PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Replication of GWAS-identified neuroblastoma risk loci strengthens the role of BARD1 and affirms the cumulative effect of genetic variations on disease susceptibility 
Carcinogenesis  2012;34(3):605-611.
Several neuroblastoma (NB) susceptibility loci have been identified within LINC00340, BARD1, LMO1, DUSP12, HSD17B12, DDX4, IL31RA, HACE1 and LIN28B by genome-wide association (GWA) studies including European American individuals. To validate and comprehensively evaluate the impact of the identified NB variants on disease risk and phenotype, we analyzed 16 single nucleotide polymorphisms (SNPs) in an Italian population (370 cases and 809 controls). We assessed their regulatory activity on gene expression in lymphoblastoid (LCLs) and NB cell lines. We evaluated the cumulative effect of the independent loci on NB risk and high-risk phenotype development in Italian and European American (1627 cases and 2575 controls) populations. All NB susceptibility genes replicated in the Italian dataset except for DDX4 and IL31RA, and the most significant SNP was rs6435862 in BARD1 (P = 8.4×10–15). BARD1 showed an additional and independent SNP association (rs7585356). This variant influenced BARD1 mRNA expression in LCLs and NB cell lines. No evidence of epistasis among the NB-associated variants was detected, whereas a cumulative effect of risk variants on NB risk (European Americans: P trend = 6.9×10–30, Italians: P trend = 8.55×1013) and development of high-risk phenotype (European Americans: P trend = 6.9×10–13, Italians: P trend = 2.2×10–1) was observed in a dose-dependent manner. These results provide further evidence that the risk loci identified in GWA studies contribute to NB susceptibility in distinct populations and strengthen the role of BARD1 as major genetic contributor to NB risk. This study shows that even in the absence of interaction the combination of several low-penetrance alleles has potential to distinguish subgroups of patients at different risks of developing NB.
doi:10.1093/carcin/bgs380
PMCID: PMC3716226  PMID: 23222812
2.  Trans-population Analysis of Genetic Mechanisms of Ethnic Disparities in Neuroblastoma Survival 
Background
Black patients with neuroblastoma have a higher prevalence of high-risk disease and worse outcome than white patients. We sought to investigate the relationship between genetic variation and the disparities in survival observed in neuroblastoma.
Methods
The analytic cohort was composed of 2709 patients. Principal components were used to assign patients to genomic ethnic clusters for survival analyses. Locus-specific ancestry was calculated for use in association analysis. The shorter spans of linkage disequilibrium in African populations may facilitate the fine mapping of causal variants in regions previously implicated by genome-wide association studies conducted primarily in patients of European descent. Thus, we evaluated 13 single nucleotide polymorphisms known to be associated with susceptibility to high-risk neuroblastoma from genome-wide association studies and all variants with highly divergent allele frequencies in reference African and European populations near the known susceptibility loci. All statistical tests were two-sided.
Results
African genomic ancestry was associated with high-risk neuroblastoma (P = .007) and lower event-free survival (P = .04, hazard ratio = 1.4, 95% confidence interval = 1.05 to 1.80). rs1033069 within SPAG16 (sperm associated antigen 16) was determined to have higher risk allele frequency in the African reference population and statistically significant association with high-risk disease in patients of European and African ancestry (P = 6.42×10−5, false discovery rate < 0.0015) in the overall cohort. Multivariable analysis using an additive model demonstrated that the SPAG16 single nucleotide polymorphism contributes to the observed ethnic disparities in high-risk disease and survival.
Conclusions
Our study demonstrates that common genetic variation influences neuroblastoma phenotype and contributes to the ethnic disparities in survival observed and illustrates the value of trans-population mapping.
doi:10.1093/jnci/djs503
PMCID: PMC3691940  PMID: 23243203
3.  A Functional Screen Identifies miR-34a as a Candidate Neuroblastoma Tumor Suppressor Gene 
Molecular cancer research : MCR  2008;6(5):735-742.
MicroRNAs are small noncoding RNAs that have critical roles in regulating a number of cellular functions through transcriptional silencing. They have been implicated as oncogenes and tumor suppressor genes (oncomirs) in several human neoplasms. We used an integrated genomics and functional screening strategy to identify potential oncomirs in the pediatric neoplasm neuroblastoma. We first identified microRNAs that map within chromosomal regions that we and others have defined as frequently deleted (1p36, 3p22, and 11q23-24) or gained (17q23) in high-risk neuroblastoma. We then transiently transfected microRNA precursor mimics or inhibitors into a panel of six neuroblastoma cell lines that we characterized for these genomic aberrations. The majority of transfections showed no phenotypic effect, but the miR-34a (1p36) and miR-34c (11q23) mimics showed dramatic growth inhibition in cell lines with 1p36 hemizygous deletion. In contrast, there was no growth inhibition by these mimics in cell lines without 1p36 deletions. Quantitative reverse transcription-PCR showed a perfect correlation of absent miR-34a expression in cell lines with a 1p36 aberration and phenotypic effect after mimetic add-back. Expression of miR-34a was also decreased in primary tumors (n = 54) with 1p36 deletion (P = 0.009), but no mutations were discovered in resequencing of the miR-34a locus in 30 neuroblastoma cell lines. Flow cytometric time series analyses showed that the likely mechanism of miR-34a growth inhibition is through cell cycle arrest followed by apoptosis. BCL2 and MYCN were identified as miR-34a targets and likely mediators of the tumor suppressor phenotypic effect. These data support miR-34a as a tumor suppressor gene in human neuroblastoma.
doi:10.1158/1541-7786.MCR-07-2102
PMCID: PMC3760152  PMID: 18505919
4.  Replication of neuroblastoma SNP association at the BARD1 locus in African-Americans 
Background
Neuroblastoma (NBL) is an often-fatal pediatric cancer more frequent in European-American than African-American children. African-American children, however, are at higher risk for the more severe form of NBL, and have worse overall survival than European-American children. Genome wide association studies (GWAS) have identified several SNPs associated to NBL in children of European descent. Knowledge of their association to NBL in African-American children is still lacking.
Methods
We genotyped and imputed SNPs located in three gene regions reported to be associated to NBL in children of European descent, and tested them for association in 390 African-American NBL patients compared to 2500 healthy, ethnically matched controls.
Results
SNPs in the BARD1 gene region show a similar pattern of association to NBL in African-American and European-American children. The more restricted extent of linkage disequilibrium in the African-American population suggests a smaller candidate region for the putative causal variants than previously reported. Limited association was observed at the other two gene regions tested, including LMO1 in 11p15 and FLJ22536 in 6p22.
Conclusions
Common BARD1 SNPs affect risk of NBL in African-Americans. The role of other SNPs associated to NBL in children of European descent could not be confirmed, possibly due to different patterns of linkage disequilibrium or limited statistical power to detect association to variants with small effect on disease risk. Extension of GWAS to populations of African descent is important to confirm their results and validity beyond the European populations, and can help to refine the location of the putative causal variants.
doi:10.1158/1055-9965.EPI-11-0830
PMCID: PMC3319325  PMID: 22328350
Neuroblastoma; BARD1; African-Americans; SNPs; genetic association
5.  Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma 
Nature genetics  2012;44(10):1126-1130.
Neuroblastoma is a cancer of the sympathetic nervous system that accounts for approximately 10% of all pediatric oncology deaths1. Here we report on a genome-wide association study of 2,817 neuroblastoma cases and 7,473 controls. We identified two new associations at 6q16, the first within HACE1 (rs4336470; combined P = 2.7 × 10−11, odds ratio 1.26, 95% CI: 1.18–1.35) and the second within LIN28B (rs17065417; combined P = 1.2 × 10−8, odds ratio 1.38, 95% CI: 1.23–1.54). Expression of LIN28B and let-7 miRNA correlated with rs17065417 genotype in neuroblastoma cell lines, and we observed significant growth inhibition upon depletion of LIN28B specifically in neuroblastoma cells homozygous for the risk allele. Low HACE1 and high LIN28B expression in diagnostic primary neuroblastomas were associated with worse overall survival (P = 0.008 and 0.014, respectively). Taken together, we show that common variants in HACE1 and LIN28B influence neuroblastoma susceptibility and that both genes likely play a role in disease progression.
doi:10.1038/ng.2387
PMCID: PMC3459292  PMID: 22941191
6.  Common Variation at BARD1 Results in the Expression of an Oncogenic Isoform that Influences Neuroblastoma Susceptibility and Oncogenicity 
Cancer Research  2012;72(8):2068-2078.
The mechanisms underlying genetic susceptibility at loci discovered by genome-wide association study (GWAS) approaches in human cancer remain largely undefined. In this study we characterized the high-risk neuroblastoma association at the BRCA1-related locus, BARD1, showing that disease-associated variations correlate with increased expression of the oncogenically activated isoform, BARD1β. In neuroblastoma cells, silencing of BARD1β showed genotype-specific cytotoxic effects, including decreased substrate-adherent, anchorage-independent, and foci growth. In established murine fibroblasts, overexpression of BARD1β was sufficient for neoplastic transformation. BARD1β stabilized the Aurora family of kinases in neuroblastoma cells, suggesting both a mechanism for the observed effect and a potential therapeutic strategy. Together, our findings identify BARD1β as an oncogenic driver of high-risk neuroblastoma tumorigenesis, and more generally, they illustrate how robust GWAS signals offer genomic landmarks to identify molecular mechanisms involved in both tumor initiation and malignant progression. The interaction of BARD1β with the Aurora family of kinases lends strong support to the ongoing work to develop Aurora kinase inhibitors for clinically aggressive neuroblastoma.
doi:10.1158/0008-5472.CAN-11-3703
PMCID: PMC3328617  PMID: 22350409
genome-wide association; neuroblastoma; BARD1; cancer susceptibility genes; functional genomics; oncogenes; genotype-phenotype correlations
7.  Integrative genomics identifies LMO1 as a neuroblastoma oncogene 
Nature  2010;469(7329):216-220.
Neuroblastoma is a childhood cancer of the sympathetic nervous system that accounts for approximately 10% of all paediatric oncology deaths1,2. To identify genetic risk factors for neuroblastoma, we performed a genome-wide association study (GWAS) on 2,251 patients and 6,097 control subjects of European ancestry from four case series. Here we report a significant association within LIM domain only 1 (LMO1) at 11p15.4 (rs110419, combined P = 5.2 × 10−16, odds ratio of risk allele = 1.34 (95% confidence interval 1.25–1.44)). The signal was enriched in the subset of patients with the most aggressive form of the disease. LMO1 encodes a cysteine-rich transcriptional regulator, and its paralogues (LMO2, LMO3 and LMO4) have each been previously implicated in cancer. In parallel, we analysed genome-wide DNA copy number alterations in 701 primary tumours. We found that the LMO1 locus was aberrant in 12.4% through a duplication event, and that this event was associated with more advanced disease (P < 0.0001) and survival (P = 0.041). The germline single nucleotide polymorphism (SNP) risk alleles and somatic copy number gains were associated with increased LMO1 expression in neuroblastoma cell lines and primary tumours, consistent with a gain-of-function role in tumorigenesis. Short hairpin RNA (shRNA)-mediated depletion of LMO1 inhibited growth of neuroblastoma cells with high LMO1 expression, whereas forced expression of LMO1 in neuroblastoma cells with low LMO1 expression enhanced proliferation. These data show that common polymorphisms at the LMO1 locus are strongly associated with susceptibility to developing neuroblastoma, but also may influence the likelihood of further somatic alterations at this locus, leading to malignant progression.
doi:10.1038/nature09609
PMCID: PMC3320515  PMID: 21124317
8.  Phenotype Restricted Genome-Wide Association Study Using a Gene-Centric Approach Identifies Three Low-Risk Neuroblastoma Susceptibility Loci 
PLoS Genetics  2011;7(3):e1002026.
Neuroblastoma is a malignant neoplasm of the developing sympathetic nervous system that is notable for its phenotypic diversity. High-risk patients typically have widely disseminated disease at diagnosis and a poor survival probability, but low-risk patients frequently have localized tumors that are almost always cured with little or no chemotherapy. Our genome-wide association study (GWAS) has identified common variants within FLJ22536, BARD1, and LMO1 as significantly associated with neuroblastoma and more robustly associated with high-risk disease. Here we show that a GWAS focused on low-risk cases identified SNPs within DUSP12 at 1q23.3 (P = 2.07×10−6), DDX4 and IL31RA both at 5q11.2 (P = 2.94×10−6 and 6.54×10−7 respectively), and HSD17B12 at 11p11.2 (P = 4.20×10−7) as being associated with the less aggressive form of the disease. These data demonstrate the importance of robust phenotypic data in GWAS analyses and identify additional susceptibility variants for neuroblastoma.
Author Summary
Neuroblastoma is the most common solid tumor outside the central nervous system and is accountable for 10% of the mortality rate of all children's cancers. It has distinctive clinical behaviors and is categorized into different risk groups: high-risk, intermediate-risk, and low-risk. Genome-wide association studies have reported a number of genetic variations predisposing to high-risk neuroblastoma. This study focuses on the low-risk neuroblastoma group and identifies four novel genes (DUSP12, DDX4, IL31RA, and HSD17B12) at three distinct genomic positions that harbor disease-causing variants. This study also reports several gene sets that are enriched in overall neuroblastoma as well as in both high-risk and low-risk groups. Also of importance is that this study adopts a new computational method that identifies genes, instead of only one single nucleotide polymorphism, as disease-causing variants. Shown to have superior power of detection genome-wide association signals for neuroblastoma, the methodology presented in this study has great potential applications in case-control association studies in other diseases.
doi:10.1371/journal.pgen.1002026
PMCID: PMC3060064  PMID: 21436895
9.  Common variations in BARD1 influence susceptibility to high-risk neuroblastoma 
Nature genetics  2009;41(6):718-723.
We conducted a SNP-based genome-wide association study (GWAS) focused on the high-risk subset of neuroblastoma1. As our previous unbiased GWAS showed strong association of common 6p22 SNP alleles with aggressive neuroblastoma2, we now restricted our analysis to 397 high-risk cases compared to 2,043 controls. We detected new significant association of six SNPs at 2q35 within the BARD1 gene locus (Pallelic = 2.35×10−9 − 2.25×10−8). Each SNP association was confirmed in a second series of 189 high-risk cases and 1,178 controls (Pallelic = 7.90×10−7 − 2.77×10−4). The two most significant SNPs (rs6435862, rs3768716) were also tested in two additional independent high-risk neuroblastoma case series, yielding combined allelic odds-ratios of 1.68 each (P = 8.65×10−18 and 2.74×10−16, respectively). Significant association was also found with known BARD1 nsSNPs. These data show that common variation in BARD1 contributes to the etiology of the aggressive and most clinically relevant subset of human neuroblastoma.
doi:10.1038/ng.374
PMCID: PMC2753610  PMID: 19412175
10.  Copy number variation at 1q21.1 associated with neuroblastoma 
Nature  2009;459(7249):987-991.
Common copy number variations (CNVs) represent a significant source of genetic diversity, yet their influence on phenotypic variability, including disease susceptibility, remains poorly understood. To address this problem in cancer, we performed a genome-wide association study (GWAS) of CNVs in the childhood cancer neuroblastoma, a disease where SNP variations are known to influence susceptibility1,2. We first genotyped 846 Caucasian neuroblastoma patients and 803 healthy Caucasian controls at 550,000 single nucleotide polymorphisms, and performed a CNV-based test for association. We then replicated significant observations in two independent sample sets comprised of a total of 595 cases and 3,357 controls. We identified a common CNV at 1q21.1 associated with neuroblastoma in the discovery set, which was confirmed in both replication sets (Pcombined = 2.97 × 10−17; OR = 2.49, 95% CI: 2.02 to 3.05). This CNV was validated by quantitative PCR, fluorescent in situ hybridization, and analysis of matched tumor specimens, and was shown to be heritable in an independent set of 713 cancer-free trios. We identified a novel transcript within the CNV which showed high sequence similarity to several “Neuroblastoma breakpoint family” (NBPF) genes3,4 and represents a new member of this gene family (NBPFX). This transcript was preferentially expressed in fetal brain and fetal sympathetic nervous tissues, and expression level was strictly correlated with CNV state in neuroblastoma cells. These data demonstrate that inherited copy number variation at 1q21.1 is associated with neuroblastoma and implicate a novel NBPF gene in early tumorigenesis of this childhood cancer.
doi:10.1038/nature08035
PMCID: PMC2755253  PMID: 19536264
11.  A genome-wide association study identifies a susceptibility locus to clinically aggressive neuroblastoma at 6p22 
The New England journal of medicine  2008;358(24):2585-2593.
Background
Neuroblastoma is a malignancy of the developing sympathetic nervous system that most commonly affects young children and is often lethal. The etiology of this embryonal cancer is not known.
Methods
We performed a genome-wide association study by first genotyping 1,032 neuroblastoma patients and 2,043 controls of European descent using the Illumina HumanHap550 BeadChip. Three independent groups of neuroblastoma cases (N=720) and controls (N=2128) were then genotyped to replicate significant associations.
Results
We observed highly significant association between neuroblastoma and the common minor alleles of three single nucleotide polymorphisms (SNPs) within a 94.2 kilobase (Kb) linkage disequilibrium block at chromosome band 6p22 containing the predicted genes FLJ22536 and FLJ44180 (P-value range = 1.71×10-9-7.01×10-10; allelic odds ratio range 1.39-1.40). Homozygosity for the at-risk G allele of the most significantly associated SNP, rs6939340, resulted in an increased likelihood of developing neuroblastoma of 1.97 (95% CI 1.58-2.44). Subsequent genotyping of these 6p22 SNPs in the three independent case series confirmed our observation of association (P=9.33×10-15 at rs6939340 for joint analysis). Furthermore, neuroblastoma patients homozygous for the risk alleles at 6p22 were more likely to develop metastatic (Stage 4) disease (P=0.02), show amplification of the MYCN oncogene in the tumor cells (P=0.006), and to have disease relapse (P=0.01).
Conclusion
Common genetic variation at chromosome band 6p22 is associated with susceptibility to neuroblastoma.
doi:10.1056/NEJMoa0708698
PMCID: PMC2742373  PMID: 18463370
12.  Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms 
Nucleic Acids Research  2008;36(19):e126.
Whole-genome microarrays with large-insert clones designed to determine DNA copy number often show variation in hybridization intensity that is related to the genomic position of the clones. We found these ‘genomic waves’ to be present in Illumina and Affymetrix SNP genotyping arrays, confirming that they are not platform-specific. The causes of genomic waves are not well-understood, and they may prevent accurate inference of copy number variations (CNVs). By measuring DNA concentration for 1444 samples and by genotyping the same sample multiple times with varying DNA quantity, we demonstrated that DNA quantity correlates with the magnitude of waves. We further showed that wavy signal patterns correlate best with GC content, among multiple genomic features considered. To measure the magnitude of waves, we proposed a GC-wave factor (GCWF) measure, which is a reliable predictor of DNA quantity (correlation coefficient = 0.994 based on samples with serial dilution). Finally, we developed a computational approach by fitting regression models with GC content included as a predictor variable, and we show that this approach improves the accuracy of CNV detection. With the wide application of whole-genome SNP genotyping techniques, our wave adjustment method will be important for taking full advantage of genotyped samples for CNV analysis.
doi:10.1093/nar/gkn556
PMCID: PMC2577347  PMID: 18784189
13.  Assessing the Significance of Conserved Genomic Aberrations Using High Resolution Genomic Microarrays 
PLoS Genetics  2007;3(8):e143.
Genomic aberrations recurrent in a particular cancer type can be important prognostic markers for tumor progression. Typically in early tumorigenesis, cells incur a breakdown of the DNA replication machinery that results in an accumulation of genomic aberrations in the form of duplications, deletions, translocations, and other genomic alterations. Microarray methods allow for finer mapping of these aberrations than has previously been possible; however, data processing and analysis methods have not taken full advantage of this higher resolution. Attention has primarily been given to analysis on the single sample level, where multiple adjacent probes are necessarily used as replicates for the local region containing their target sequences. However, regions of concordant aberration can be short enough to be detected by only one, or very few, array elements. We describe a method called Multiple Sample Analysis for assessing the significance of concordant genomic aberrations across multiple experiments that does not require a-priori definition of aberration calls for each sample. If there are multiple samples, representing a class, then by exploiting the replication across samples our method can detect concordant aberrations at much higher resolution than can be derived from current single sample approaches. Additionally, this method provides a meaningful approach to addressing population-based questions such as determining important regions for a cancer subtype of interest or determining regions of copy number variation in a population. Multiple Sample Analysis also provides single sample aberration calls in the locations of significant concordance, producing high resolution calls per sample, in concordant regions. The approach is demonstrated on a dataset representing a challenging but important resource: breast tumors that have been formalin-fixed, paraffin-embedded, archived, and subsequently UV-laser capture microdissected and hybridized to two-channel BAC arrays using an amplification protocol. We demonstrate the accurate detection on simulated data, and on real datasets involving known regions of aberration within subtypes of breast cancer at a resolution consistent with that of the array. Similarly, we apply our method to previously published datasets, including a 250K SNP array, and verify known results as well as detect novel regions of concordant aberration. The algorithm has been fully implemented and tested and is freely available as a Java application at http://www.cbil.upenn.edu/MSA.
Author Summary
Cancer is a genetic disease caused by genomic mutations that confer an increased ability to proliferate and survive in a specific environment. It is now known that many regions of genomic DNA are deleted or amplified in specific cancer types. These aberrations are believed to occur randomly in the genome. If these aberrations overlap more than would be expected by chance across individual occurrences of the cancer this suggests a selective pressure on this aberration. These conserved aberrations likely represent regions that are important for the development, progression, and survival of a specific cancer type in its environment. We present a method for identifying these conserved aberrations within a class of samples. The applications for this method include accurate high resolution mapping of aberrations characteristic of cancer subtypes as well as other genetic diseases and determination of conserved copy number variations in the population. With the use of high resolution microarray methods we have profiled different tumor types. We have been able to create high resolution profiles of conserved aberrations in specific cancer types. These conserved aberrations are prime targets for cancer therapies and many of these regions have already been used to develop effective cancer therapeutics.
doi:10.1371/journal.pgen.0030143
PMCID: PMC1950957  PMID: 17722985
14.  Assessing the Significance of Conserved Genomic Aberrations Using High Resolution Genomic Microarrays 
PLoS Genetics  2007;3(8):e143.
Genomic aberrations recurrent in a particular cancer type can be important prognostic markers for tumor progression. Typically in early tumorigenesis, cells incur a breakdown of the DNA replication machinery that results in an accumulation of genomic aberrations in the form of duplications, deletions, translocations, and other genomic alterations. Microarray methods allow for finer mapping of these aberrations than has previously been possible; however, data processing and analysis methods have not taken full advantage of this higher resolution. Attention has primarily been given to analysis on the single sample level, where multiple adjacent probes are necessarily used as replicates for the local region containing their target sequences. However, regions of concordant aberration can be short enough to be detected by only one, or very few, array elements. We describe a method called Multiple Sample Analysis for assessing the significance of concordant genomic aberrations across multiple experiments that does not require a-priori definition of aberration calls for each sample. If there are multiple samples, representing a class, then by exploiting the replication across samples our method can detect concordant aberrations at much higher resolution than can be derived from current single sample approaches. Additionally, this method provides a meaningful approach to addressing population-based questions such as determining important regions for a cancer subtype of interest or determining regions of copy number variation in a population. Multiple Sample Analysis also provides single sample aberration calls in the locations of significant concordance, producing high resolution calls per sample, in concordant regions. The approach is demonstrated on a dataset representing a challenging but important resource: breast tumors that have been formalin-fixed, paraffin-embedded, archived, and subsequently UV-laser capture microdissected and hybridized to two-channel BAC arrays using an amplification protocol. We demonstrate the accurate detection on simulated data, and on real datasets involving known regions of aberration within subtypes of breast cancer at a resolution consistent with that of the array. Similarly, we apply our method to previously published datasets, including a 250K SNP array, and verify known results as well as detect novel regions of concordant aberration. The algorithm has been fully implemented and tested and is freely available as a Java application at http://www.cbil.upenn.edu/MSA.
Author Summary
Cancer is a genetic disease caused by genomic mutations that confer an increased ability to proliferate and survive in a specific environment. It is now known that many regions of genomic DNA are deleted or amplified in specific cancer types. These aberrations are believed to occur randomly in the genome. If these aberrations overlap more than would be expected by chance across individual occurrences of the cancer this suggests a selective pressure on this aberration. These conserved aberrations likely represent regions that are important for the development, progression, and survival of a specific cancer type in its environment. We present a method for identifying these conserved aberrations within a class of samples. The applications for this method include accurate high resolution mapping of aberrations characteristic of cancer subtypes as well as other genetic diseases and determination of conserved copy number variations in the population. With the use of high resolution microarray methods we have profiled different tumor types. We have been able to create high resolution profiles of conserved aberrations in specific cancer types. These conserved aberrations are prime targets for cancer therapies and many of these regions have already been used to develop effective cancer therapeutics.
doi:10.1371/journal.pgen.0030143
PMCID: PMC1950957  PMID: 17722985
15.  PlasmoDB: the Plasmodium genome resource. An integrated database providing tools for accessing, analyzing and mapping expression and sequence data (both finished and unfinished) 
Nucleic Acids Research  2002;30(1):87-90.
PlasmoDB (http://PlasmoDB.org) is the official database of the Plasmodium falciparum genome sequencing consortium. This resource incorporates finished and draft genome sequence data and annotation emerging from Plasmodium sequencing projects. PlasmoDB currently houses information from five parasite species and provides tools for cross-species comparisons. Sequence information is also integrated with other genomic-scale data emerging from the Plasmodium research community, including gene expression analysis from EST, SAGE and microarray projects. The relational schemas used to build PlasmoDB [Genomics Unified Schema (GUS) and RNA Abundance Database (RAD)] employ a highly structured format to accommodate the diverse data types generated by sequence and expression projects. A variety of tools allow researchers to formulate complex, biologically based queries of the database. A version of the database is also available on CD-ROM (Plasmodium GenePlot), facilitating access to the data in situations where Internet access is difficult (e.g. by malaria researchers working in the field). The goal of PlasmoDB is to enhance utilization of the vast quantities of data emerging from genome-scale projects by the global malaria research community.
PMCID: PMC99106  PMID: 11752262
16.  The genetic landscape of high-risk neuroblastoma 
Nature genetics  2013;45(3):279-284.
Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%1. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 cases using a combination of whole exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low median exonic mutation frequency of 0.60 per megabase (0.48 non-silent), and remarkably few recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, an additional 7.1% had focal deletions), MYCN (1.7%, a recurrent p.Pro44Leu alteration), and NRAS (0.83%). Rare, potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1, and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges current therapeutic strategies reliant upon frequently altered oncogenic drivers.
doi:10.1038/ng.2529
PMCID: PMC3682833  PMID: 23334666

Results 1-16 (16)