PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-17 (17)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  miRNA Expression Profiling Enables Risk Stratification in Archived and Fresh Neuroblastoma Tumor Samples 
Purpose
More accurate assessment of prognosis is important to further improve the choice of risk-related therapy in neuroblastoma (NB) patients. In this study, we aimed to establish and validate a prognostic miRNA signature for children with NB and tested it in both fresh frozen and archived formalin-fixed paraffin-embedded (FFPE) samples.
Experimental Design
Four hundred-thirty human mature miRNAs were profiled in two patient subgroups with maximally divergent clinical courses. Univariate logistic regression analysis was used to select miRNAs correlating with NB patient survival. A 25-miRNA gene signature was built using 51 training samples, tested on 179 test samples, and validated on an independent set of 304 fresh frozen tumor samples and 75 archived FFPE samples.
Results
The 25-miRNA signature significantly discriminates the test patients with respect to progression-free and overall survival (P < 0.0001), both in the overall population and in the cohort of high-risk patients. Multivariate analysis indicates that the miRNA signature is an independent predictor of patient survival after controlling for current risk factors. The results were confirmed in an external validation set. In contrast to a previously published mRNA classifier, the 25-miRNA signature was found to be predictive for patient survival in a set of 75 FFPE neuroblastoma samples.
Conclusions
In this study, we present the largest NB miRNA expression study so far, including more than 500 NB patients. We established and validated a robust miRNA classifier, able to identify a cohort of high-risk NB patients at greater risk for adverse outcome using both fresh frozen and archived material.
doi:10.1158/1078-0432.CCR-11-0610
PMCID: PMC4008338  PMID: 22031095
2.  The role of genetic and epigenetic alterations in neuroblastoma disease pathogenesis 
Pediatric surgery international  2012;29(2):101-119.
Neuroblastoma is a highly heterogeneous tumor accounting for 15 % of all pediatric cancer deaths. Clinical behavior ranges from the spontaneous regression of localized, asymptomatic tumors, as well as metastasized tumors in infants, to rapid progression and resistance to therapy. Genomic amplification of the MYCN oncogene has been used to predict outcome in neuroblastoma for over 30 years, however, recent methodological advances including miR-NA and mRNA profiling, comparative genomic hybridization (array-CGH), and whole-genome sequencing have enabled the detailed analysis of the neuroblastoma genome, leading to the identification of new prognostic markers and better patient stratification. In this review, we will describe the main genetic factors responsible for these diverse clinical phenotypes in neuroblastoma, the chronology of their discovery, and the impact on patient prognosis.
doi:10.1007/s00383-012-3239-7
PMCID: PMC3557462  PMID: 23274701
Neuroblastoma; MYCN; MiRNA; DNA methylation; ALK; PTPRD
3.  Discovery and visualization of miRNA–mRNA functional modules within integrated data using bicluster analysis 
Nucleic Acids Research  2013;42(3):e17.
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at a post-transcriptional level. An miRNA may target many messenger RNA (mRNA) transcripts, and each transcript may be targeted by multiple miRNAs. Our understanding of miRNA regulation is evolving to consider modules of miRNAs that regulate groups of functionally related mRNAs. Here we expand the model of miRNA functional modules and use it to guide the integration of miRNA and mRNA expression and target prediction data. We present evidence of cooperativity between miRNA classes within this integrated miRNA–mRNA association matrix. We then apply bicluster analysis to uncover miRNA functional modules within this integrated data set and develop a novel application to visualize and query these results. We show that this wholly unsupervised approach can discover a network of miRNA–mRNA modules that are enriched for both biological processes and miRNA classes. We apply this method to investigate the interplay of miRNAs and mRNAs in integrated data sets derived from neuroblastoma and human immune cells. This study is the first to apply the technique of biclustering to model functional modules within an integrated miRNA–mRNA association matrix. Results provide evidence of an extensive modular miRNA functional network and enable characterization of miRNA function and dysregulation in disease.
doi:10.1093/nar/gkt1318
PMCID: PMC3919560  PMID: 24357407
4.  Modulation of Neuroblastoma Disease Pathogenesis By An Extensive Network of Epigenetically Regulated MicroRNAs 
Oncogene  2012;32(24):2927-2936.
MicroRNAs contribute to the pathogenesis of many forms of cancer, including the pediatric cancer neuroblastoma, but the underlying mechanisms leading to altered miRNA expression are often unknown. Here, a novel integrated approach for analyzing DNA methylation coupled with miRNA and mRNA expression data sets identified 67 epigenetically regulated miRNA in neuroblastoma. A large proportion (42%) of these miRNAs were associated with poor patient survival when under-expressed in tumors. Moreover, we demonstrate that this panel of epigenetically silenced miRNAs targets a large set of genes that are over-expressed in tumors from patients with poor survival in a highly redundant manner. The genes targeted by the epigenetically regulated miRNAs are enriched for a number of biological processes, including regulation of cell differentiation. Functional studies involving ectopic over-expression of several of the epigenetically silenced miRNAs had a negative impact on neuroblastoma cell viability, providing further support to the concept that inactivation of these miRNAs is important for neuroblastoma disease pathogenesis. One locus, miR-340, induced either differentiation or apoptosis in a cell context dependent manner, indicating a tumor suppressive function for this miRNA. Intriguingly, it was determined that miR-340 is up-regulated by demethylation of an upstream genomic region that occurs during the process of neuroblastoma cell differentiation induced by all-trans retinoic acid (ATRA). Further biological studies of miR-340 revealed that it directly represses the SOX2 transcription factor by targeting of its 3’ UTR, explaining the mechanism by which SOX2 is down-regulated by ATRA. Although SOX2 contributes to the maintenance of stem cells in an undifferentiated state, we demonstrate that miR-340 mediated down-regulation of SOX2 is not required for ATRA induced differentiation to occur. In summary, our results exemplify the dynamic nature of the miRNA epigenome and identify a remarkable network of miRNA/mRNA interactions that significantly contribute to neuroblastoma disease pathogenesis.
doi:10.1038/onc.2012.311
PMCID: PMC3477279  PMID: 22797059
miRNA; methylation; tumor suppressor; neuroblastoma; SOX2
5.  Metastasis Suppressor microRNA-335 Targets the Formin Family of Actin Nucleators 
PLoS ONE  2013;8(11):e78428.
MiRNAs can have pleiotropic effects by targeting multiple genes belonging to diverse signalling networks. Alternatively, miRNAs can enhance the potency of their cellular effects by targeting multiple genes within the same genetic pathway. Previously, we and others have demonstrated that miR-335 is a potent suppressor of tumour cell migration, invasion and metastasis, in part by targeting several genes involved in these cellular processes, including ROCK1, MAPK1, LRG1, SP1 and SOX4. Here, we demonstrate that direct targeting of multiple members of the formin family of actin nucleators contributes to the inhibitory effects of miR-335 in neuroblastoma cells. We demonstrate that miR-335 regulates the expression of at least five formin family members and validate three family members, FMNL3, FMN2 and DAAM2, as direct targets of miR-335. The contribution of the formin family genes to cancer progression and metastasis has recently begun to emerge and here we demonstrate for the first time the ability of FMN2 and DAAM2 to regulate tumour cell migration and invasion, using siRNA-mediated inhibition of each of these formin genes. Finally, we demonstrate that the formin genes, in particular FMNL3, are responsible for the protrusion of actin-rich filopodia structures that contribute to the enhanced migratory and invasive potential associated with reduced expression of miR-335. Thus, direct targeting of the formin family contributes to the metastasis suppressing abilities of miR-335 by providing a direct regulatory link to the actin assembly machinery of the cell. We conclude that miR-335 is a master regulator of tumour cell migration and invasion by directly targeting a plethora of genes that effectively control cell migratory processes.
doi:10.1371/journal.pone.0078428
PMCID: PMC3818330  PMID: 24223803
6.  Expression profiling the microRNA response to epileptic preconditioning identifies miR184 as a modulator of seizure-induced neuronal death 
Experimental neurology  2012;237(2):346-354.
Brief seizures (epileptic/seizure preconditioning) are capable of activating endogenous protective pathways in the brain which can temporarily generate a damage-refractory state against subsequent and otherwise harmful episodes of prolonged seizures (tolerance). Altered expression of microRNAs, a class of non-coding RNAs that function post-transcriptionally to regulate mRNA translation has recently been implicated in the molecular mechanism of epileptic tolerance. Here we characterized the effect of seizure preconditioning induced by low-dose systemic kainic acid on microRNA expression in the hippocampus of mice. Seizure preconditioning resulted in up-regulation of 25 mature microRNAs in the CA3 subfield of the mouse hippocampus, with the highest levels detected for miR-184. This finding was supported by real-time PCR and in situ hybridization showing increased neuronal miR-184 levels and a reduction in protein levels of a miR-184 target. Inhibiting miR-184 expression in vivo resulted in the emergence of neuronal death after preconditioning seizures and increased seizure-induced neuronal death following status epilepticus in previously preconditioned animals, without altered electrographic seizure durations. The present study suggests miRNA up-regulation after preconditioning may contribute to development of epileptic tolerance and identifies miR-184 as a novel contributor to neuronal survival following both mild and severe seizures.
doi:10.1016/j.expneurol.2012.06.029
PMCID: PMC3485639  PMID: 22771761
Dicer; Epigenetics; Hippocampus; Status epilepticus; Temporal lobe Epilepsy
7.  MicroRNA-497 increases apoptosis in MYCN amplified neuroblastoma cells by targeting the key cell cycle regulator WEE1 
Molecular Cancer  2013;12:23.
Background
Neuroblastoma is responsible for 15% of all childhood cancer deaths. Despite advances in treatment and disease management, the overall 5-year survival rates remain poor in high-risk disease (25-40%). MiR-497 was previously identified by our laboratory as a member of a miRNA expression signature, predictive of neuroblastoma patient survival and has been reported as a tumor suppressor in a variety of other cancers. WEE1, a tyrosine kinase regulator of the cell cycle and predicted target of miR-497, has emerged as an oncogene in several cancer types and therefore represents an attractive potential target for novel therapy approaches in high-risk neuroblastoma. Our aim was to investigate the potential tumor suppressive role of miR-497 in high-risk neuroblastoma.
Methods
Expression levels of miR-497 and WEE1 in tissues and cells were determined using RT-PCR. The effect of miR-497 and siWEE1 on cell viability was evaluated using MTS assays, apoptosis levels were determined using FACS analysis of Annexin V/PI stained cells, and target protein expression was determined using western blot. Luciferase reporter plasmids were constructed to confirm direct targeting. Results were reported as mean±S.E.M and differences were tested for significance using 2-tailed Students t-test.
Results
We determined that miR-497 expression was significantly lower in high-risk MYCN amplified (MNA) tumors and that low miR-497 expression was associated with worse EFS and OS in our cohort. Over-expression of miR-497 reduced cell viability and increased apoptosis in MNA cells. We identified WEE1 as a novel target for miR-497 in neuroblastoma. Furthermore, our analysis showed that high WEE1 levels are significantly associated with poor EFS and OS in neuroblastoma and that siRNA knockdown of WEE1 in MNA cell lines results in significant levels of apoptosis, supporting an oncogenic role of WEE1 in neuroblastoma. Cisplatin (CDDP) treatment of both miR-497 over-expressing cells and WEE1 inhibited cells, resulted in a significant increase in apoptosis in MNA cells, describing a synergistic effect and therefore a potential therapeutic for high-risk neuroblastoma.
Conclusion
Our study’s results are consistent with miR-497 being a candidate tumor suppressor in neuroblastoma, through the direct targeting of WEE1. These findings re-enforce the proposal of WEE1 as a therapeutic target in neuroblastoma.
doi:10.1186/1476-4598-12-23
PMCID: PMC3626575  PMID: 23531080
miR-497; Neuroblastoma; WEE1; Tumor suppressor; Cisplatin
8.  MicroRNA and DNA Methylation Alterations Mediating Retinoic Acid Induced Neuroblastoma Cell Differentiation 
Seminars in cancer biology  2011;21(4):283-290.
Many neuroblastoma cell lines can be induced to differentiate into a mature neuronal cell type with retinoic acid and other compounds, providing an important model system for elucidating signalling pathways involved in this highly complex process. Recently, it has become apparent that miRNAs, which act as regulators of gene expression at a post-transcriptional level, are differentially expressed in differentiating cells and play important roles governing many aspects of this process. This includes the down-regulation of DNA methytransferases that cause the de-methylation and transcriptional activation of numerous protein coding gene sequences. The purpose of this article is to review involvement of miRNAs and DNA methylation alterations in the process of neuroblastoma cell differentiation. A thorough understanding of miRNA and genetic pathways regulating neuroblastoma cell differentiation potentially could lead to targeted therapies for this disease.
doi:10.1016/j.semcancer.2011.07.001
PMCID: PMC3206983  PMID: 21771658
ATRA; MYCN; neuroblastoma; microRNA; NCOR2; differentiation; NOS1; DNA methylation
9.  Inhibition of Neuroblastoma Tumor Growth by Targeted Delivery of MicroRNA-34a Using Anti-Disialoganglioside GD2 Coated Nanoparticles 
PLoS ONE  2012;7(5):e38129.
Background
Neuroblastoma is one of the most challenging malignancies of childhood, being associated with the highest death rate in paediatric oncology, underlining the need for novel therapeutic approaches. Typically, patients with high risk disease undergo an initial remission in response to treatment, followed by disease recurrence that has become refractory to further treatment. Here, we demonstrate the first silica nanoparticle-based targeted delivery of a tumor suppressive, pro-apoptotic microRNA, miR-34a, to neuroblastoma tumors in a murine orthotopic xenograft model. These tumors express high levels of the cell surface antigen disialoganglioside GD2 (GD2), providing a target for tumor-specific delivery.
Principal Findings
Nanoparticles encapsulating miR-34a and conjugated to a GD2 antibody facilitated tumor-specific delivery following systemic administration into tumor bearing mice, resulted in significantly decreased tumor growth, increased apoptosis and a reduction in vascularisation. We further demonstrate a novel, multi-step molecular mechanism by which miR-34a leads to increased levels of the tissue inhibitor metallopeptidase 2 precursor (TIMP2) protein, accounting for the highly reduced vascularisation noted in miR-34a-treated tumors.
Significance
These novel findings highlight the potential of anti-GD2-nanoparticle-mediated targeted delivery of miR-34a for both the treatment of GD2-expressing tumors, and as a basic discovery tool for elucidating biological effects of novel miRNAs on tumor growth.
doi:10.1371/journal.pone.0038129
PMCID: PMC3360657  PMID: 22662276
10.  Reduced Mature MicroRNA Levels in Association with Dicer Loss in Human Temporal Lobe Epilepsy with Hippocampal Sclerosis 
PLoS ONE  2012;7(5):e35921.
Hippocampal sclerosis (HS) is a common pathological finding in patients with temporal lobe epilepsy (TLE) and is associated with altered expression of genes controlling neuronal excitability, glial function, neuroinflammation and cell death. MicroRNAs (miRNAs), a class of small non-coding RNAs, function as post-transcriptional regulators of gene expression and are critical for normal brain development and function. Production of mature miRNAs requires Dicer, an RNAase III, loss of which has been shown to cause neuronal and glial dysfunction, seizures, and neurodegeneration. Here we investigated miRNA biogenesis in hippocampal and neocortical resection specimens from pharmacoresistant TLE patients and autopsy controls. Western blot analysis revealed protein levels of Dicer were significantly lower in certain TLE patients with HS. Dicer levels were also reduced in the hippocampus of mice subject to experimentally-induced epilepsy. To determine if Dicer loss was associated with altered miRNA processing, we profiled levels of 380 mature miRNAs in control and TLE-HS samples. Expression of nearly 200 miRNAs was detected in control human hippocampus. In TLE-HS samples there was a large-scale reduction of miRNA expression, with 51% expressed at lower levels and a further 24% not detectable. Primary transcript (pri-miRNAs) expression levels for several tested miRNAs were not different between control and TLE-HS samples. These findings suggest loss of Dicer and failure of mature miRNA expression may be a feature of the pathophysiology of HS in patients with TLE.
doi:10.1371/journal.pone.0035921
PMCID: PMC3352899  PMID: 22615744
11.  MicroRNA-542-5p as a Novel Tumor Suppressor in Neuroblastoma 
Cancer letters  2011;303(1):56-64.
Several studies have implicated the dysregulation of microRNAs in neuroblastoma pathogenesis, an often fatal paediatric cancer arising from precursor cells of the sympathetic nervous system. Our group and others have demonstrated that lower expression of miR-542-5p is highly associated with poor patient survival, indicating a potential tumor suppressive function. Here, we demonstrate that ectopic over-expression of this miRNA decreases the invasive potential of neuroblastoma cell lines in vitro, along with primary tumor growth and metastases in an orthotopic mouse xenograft model, providing the first functional evidence for the involvement of miR-542-5p as a tumor suppressor in any type of cancer.
doi:10.1016/j.canlet.2011.01.016
PMCID: PMC3057396  PMID: 21310526
MicroRNAs; neuroblastoma; miR-542-5p; orthotopic mouse model
12.  MicroRNAs 10a and 10b Are Potent Inducers of Neuroblastoma Cell Differentiation Through Targeting of Nuclear Receptor Co-repressor 2 
Cell death and differentiation  2011;18(7):1089-1098.
MicroRNAs function as negative regulators of post-transcriptional gene expression, playing major roles in cellular differentiation. Several neuroblastoma cell lines can be induced to undergo differentiation by all-trans-retinoic acid (ATRA) and are used for modelling signalling pathways involved in this process. To identify miRNAs contributing to differentiation, we profiled 364 loci following ATRA treatment of neuroblastoma cell lines and found miR-10a and miR-10b to be highly over-expressed in SK-N-BE, LAN5, and SHSY-5Y. Ectopic over-expression of these miRNAs led to a major reprogramming of the transcriptome and a differentiated phenotype that was similar to that induced by ATRA in each of these cell lines. One of the predicted down-regulated miR-10a/b targets was nuclear receptor co-repressor 2 (NCOR2), a co-repressor of gene transcription which is known to suppress neurite outgrowth. NCOR2 was experimentally validated as a direct target of miR-10a/b, and siRNA mediated inhibition of this mRNA alone resulted in neural cell differentiation. Moreover, induction of differentiation could be blocked by ectopic up-regulation of NCOR2 using an expression construct lacking the miR-10a/b 3’ UTR target site. We conclude that miR-10a/b play major roles in the process of neural cell differentiation through direct targeting of NCOR2, which in turn induces a cascade of primary and secondary transcriptional alterations, including the down-regulation of MYCN.
doi:10.1038/cdd.2010.172
PMCID: PMC3114164  PMID: 21212796
ATRA; MYCN; neuroblastoma; miR-10a; miR-10b; NCOR2; differentiation
13.  MicroRNA Mediates DNA De-methylation Events Triggered By Retinoic Acid During Neuroblastoma Cell Differentiation 
Cancer research  2010;70(20):7874-7881.
Neuroblastoma is an often fatal pediatric cancer arising from precursor cells of the sympathetic nervous system. 13-Cis retinoic acid is included in the treatment regime for patients with high-risk disease, and a similar derivative, all-trans retinoic acid (ATRA) causes neuroblastoma cell lines to undergo differentiation. The molecular signaling pathways involved with ATRA induced differentiation are complex, and the role that DNA methylation changes might play are unknown. The purpose of this study was to evaluate the genome-wide effects of ATRA on DNA methylation using methylated DNA immunoprecipitation applied to microarrays representing all known promoter and CpG islands. 402 gene promoters became demethylated, while 88 were hypermethylated post-ATRA. mRNA expression microarrays revealed that 82 of the demethylated genes were over-expressed by >2 fold, while 13 of the hyper methylated genes were under-expressed. Gene ontology analysis indicated that de-methylated and re-expressed genes were enriched for signal transduction pathways, including NOS1, which is required for neural cell differentiation. As a potential mechanism for the DNA methylation changes, we demonstrate the down-regulation of methyltransferases, DNMT1 and DNMT3B, along with the up-regulation of endogenous microRNAs targeting them. Ectopic over-expression of miR-152, targeting DNMT1, also negatively impacted cell invasiveness and anchorage independent growth, contributing in part to the differentiated phenotype. We conclude that functionally important, miRNA-mediated DNA de-methylation changes contribute to the process of ATRA induced differentiation resulting in the activation of NOS1, a critical determinant of neural cell differentiation. Our findings illustrate the plasticity and dynamic nature of the epigenome during cancer cell differentiation.
doi:10.1158/0008-5472.CAN-10-1534
PMCID: PMC2955783  PMID: 20841484
DNA Hypermethylation; MYCN; ATRA; Neuroblastoma; miRNA
14.  Chromosomal and miRNA Expression Patterns Reveal Biologically Distinct Subgroups of 11q− Neuroblastoma 
Purpose
The purpose of this study was to further define the biology of the 11q− neuroblastoma tumor subgroup by the integration of aCGH with miRNA expression profiling data to determine if improved patient stratification is possible.
Experimental Design
A set of primary neuroblastoma (n=160) which was broadly representative of all genetic subtypes was analyzed by aCGH and for the expression of 430 miRNAs. A 15 miRNA expression signature previously demonstrated to be predictive of clinical outcome was used to analyze an independent cohort of 11q− tumors (n=37).
Results
Loss of 4p and gain of 7q occurred at a significantly higher frequency in the 11q−tumors, further defining the genetic characteristics of this subtype. The 11q− tumors could be split into two subgroups using a miRNA expression survival signature which differed significantly in both clinical outcome and the overall frequency of large scale genomic imbalances, with the poor survival subgroup having significantly more imbalances. MiRNAs from the expression signature which were up-regulated in unfavorable tumors were predicted to target down-regulated genes from a published mRNA expression classifier of clinical outcome at a higher than expected frequency, indicating the miRNAs might contribute to the regulation of genes within the signature.
Conclusion
We demonstrate that two distinct biological subtypes of neuroblastoma with loss of 11q occur which differ in their miRNA expression profiles, frequency of segmental imbalances and clinical outcome. A miRNA expression signature, combined with an analysis of segmental imbalances, provides greater prediction of EFS and OS outcomes than 11q status by itself, improving patient stratification.
doi:10.1158/1078-0432.CCR-09-3215
PMCID: PMC2880207  PMID: 20406844
aCGH; MYCN; neuroblastoma; miRNA
15.  MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2 
Molecular Cancer  2010;9:83.
Background
Neuroblastoma is a paediatric cancer of the sympathetic nervous system. The single most important genetic indicator of poor clinical outcome is amplification of the MYCN transcription factor. One of many down-stream MYCN targets is miR-184, which is either directly or indirectly repressed by this transcription factor, possibly due to its pro-apoptotic effects when ectopically over-expressed in neuroblastoma cells. The purpose of this study was to elucidate the molecular mechanism by which miR-184 conveys pro-apoptotic effects.
Results
We demonstrate that the knock-down of endogenous miR-184 has the opposite effect of ectopic up-regulation, leading to enhanced neuroblastoma cell numbers. As a mechanism of how miR-184 causes apoptosis when over-expressed, and increased cell numbers when inhibited, we demonstrate direct targeting and degradation of AKT2, a major downstream effector of the phosphatidylinositol 3-kinase (PI3K) pathway, one of the most potent pro-survival pathways in cancer. The pro-apoptotic effects of miR-184 ectopic over-expression in neuroblastoma cell lines is reproduced by siRNA inhibition of AKT2, while a positive effect on cell numbers similar to that obtained by the knock-down of endogenous miR-184 can be achieved by ectopic up-regulation of AKT2. Moreover, co-transfection of miR-184 with an AKT2 expression vector lacking the miR-184 target site in the 3'UTR rescues cells from the pro-apoptotic effects of miR-184.
Conclusions
MYCN contributes to tumorigenesis, in part, by repressing miR-184, leading to increased levels of AKT2, a direct target of miR-184. Thus, two important genes with positive effects on cell growth and survival, MYCN and AKT2, can be linked into a common genetic pathway through the actions of miR-184. As an inhibitor of AKT2, miR-184 could be of potential benefit in miRNA mediated therapeutics of MYCN amplified neuroblastoma and other forms of cancer.
doi:10.1186/1476-4598-9-83
PMCID: PMC2864218  PMID: 20409325
16.  Global MYCN Transcription Factor Binding Analysis in Neuroblastoma Reveals Association with Distinct E-Box Motifs and Regions of DNA Hypermethylation 
PLoS ONE  2009;4(12):e8154.
Background
Neuroblastoma, a cancer derived from precursor cells of the sympathetic nervous system, is a major cause of childhood cancer related deaths. The single most important prognostic indicator of poor clinical outcome in this disease is genomic amplification of MYCN, a member of a family of oncogenic transcription factors.
Methodology
We applied MYCN chromatin immunoprecipitation to microarrays (ChIP-chip) using MYCN amplified/non-amplified cell lines as well as a conditional knockdown cell line to determine the distribution of MYCN binding sites within all annotated promoter regions.
Conclusion
Assessment of E-box usage within consistently positive MYCN binding sites revealed a predominance for the CATGTG motif (p<0.0016), with significant enrichment of additional motifs CATTTG, CATCTG, CAACTG in the MYCN amplified state. For cell lines over-expressing MYCN, gene ontology analysis revealed enrichment for the binding of MYCN at promoter regions of numerous molecular functional groups including DNA helicases and mRNA transcriptional regulation. In order to evaluate MYCN binding with respect to other genomic features, we determined the methylation status of all annotated CpG islands and promoter sequences using methylated DNA immunoprecipitation (MeDIP). The integration of MYCN ChIP-chip and MeDIP data revealed a highly significant positive correlation between MYCN binding and DNA hypermethylation. This association was also detected in regions of hemizygous loss, indicating that the observed association occurs on the same homologue. In summary, these findings suggest that MYCN binding occurs more commonly at CATGTG as opposed to the classic CACGTG E-box motif, and that disease associated over expression of MYCN leads to aberrant binding to additional weaker affinity E-box motifs in neuroblastoma. The co-localization of MYCN binding and DNA hypermethylation further supports the dual role of MYCN, namely that of a classical transcription factor affecting the activity of individual genes, and that of a mediator of global chromatin structure.
doi:10.1371/journal.pone.0008154
PMCID: PMC2781550  PMID: 19997598
17.  Widespread Dysregulation of MiRNAs by MYCN Amplification and Chromosomal Imbalances in Neuroblastoma: Association of miRNA Expression with Survival 
PLoS ONE  2009;4(11):e7850.
MiRNAs regulate gene expression at a post-transcriptional level and their dysregulation can play major roles in the pathogenesis of many different forms of cancer, including neuroblastoma, an often fatal paediatric cancer originating from precursor cells of the sympathetic nervous system. We have analyzed a set of neuroblastoma (n = 145) that is broadly representative of the genetic subtypes of this disease for miRNA expression (430 loci by stem-loop RT qPCR) and for DNA copy number alterations (array CGH) to assess miRNA involvement in disease pathogenesis. The tumors were stratified and then randomly split into a training set (n = 96) and a validation set (n = 49) for data analysis. Thirty-seven miRNAs were significantly over- or under-expressed in MYCN amplified tumors relative to MYCN single copy tumors, indicating a potential role for the MYCN transcription factor in either the direct or indirect dysregulation of these loci. In addition, we also determined that there was a highly significant correlation between miRNA expression levels and DNA copy number, indicating a role for large-scale genomic imbalances in the dysregulation of miRNA expression. In order to directly assess whether miRNA expression was predictive of clinical outcome, we used the Random Forest classifier to identify miRNAs that were most significantly associated with poor overall patient survival and developed a 15 miRNA signature that was predictive of overall survival with 72.7% sensitivity and 86.5% specificity in the validation set of tumors. We conclude that there is widespread dysregulation of miRNA expression in neuroblastoma tumors caused by both over-expression of the MYCN transcription factor and by large-scale chromosomal imbalances. MiRNA expression patterns are also predicative of clinical outcome, highlighting the potential for miRNA mediated diagnostics and therapeutics.
doi:10.1371/journal.pone.0007850
PMCID: PMC2773120  PMID: 19924232

Results 1-17 (17)