 5.2 × 10−16, odds ratio of risk allele = 1.34 (95% confidence interval 1.25–1.44)). The signal was enriched in the subset of patients with the most aggressive form of the disease. LMO1 encodes a cysteine-rich transcriptional regulator, and its paralogues (LMO2, LMO3 and LMO4) have each been previously implicated in cancer. In parallel, we analysed genome-wide DNA copy number alterations in 701 primary tumours. We found that the LMO1 locus was aberrant in 12.4% through a duplication event, and that this event was associated with more advanced disease (P < 0.0001) and survival (P = 0.041). The germline single nucleotide polymorphism (SNP) risk alleles and somatic copy number gains were associated with increased LMO1 expression in neuroblastoma cell lines and primary tumours, consistent with a gain-of-function role in tumorigenesis. Short hairpin RNA (shRNA)-mediated depletion of LMO1 inhibited growth of neuroblastoma cells with high LMO1 expression, whereas forced expression of LMO1 in neuroblastoma cells with low LMO1 expression enhanced proliferation. These data show that common polymorphisms at the LMO1 locus are strongly associated with susceptibility to developing neuroblastoma, but also may influence the likelihood of further somatic alterations at this locus, leading to malignant progression.
PMCID: PMC3320515  PMID: 21124317
2.  Examination of Type 2 Diabetes Loci Implicates CDKAL1 as a Birth Weight Gene 
Diabetes  2009;58(10):2414-2418.
A number of studies have found that reduced birth weight is associated with type 2 diabetes later in life; however, the underlying mechanism for this correlation remains unresolved. Recently, association has been demonstrated between low birth weight and single nucleotide polymorphisms (SNPs) at the CDKAL1 and HHEX-IDE loci, regions that were previously implicated in the pathogenesis of type 2 diabetes. In order to investigate whether type 2 diabetes risk–conferring alleles associate with low birth weight in our Caucasian childhood cohort, we examined the effects of 20 such loci on this trait.
Using data from an ongoing genome-wide association study in our cohort of 5,465 Caucasian children with recorded birth weights, we investigated the association of the previously reported type 2 diabetes–associated variation at 20 loci including TCF7L2, HHEX-IDE, PPARG, KCNJ11, SLC30A8, IGF2BP2, CDKAL1, CDKN2A/2B, and JAZF1 with birth weight.
Our data show that the minor allele of rs7756992 (P = 8 × 10−5) at the CDKAL1 locus is strongly associated with lower birth weight, whereas a perfect surrogate for variation previously implicated for the trait at the same locus only yielded nominally significant association (P = 0.01; r2 rs7756992 = 0.677). However, association was not detected with any of the other type 2 diabetes loci studied.
We observe association between lower birth weight and type 2 diabetes risk–conferring alleles at the CDKAL1 locus. Our data show that the same genetic locus that has been identified as a marker for type 2 diabetes in previous studies also influences birth weight.
PMCID: PMC2750235  PMID: 19592620
3.  Autism genome-wide copy number variation reveals ubiquitin and neuronal genes 
Nature  2009;459(7246):569-573.
Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins1–4. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs5–9. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with ~550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 × 10−3). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 × 10−3). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 × 10−6). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.
PMCID: PMC2925224  PMID: 19404257

Results 1-3 (3)