PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (43)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder 
Nature genetics  2011;44(1):78-84.
Attention deficit hyperactivity disorder (ADHD) is a common, heritable neuropsychiatric disorder of unknown etiology. We performed a whole-genome copy number variation (CNV) study on 1,013 cases with ADHD and 4,105 healthy children of European ancestry using 550,000 SNPs. We evaluated statistically significant findings in multiple independent cohorts, with a total of 2,493 cases with ADHD and 9,222 controls of European ancestry, using matched platforms. CNVs affecting metabotropic glutamate receptor genes were enriched across all cohorts (P = 2.1 × 10−9). We saw GRM5 (encoding glutamate receptor, metabotropic 5) deletions in ten cases and one control (P = 1.36 × 10−6). We saw GRM7 deletions in six cases, and we saw GRM8 deletions in eight cases and no controls. GRM1 was duplicated in eight cases. We experimentally validated the observed variants using quantitative RT-PCR. A gene network analysis showed that genes interacting with the genes in the GRM family are enriched for CNVs in ~10% of the cases (P = 4.38 × 10−10) after correction for occurrence in the controls. We identified rare recurrent CNVs affecting glutamatergic neurotransmission genes that were overrepresented in multiple ADHD cohorts.
doi:10.1038/ng.1013
PMCID: PMC4310555  PMID: 22138692
2.  Association of variants of the interleukin-23 receptor (IL23R) gene with susceptibility to pediatric Crohn’s disease 
Background & Aims
Recently an association was demonstrated between the single nucleotide polymorphism (SNP), rs11209026, within the interleukin-23 receptor (IL23R) locus and Crohn’s disease (CD) as a consequence of a genome wide association study of this disease in adults. We examined the effects of this and other previously reported SNPs at this locus with respect to CD in children.
Methods
Utilizing data from our ongoing genome-wide association study in our cohort of 142 pediatric CD cases and 281 matched controls, we investigated the association of the previously reported SNPs at the IL23R locus with the childhood form of this disease.
Results
Using a Fisher’s exact test, the minor allele frequency (MAF) of rs1120902 in the cases was 1.75% while it was 6.61% in controls, yielding a protective odds ratio (OR) of 0.25 (95% CI 0.10 – 0.65; one-sided P = 9.2×10−4). Furthermore, of all the SNPs previously reported, rs11209026 was the most strongly associated. A subsequent family-based association test (which is more resistant to population stratification) with 65 sets of trios derived from our initial patient cohort yielded significant association with rs11209026 in a transmission disequilibrium test (one-sided P=0.0017). In contrast, no association was detected to the CARD15 gene for the IBD phenotype.
Conclusions
The OR of the IL23R variant in our pediatric study is highly comparable with that reported previously in a non-Jewish adult IBD case-control cohort (OR=0.26). As such, variants in IL23R gene confer a similar magnitude of risk of CD to children as for their adult counterparts.
doi:10.1016/j.cgh.2007.04.024
PMCID: PMC4287202  PMID: 17618837
IL23R; gene; association; Crohn’s Disease
3.  Dominant Form of Congenital Hyperinsulinism Maps to HK1 Region on 10q 
Hormone research in paediatrics  2013;80(1):10.1159/000351943.
Background/Aims
In a family with congenital hyperinsulinism (HI), first described in the 1950s by MacQuarrie, we examined the genetic locus and clinical phenotype of a novel form of dominant HI.
Methods
We surveyed 25 affected individuals, 7 of whom participated in tests of insulin dysregulation (24-hour fasting, oral glucose and protein tolerance tests). To identify the disease locus and potential disease-associated mutations we performed linkage analysis, whole transcriptome sequencing, whole genome sequencing, gene capture, and next generation sequencing.
Results
Most affecteds were diagnosed with HI before age one and 40% presented with a seizure. All affecteds responded well to diazoxide. Affecteds failed to adequately suppress insulin secretion following oral glucose tolerance test or prolonged fasting; none had protein-sensitive hypoglycemia. Linkage analysis mapped the HI locus to Chr10q21–22, a region containing 48 genes. Three novel non-coding variants were found in hexokinase 1 (HK1) and one missense variant in the coding region of DNA2.
Conclusion
Dominant, diazoxide-responsive HI in this family maps to a novel locus on Chr10q21–22. HK1 is the more attractive disease gene candidate since a mutation interfering with the normal suppression of HK1 expression in beta-cells could readily explain the hypoglycemia phenotype of this pedigree.
doi:10.1159/000351943
PMCID: PMC3876732  PMID: 23859901
beta-cell; hypoglycemia; genetics; hyperinsulinism; insulin secretion
4.  Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing and childhood adiposity 
Human Molecular Genetics  2013;22(13):2735-2747.
The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10−8) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits.
doi:10.1093/hmg/ddt104
PMCID: PMC3674797  PMID: 23449627
5.  Imputation of TPMT defective alleles for the identification of patients with high-risk phenotypes 
Background: The activity of thiopurine methyltransferase (TPMT) is subject to genetic variation. Loss-of-function alleles are associated with various degrees of myelosuppression after treatment with thiopurine drugs, thus genotype-based dosing recommendations currently exist. The aim of this study was to evaluate the potential utility of leveraging genomic data from large biorepositories in the identification of individuals with TPMT defective alleles.
Material and methods: TPMT variants were imputed using the 1000 Genomes Project reference panel in 87,979 samples from the biobank at The Children's Hospital of Philadelphia. Population ancestry was determined by principal component analysis using HapMap3 samples as reference. Frequencies of the TPMT imputed alleles, genotypes and the associated phenotype were determined across the different populations. A sample of 630 subjects with genotype data from Sanger sequencing (N = 59) and direct genotyping (N = 583) (12 samples overlapping in the two groups) was used to check the concordance between the imputed and observed genotypes, as well as the sensitivity, specificity and positive and negative predictive values of the imputation.
Results: Two SNPs (rs1800460 and rs1142345) that represent three TPMT alleles (*3A, *3B, and *3C) were imputed with adequate quality. Frequency for the associated enzyme activity varied across populations and 89.36–94.58% were predicted to have normal TPMT activity, 5.3–10.31% intermediate and 0.12–0.34% poor activities. Overall, 98.88% of individuals (623/630) were correctly imputed into carrying no risk alleles (553/553), heterozygous (45/46) and homozygous (25/31). Sensitivity, specificity and predictive values of imputation were over 90% in all cases except for the sensitivity of imputing homozygous subjects that was 80.64%.
Conclusion: Imputation of TPMT alleles from existing genomic data can be used as a first step in the screening of individuals at risk of developing serious adverse events secondary to thiopurine drugs.
doi:10.3389/fgene.2014.00096
PMCID: PMC4026736  PMID: 24860591
TPMT; genotype imputation; DNA biobank; pharmacogenetics; Electronic Medical Records
6.  Assessing the functional consequence of loss of function variants using electronic medical record and large-scale genomics consortium efforts 
Frontiers in Genetics  2014;5:105.
Estimates from large scale genome sequencing studies indicate that each human carries up to 20 genetic variants that are predicted to results in loss of function (LOF) of protein-coding genes. While some are known disease-causing variants or common, tolerated, LOFs in non-essential genes, the majority remain of unknown consequence. We explore the possibility of using imputed GWAS data from large biorepositories such as the electronic medical record and genomics (eMERGE) consortium to determine the effects of rare LOFs. Here, we show that two hypocholesterolemia-associated LOF mutations in the PCSK9 gene can be accurately imputed into large-scale GWAS datasets which raises the possibility of assessing LOFs through genomics-linked medical records.
doi:10.3389/fgene.2014.00105
PMCID: PMC4010747  PMID: 24808909
loss of function (LOF); imputation; PCSK9; eMERGE; biorepository
7.  GWAS of blood cell traits identifies novel associated loci and epistatic interactions in Caucasian and African-American children 
Human Molecular Genetics  2012;22(7):1457-1464.
Hematological traits are important clinical indicators, the genetic determinants of which have not been fully investigated. Common measures of hematological traits include red blood cell (RBC) count, hemoglobin concentration (HGB), hematocrit (HCT), mean corpuscular hemoglobin (MCH), MCH concentration (MCHC), mean corpuscular volume (MCV), platelet count (PLT) and white blood cell (WBC) count. We carried out a genome-wide association study of the eight common hematological traits among 7943 African-American children and 6234 Caucasian children. In African Americans, we report five novel associations of HBE1 variants with HCT and MCHC, the alpha-globin gene cluster variants with RBC and MCHC, and a variant at the ARHGEF3 locus with PLT, as well as replication of four previously reported loci at genome-wide significance. In Caucasians, we report a novel association of variants at the COPZ1 locus with PLT as well as replication of four previously reported loci at genome-wide significance. Extended analysis of an association observed between MCH and the alpha-globin gene cluster variants demonstrated independent effects and epistatic interaction at the locus, impacting the risk of iron deficiency anemia in African Americans with specific genotype states. In summary, we extend the understanding of genetic variants underlying hematological traits based on analyses in African-American children.
doi:10.1093/hmg/dds534
PMCID: PMC3657475  PMID: 23263863
8.  A Meta-Analysis Identifies New Loci Associated with Body Mass index in Individuals of African Ancestry 
Monda, Keri L. | Chen, Gary K. | Taylor, Kira C. | Palmer, Cameron | Edwards, Todd L. | Lange, Leslie A. | Ng, Maggie C.Y. | Adeyemo, Adebowale A. | Allison, Matthew A. | Bielak, Lawrence F. | Chen, Guanji | Graff, Mariaelisa | Irvin, Marguerite R. | Rhie, Suhn K. | Li, Guo | Liu, Yongmei | Liu, Youfang | Lu, Yingchang | Nalls, Michael A. | Sun, Yan V. | Wojczynski, Mary K. | Yanek, Lisa R. | Aldrich, Melinda C. | Ademola, Adeyinka | Amos, Christopher I. | Bandera, Elisa V. | Bock, Cathryn H. | Britton, Angela | Broeckel, Ulrich | Cai, Quiyin | Caporaso, Neil E. | Carlson, Chris | Carpten, John | Casey, Graham | Chen, Wei-Min | Chen, Fang | Chen, Yii-Der I. | Chiang, Charleston W.K. | Coetzee, Gerhard A. | Demerath, Ellen | Deming-Halverson, Sandra L. | Driver, Ryan W. | Dubbert, Patricia | Feitosa, Mary F. | Freedman, Barry I. | Gillanders, Elizabeth M. | Gottesman, Omri | Guo, Xiuqing | Haritunians, Talin | Harris, Tamara | Harris, Curtis C. | Hennis, Anselm JM | Hernandez, Dena G. | McNeill, Lorna H. | Howard, Timothy D. | Howard, Barbara V. | Howard, Virginia J. | Johnson, Karen C. | Kang, Sun J. | Keating, Brendan J. | Kolb, Suzanne | Kuller, Lewis H. | Kutlar, Abdullah | Langefeld, Carl D. | Lettre, Guillaume | Lohman, Kurt | Lotay, Vaneet | Lyon, Helen | Manson, JoAnn E. | Maixner, William | Meng, Yan A. | Monroe, Kristine R. | Morhason-Bello, Imran | Murphy, Adam B. | Mychaleckyj, Josyf C. | Nadukuru, Rajiv | Nathanson, Katherine L. | Nayak, Uma | N’Diaye, Amidou | Nemesure, Barbara | Wu, Suh-Yuh | Leske, M. Cristina | Neslund-Dudas, Christine | Neuhouser, Marian | Nyante, Sarah | Ochs-Balcom, Heather | Ogunniyi, Adesola | Ogundiran, Temidayo O. | Ojengbede, Oladosu | Olopade, Olufunmilayo I. | Palmer, Julie R. | Ruiz-Narvaez, Edward A. | Palmer, Nicholette D. | Press, Michael F. | Rampersaud, Evandine | Rasmussen-Torvik, Laura J. | Rodriguez-Gil, Jorge L. | Salako, Babatunde | Schadt, Eric E. | Schwartz, Ann G. | Shriner, Daniel A. | Siscovick, David | Smith, Shad B. | Wassertheil-Smoller, Sylvia | Speliotes, Elizabeth K. | Spitz, Margaret R. | Sucheston, Lara | Taylor, Herman | Tayo, Bamidele O. | Tucker, Margaret A. | Van Den Berg, David J. | Velez Edwards, Digna R. | Wang, Zhaoming | Wiencke, John K. | Winkler, Thomas W. | Witte, John S. | Wrensch, Margaret | Wu, Xifeng | Yang, James J. | Levin, Albert M. | Young, Taylor R. | Zakai, Neil A. | Cushman, Mary | Zanetti, Krista A. | Zhao, Jing Hua | Zhao, Wei | Zheng, Yonglan | Zhou, Jie | Ziegler, Regina G. | Zmuda, Joseph M. | Fernandes, Jyotika K. | Gilkeson, Gary S. | Kamen, Diane L. | Hunt, Kelly J. | Spruill, Ida J. | Ambrosone, Christine B. | Ambs, Stefan | Arnett, Donna K. | Atwood, Larry | Becker, Diane M. | Berndt, Sonja I. | Bernstein, Leslie | Blot, William J. | Borecki, Ingrid B. | Bottinger, Erwin P. | Bowden, Donald W. | Burke, Gregory | Chanock, Stephen J. | Cooper, Richard S. | Ding, Jingzhong | Duggan, David | Evans, Michele K. | Fox, Caroline | Garvey, W. Timothy | Bradfield, Jonathan P. | Hakonarson, Hakon | Grant, Struan F.A. | Hsing, Ann | Chu, Lisa | Hu, Jennifer J. | Huo, Dezheng | Ingles, Sue A. | John, Esther M. | Jordan, Joanne M. | Kabagambe, Edmond K. | Kardia, Sharon L.R. | Kittles, Rick A. | Goodman, Phyllis J. | Klein, Eric A. | Kolonel, Laurence N. | Le Marchand, Loic | Liu, Simin | McKnight, Barbara | Millikan, Robert C. | Mosley, Thomas H. | Padhukasahasram, Badri | Williams, L. Keoki | Patel, Sanjay R. | Peters, Ulrike | Pettaway, Curtis A. | Peyser, Patricia A. | Psaty, Bruce M. | Redline, Susan | Rotimi, Charles N. | Rybicki, Benjamin A. | Sale, Michèle M. | Schreiner, Pamela J. | Signorello, Lisa B. | Singleton, Andrew B. | Stanford, Janet L. | Strom, Sara S. | Thun, Michael J. | Vitolins, Mara | Zheng, Wei | Moore, Jason H. | Williams, Scott M. | Zhu, Xiaofeng | Zonderman, Alan B. | Kooperberg, Charles | Papanicolaou, George | Henderson, Brian E. | Reiner, Alex P. | Hirschhorn, Joel N. | Loos, Ruth JF | North, Kari E. | Haiman, Christopher A.
Nature genetics  2013;45(6):690-696.
Genome-wide association studies (GWAS) have identified 36 loci associated with body mass index (BMI), predominantly in populations of European ancestry. We conducted a meta-analysis to examine the association of >3.2 million SNPs with BMI in 39,144 men and women of African ancestry, and followed up the most significant associations in an additional 32,268 individuals of African ancestry. We identified one novel locus at 5q33 (GALNT10, rs7708584, p=3.4×10−11) and another at 7p15 when combined with data from the Giant consortium (MIR148A/NFE2L3, rs10261878, p=1.2×10−10). We also found suggestive evidence of an association at a third locus at 6q16 in the African ancestry sample (KLHL32, rs974417, p=6.9×10−8). Thirty-two of the 36 previously established BMI variants displayed directionally consistent effect estimates in our GWAS (binomial p=9.7×10−7), of which five reached genome-wide significance. These findings provide strong support for shared BMI loci across populations as well as for the utility of studying ancestrally diverse populations.
doi:10.1038/ng.2608
PMCID: PMC3694490  PMID: 23583978
9.  Common variants at 12q15 and 12q24 are associated with infant head circumference 
Taal, H Rob | Pourcain, Beate St | Thiering, Elisabeth | Das, Shikta | Mook-Kanamori, Dennis O | Warrington, Nicole M | Kaakinen, Marika | Kreiner-Møller, Eskil | Bradfield, Jonathan P | Freathy, Rachel M | Geller, Frank | Guxens, Mònica | Cousminer, Diana L | Kerkhof, Marjan | Timpson, Nicholas J | Ikram, M Arfan | Beilin, Lawrence J | Bønnelykke, Klaus | Buxton, Jessica L | Charoen, Pimphen | Chawes, Bo Lund Krogsgaard | Eriksson, Johan | Evans, David M | Hofman, Albert | Kemp, John P | Kim, Cecilia E | Klopp, Norman | Lahti, Jari | Lye, Stephen J | McMahon, George | Mentch, Frank D | Müller, Martina | O’Reilly, Paul F | Prokopenko, Inga | Rivadeneira, Fernando | Steegers, Eric A P | Sunyer, Jordi | Tiesler, Carla | Yaghootkar, Hanieh | Breteler, Monique M B | Debette, Stephanie | Fornage, Myriam | Gudnason, Vilmundur | Launer, Lenore J | van der Lugt, Aad | Mosley, Thomas H | Seshadri, Sudha | Smith, Albert V | Vernooij, Meike W | Blakemore, Alexandra IF | Chiavacci, Rosetta M | Feenstra, Bjarke | Fernandez-Benet, Julio | Grant, Struan F A | Hartikainen, Anna-Liisa | van der Heijden, Albert J | Iñiguez, Carmen | Lathrop, Mark | McArdle, Wendy L | Mølgaard, Anne | Newnham, John P | Palmer, Lyle J | Palotie, Aarno | Pouta, Annneli | Ring, Susan M | Sovio, Ulla | Standl, Marie | Uitterlinden, Andre G | Wichmann, H-Erich | Vissing, Nadja Hawwa | DeCarli, Charles | van Duijn, Cornelia M | McCarthy, Mark I | Koppelman, Gerard H. | Estivill, Xavier | Hattersley, Andrew T | Melbye, Mads | Bisgaard, Hans | Pennell, Craig E | Widen, Elisabeth | Hakonarson, Hakon | Smith, George Davey | Heinrich, Joachim | Jarvelin, Marjo-Riitta | Jaddoe, Vincent W V
Nature genetics  2012;44(5):532-538.
To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association (GWA) studies (N=10,768 from European ancestry enrolled in pregnancy/birth cohorts) and followed up three lead signals in six replication studies (combined N=19,089). Rs7980687 on chromosome 12q24 (P=8.1×10−9), and rs1042725 on chromosome 12q15 (P=2.8×10−10) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height1, their effects on infant head circumference were largely independent of height (P=3.8×10−7 for rs7980687, P=1.3×10−7 for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P=3.9×10−6). SNPs correlated to the 17q21 signal show genome-wide association with adult intra cranial volume2, Parkinson’s disease and other neurodegenerative diseases3-5, indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.
doi:10.1038/ng.2238
PMCID: PMC3773913  PMID: 22504419
10.  Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement 
Genome Medicine  2013;5(7):67.
Background
Whole-exome sequencing has identified the causes of several Mendelian diseases by analyzing multiple unrelated cases, but it is more challenging to resolve the cause of extremely rare and suspected Mendelian diseases from individual families. We identified a family quartet with two children, both affected with a previously unreported disease, characterized by progressive muscular weakness and cardiomyopathy, with normal intelligence. During the course of the study, we identified one additional unrelated patient with a comparable phenotype.
Methods
We performed whole-genome sequencing (Complete Genomics platform), whole-exome sequencing (Agilent SureSelect exon capture and Illumina Genome Analyzer II platform), SNP genotyping (Illumina HumanHap550 SNP array) and Sanger sequencing on blood samples, as well as RNA-Seq (Illumina HiSeq platform) on transformed lymphoblastoid cell lines.
Results
From whole-genome sequence data, we identified RBCK1, a gene encoding an E3 ubiquitin-protein ligase, as the most likely candidate gene, with two protein-truncating mutations in probands in the first family. However, exome data failed to nominate RBCK1 as a candidate gene, due to poor regional coverage. Sanger sequencing identified a private homozygous splice variant in RBCK1 in the proband in the second family, yet SNP genotyping revealed a 1.2Mb copy-neutral region of homozygosity covering RBCK1. RNA-Seq confirmed aberrant splicing of RBCK1 transcripts, resulting in truncated protein products.
Conclusions
While the exact mechanism by which these mutations cause disease is unknown, our study represents an example of how the combined use of whole-genome DNA and RNA sequencing can identify a disease-predisposing gene for a novel and extremely rare Mendelian disease.
doi:10.1186/gm471
PMCID: PMC3971341  PMID: 23889995
11.  The missense variation landscape of FTO, MC4R and TMEM18 in obese children of African ancestry 
Obesity (Silver Spring, Md.)  2013;21(1):159-163.
Common variation at the loci harboring FTO, MC4R and TMEM18 is consistently reported as being statistically the most strongly associated with obesity. We investigated if these loci also harbor rarer missense variants that confer substantially higher risk of common childhood obesity in African American (AA) children. We sequenced the exons of FTO, MC4R and TMEM18 in an initial subset of our cohort i.e. 200 obese (BMI≥95th percentile) and 200 lean AA children (BMI≤5th percentile). Any missense exonic variants that were uncovered went on to be further genotyped in a further 768 obese and 768 lean (BMI≤50th percentile) children of the same ethnicity. A number of exonic variants were observed from our sequencing effort: seven in FTO, of which four were non-synonymous (A163T, G182A, M400V and A405V), thirteen in MC4R, of which six were non-synonymous (V103I, N123S, S136A, F202L, N240S and I251L) and four in TMEM18, of which two were non-synonymous (P2S and V113L). Follow-up genotyping of these missense variants revealed only one significant difference in allele frequency between cases and controls, namely with N240S in MC4R(Fisher's Exact P = 0.0001). In summary, moderately rare missense variants within the FTO, MC4R and TMEM18 genes observed in our study did not confer risk of common childhood obesity in African Americans except for a degree of evidence for one known loss-of-function variant in MC4R.
doi:10.1002/oby.20147
PMCID: PMC3605748  PMID: 23505181
Obesity; Pediatrics; Genomics
12.  New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism 
Horikoshi, Momoko | Yaghootkar, Hanieh | Mook-Kanamori, Dennis O. | Sovio, Ulla | Taal, H. Rob | Hennig, Branwen J. | Bradfield, Jonathan P. | St. Pourcain, Beate | Evans, David M. | Charoen, Pimphen | Kaakinen, Marika | Cousminer, Diana L. | Lehtimäki, Terho | Kreiner-Møller, Eskil | Warrington, Nicole M. | Bustamante, Mariona | Feenstra, Bjarke | Berry, Diane J. | Thiering, Elisabeth | Pfab, Thiemo | Barton, Sheila J. | Shields, Beverley M. | Kerkhof, Marjan | van Leeuwen, Elisabeth M. | Fulford, Anthony J. | Kutalik, Zoltán | Zhao, Jing Hua | den Hoed, Marcel | Mahajan, Anubha | Lindi, Virpi | Goh, Liang-Kee | Hottenga, Jouke-Jan | Wu, Ying | Raitakari, Olli T. | Harder, Marie N. | Meirhaeghe, Aline | Ntalla, Ioanna | Salem, Rany M. | Jameson, Karen A. | Zhou, Kaixin | Monies, Dorota M. | Lagou, Vasiliki | Kirin, Mirna | Heikkinen, Jani | Adair, Linda S. | Alkuraya, Fowzan S. | Al-Odaib, Ali | Amouyel, Philippe | Andersson, Ehm Astrid | Bennett, Amanda J. | Blakemore, Alexandra I.F. | Buxton, Jessica L. | Dallongeville, Jean | Das, Shikta | de Geus, Eco J. C. | Estivill, Xavier | Flexeder, Claudia | Froguel, Philippe | Geller, Frank | Godfrey, Keith M. | Gottrand, Frédéric | Groves, Christopher J. | Hansen, Torben | Hirschhorn, Joel N. | Hofman, Albert | Hollegaard, Mads V. | Hougaard, David M. | Hyppönen, Elina | Inskip, Hazel M. | Isaacs, Aaron | Jørgensen, Torben | Kanaka-Gantenbein, Christina | Kemp, John P. | Kiess, Wieland | Kilpeläinen, Tuomas O. | Klopp, Norman | Knight, Bridget A. | Kuzawa, Christopher W. | McMahon, George | Newnham, John P. | Niinikoski, Harri | Oostra, Ben A. | Pedersen, Louise | Postma, Dirkje S. | Ring, Susan M. | Rivadeneira, Fernando | Robertson, Neil R. | Sebert, Sylvain | Simell, Olli | Slowinski, Torsten | Tiesler, Carla M.T. | Tönjes, Anke | Vaag, Allan | Viikari, Jorma S. | Vink, Jacqueline M. | Vissing, Nadja Hawwa | Wareham, Nicholas J. | Willemsen, Gonneke | Witte, Daniel R. | Zhang, Haitao | Zhao, Jianhua | Wilson, James F. | Stumvoll, Michael | Prentice, Andrew M. | Meyer, Brian F. | Pearson, Ewan R. | Boreham, Colin A.G. | Cooper, Cyrus | Gillman, Matthew W. | Dedoussis, George V. | Moreno, Luis A | Pedersen, Oluf | Saarinen, Maiju | Mohlke, Karen L. | Boomsma, Dorret I. | Saw, Seang-Mei | Lakka, Timo A. | Körner, Antje | Loos, Ruth J.F. | Ong, Ken K. | Vollenweider, Peter | van Duijn, Cornelia M. | Koppelman, Gerard H. | Hattersley, Andrew T. | Holloway, John W. | Hocher, Berthold | Heinrich, Joachim | Power, Chris | Melbye, Mads | Guxens, Mònica | Pennell, Craig E. | Bønnelykke, Klaus | Bisgaard, Hans | Eriksson, Johan G. | Widén, Elisabeth | Hakonarson, Hakon | Uitterlinden, André G. | Pouta, Anneli | Lawlor, Debbie A. | Smith, George Davey | Frayling, Timothy M. | McCarthy, Mark I. | Grant, Struan F.A. | Jaddoe, Vincent W.V. | Jarvelin, Marjo-Riitta | Timpson, Nicholas J. | Prokopenko, Inga | Freathy, Rachel M.
Nature genetics  2012;45(1):76-82.
Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood1. Previous genome-wide association studies identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes, and a second variant, near CCNL1, with no obvious link to adult traits2. In an expanded genome-wide association meta-analysis and follow-up study (up to 69,308 individuals of European descent from 43 studies), we have now extended the number of genome-wide significant loci to seven, accounting for a similar proportion of variance to maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes; ADRB1 with adult blood pressure; and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.
doi:10.1038/ng.2477
PMCID: PMC3605762  PMID: 23202124
13.  Translational studies of lipoprotein-associated phospholipase A2 in inflammation and atherosclerosis 
Objectives
To examine the role of lipoprotein-associated phospholipase A2 (Lp-PLA2/PLA2G7) in human inflammation and coronary atherosclerosis.
Background
Lp-PLA2 has emerged as a potential therapeutic target in coronary heart disease (CHD). Data supporting Lp-PLA2 are indirect and confounded by species differences; whether Lp-PLA2 is causal in CHD remains in question.
Methods
We examined inflammatory regulation of Lp-PLA2 during experimental endotoxemia in human, probed the source of Lp-PLA2 in human leukocytes under inflammatory conditions, and assessed the relationship of variation in PLA2G7, the gene encoding Lp-PLA2, with coronary artery calcification (CAC).
Results
In contrast to circulating TNFα and CRP, blood and monocyte Lp-PLA2 mRNA decreased transiently, and plasma Lp-PLA2 mass declined modestly during endotoxemia. In vitro, Lp-PLA2 expression increased dramatically during human monocyte to macrophage differentiation and further in inflammatory macrophages and foam like-cells. Despite only a marginal association of SNPs in PLA2G7 with Lp-PLA2 activity or mass, numerous PLA2G7 SNPs were associated with CAC. In contrast, several SNPs in CRP were significantly associated with plasma CRP levels but had no relation with CAC.
Conclusions
Circulating Lp-PLA2 did not increase during acute phase response in human, while inflammatory macrophages and foam cells, but not circulating monocytes, are major leukocyte sources of Lp-PLA2. Common genetic variation in PLA2G7 is associated with sub-clinical coronary atherosclerosis. These data link Lp-PLA2 to atherosclerosis in human while highlighting the challenge in using circulating Lp-PLA2 as a biomarker of Lp-PLA2 actions in the vasculature.
doi:10.1016/j.jacc.2011.11.019
PMCID: PMC3285416  PMID: 22340269
Lp-PLA2; PLA2G7; CAC
14.  Crohn’s Disease and Genetic Hitchhiking at IBD5 
Molecular Biology and Evolution  2011;29(1):101-111.
Inflammatory bowel disease 5 (IBD5) is a 250 kb haplotype on chromosome 5 that is associated with an increased risk of Crohn’s disease in Europeans. The OCTN1 gene is centrally located on IBD5 and encodes a transporter of the antioxidant ergothioneine (ET). The 503F variant of OCTN1 is strongly associated with IBD5 and is a gain-of-function mutation that increases absorption of ET. Although 503F has been implicated as the variant potentially responsible for Crohn’s disease susceptibility at IBD5, there is little evidence beyond statistical association to support its role in disease causation. We hypothesize that 503F is a recent adaptation in Europeans that swept to relatively high frequency and that disease association at IBD5 results not from 503F itself, but from one or more nearby hitchhiking variants, in the genes IRF1 or IL5. To test for evidence of recent positive selection on the 503F allele, we employed the iHS statistic, which was significant in the European CEU HapMap population (P = 0.0007) and European Human Genome Diversity Panel populations (P ≤ 0.01). To evaluate the hypothesis of disease-variant hitchhiking, we performed haplotype association tests on high-density microarray data in a sample of 1,868 Crohn’s disease cases and 5,550 controls. We found that 503F haplotypes with recombination breakpoints between OCTN1 and IRF1 or IL5 were not associated with disease (odds ratio [OR]: 1.05, P = 0.21). In contrast, we observed strong disease association for 503F haplotypes with no recombination between these three genes (OR: 1.24, P = 2.6 × 10−8), as expected if the sweeping haplotype harbored one or more disease-causing mutations in IRF1 or IL5. To further evaluate these disease-gene candidates, we obtained expression data from lower gastrointestinal biopsies of healthy individuals and Crohn’s disease patients. We observed a 72% increase in gene expression of IRF1 among Crohn’s disease patients (P = 0.0006) and no significant difference in expression of OCTN1. Collectively, these data indicate that the 503F variant has increased in frequency due to recent positive selection and that disease-causing variants in linkage disequilibrium with 503F have hitchhiked to relatively high frequency, thus forming the IBD5 risk haplotype. Finally, our association results and expression data support IRF1 as a strong candidate for Crohn’s disease causation.
doi:10.1093/molbev/msr151
PMCID: PMC3245542  PMID: 21816865
positive selection; genetic hitchhiking; Crohn's disease; IBD5; IRF1
15.  A genome-wide association meta-analysis identifies new childhood obesity loci 
Bradfield, Jonathan P. | Taal, H. Rob | Timpson, Nicholas J. | Scherag, André | Lecoeur, Cecile | Warrington, Nicole M. | Hypponen, Elina | Holst, Claus | Valcarcel, Beatriz | Thiering, Elisabeth | Salem, Rany M. | Schumacher, Fredrick R. | Cousminer, Diana L. | Sleiman, Patrick M.A. | Zhao, Jianhua | Berkowitz, Robert I. | Vimaleswaran, Karani S. | Jarick, Ivonne | Pennell, Craig E. | Evans, David M. | St. Pourcain, Beate | Berry, Diane J. | Mook-Kanamori, Dennis O | Hofman, Albert | Rivadeinera, Fernando | Uitterlinden, André G. | van Duijn, Cornelia M. | van der Valk, Ralf J.P. | de Jongste, Johan C. | Postma, Dirkje S. | Boomsma, Dorret I. | Gauderman, William J. | Hassanein, Mohamed T. | Lindgren, Cecilia M. | Mägi, Reedik | Boreham, Colin A.G. | Neville, Charlotte E. | Moreno, Luis A. | Elliott, Paul | Pouta, Anneli | Hartikainen, Anna-Liisa | Li, Mingyao | Raitakari, Olli | Lehtimäki, Terho | Eriksson, Johan G. | Palotie, Aarno | Dallongeville, Jean | Das, Shikta | Deloukas, Panos | McMahon, George | Ring, Susan M. | Kemp, John P. | Buxton, Jessica L. | Blakemore, Alexandra I.F. | Bustamante, Mariona | Guxens, Mònica | Hirschhorn, Joel N. | Gillman, Matthew W. | Kreiner-Møller, Eskil | Bisgaard, Hans | Gilliland, Frank D. | Heinrich, Joachim | Wheeler, Eleanor | Barroso, Inês | O'Rahilly, Stephen | Meirhaeghe, Aline | Sørensen, Thorkild I.A. | Power, Chris | Palmer, Lyle J. | Hinney, Anke | Widen, Elisabeth | Farooqi, I. Sadaf | McCarthy, Mark I. | Froguel, Philippe | Meyre, David | Hebebrand, Johannes | Jarvelin, Marjo-Riitta | Jaddoe, Vincent W.V. | Smith, George Davey | Hakonarson, Hakon | Grant, Struan F.A.
Nature Genetics  2012;44(5):526-531.
Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made to establish genetic influences on common early-onset obesity. We performed a North American-Australian-European collaborative meta-analysis of fourteen studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight novel signals yielding association with P < 5×10−6 in to nine independent datasets (n = 2,818 cases and 4,083 controls) we observed two loci that yielded a genome wide significant combined P-value, namely near OLFM4 on 13q14 (rs9568856; P=1.82×10−9; OR=1.22) and within HOXB5 on 17q21 (rs9299; P=3.54×10−9; OR=1.14). Both loci continued to show association when including two extreme childhood obesity cohorts (n = 2,214 cases and 2,674 controls). Finally, these two loci yielded directionally consistent associations in the GIANT meta-analysis of adult BMI1.
doi:10.1038/ng.2247
PMCID: PMC3370100  PMID: 22484627
16.  ANGPT2 Genetic Variant Is Associated with Trauma-associated Acute Lung Injury and Altered Plasma Angiopoietin-2 Isoform Ratio 
Rationale: Acute lung injury (ALI) acts as a complex genetic trait, yet its genetic risk factors remain incompletely understood. Large-scale genotyping has not previously been reported for ALI.
Objectives: To identify ALI risk variants after major trauma using a large-scale candidate gene approach.
Methods: We performed a two-stage genetic association study. We derived findings in an African American cohort (n = 222) using a cardiopulmonary disease–centric 50K single nucleotide polymorphism (SNP) array. Genotype and haplotype distributions were compared between subjects with ALI and without ALI, with adjustment for clinical factors. Top performing SNPs (P < 10−4) were tested in a multicenter European American trauma-associated ALI case-control population (n = 600 ALI; n = 2,266 population-based control subjects) for replication. The ALI-associated genomic region was sequenced, analyzed for in silico prediction of function, and plasma was assayed by ELISA and immunoblot.
Measurements and Main Results: Five SNPs demonstrated a significant association with ALI after adjustment for covariates in Stage I. Two SNPs in ANGPT2 (rs1868554 and rs2442598) replicated their significant association with ALI in Stage II. rs1868554 was robust to multiple comparison correction: odds ratio 1.22 (1.06–1.40), P = 0.0047. Resequencing identified predicted novel splice sites in linkage disequilibrium with rs1868554, and immunoblots showed higher proportion of variant angiopoietin-2 (ANG2) isoform associated with rs1868554T (0.81 vs. 0.48; P = 0.038).
Conclusions: An ANGPT2 region is associated with both ALI and variation in plasma angiopoietin-2 isoforms. Characterization of the variant isoform and its genetic regulation may yield important insights about ALI pathogenesis and susceptibility.
doi:10.1164/rccm.201005-0701OC
PMCID: PMC3114062  PMID: 21257790
acute lung injury; acute respiratory distress syndrome; functional genetic polymorphism; genetic association study
17.  The novel atherosclerosis locus at 10q11 regulates plasma CXCL12 levels 
European Heart Journal  2011;32(8):963-971.
Aims
Two single-nucleotide polymorphisms (SNPs), rs1746048 and rs501120, from genome wide association studies of coronary artery disease (CAD) map to chromosome 10q11 ∼80 kb downstream of chemokine CXCL12. Therefore, we examined the relationship between these two SNPs and plasma CXCL12 levels.
Methods and Results
We tested the association of two SNPs with plasma CXCL12 levels in a two-stage study (n= 2939): first in PennCath (n= 1182), a Caucasian, angiographic CAD case–control study, and second in PennCAC (n= 1757), a community-based study of CAD risk factors. Plasma CXCL12 levels increased with age and did not vary by gender. There was no linkage disequilibrium between these two SNPs and SNPs within CXCL12 gene. However, CAD risk alleles at rs1746048 (C allele, P= 0.034; CC 2.33 ± 0.49, CT 2.27 ± 0.46, and TT 2.21 ± 0.52 ng/mL) and rs501120 (T allele, P= 0.041; TT 2.34 ± 0.49, CT 2.28 ± 0.46, and CC 2.23 ± 0.53 ng/mL) were associated with higher plasma levels of CXCL12 in age and gender adjusted models. In Stage 2, we confirmed this association (rs501120, T allele, P= 0.007), and meta-analysis strengthened this finding (n= 2939, P= 6.0 × 10−4). Finally, in exploratory analysis, the rs1746048 risk allele tended to have higher transcript levels of CXCL12 in human natural killer cells and the liver.
Conclusion
Coronary artery disease risk alleles downstream of CXCL12 are associated with plasma protein levels of CXCL12 and appear to be related to CXCL12 transcript levels in two human cell lines. This implicates CXCL12 as potentially causal and supports CXCL12 as a potential therapeutic target for CAD.
doi:10.1093/eurheartj/ehr091
PMCID: PMC3076669  PMID: 21415067
Myocardial infarction; Cardiovascular genomics; Chemokines; CXCL12; Inflammation
18.  Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis 
Sawcer, Stephen | Hellenthal, Garrett | Pirinen, Matti | Spencer, Chris C.A. | Patsopoulos, Nikolaos A. | Moutsianas, Loukas | Dilthey, Alexander | Su, Zhan | Freeman, Colin | Hunt, Sarah E. | Edkins, Sarah | Gray, Emma | Booth, David R. | Potter, Simon C. | Goris, An | Band, Gavin | Oturai, Annette Bang | Strange, Amy | Saarela, Janna | Bellenguez, Céline | Fontaine, Bertrand | Gillman, Matthew | Hemmer, Bernhard | Gwilliam, Rhian | Zipp, Frauke | Jayakumar, Alagurevathi | Martin, Roland | Leslie, Stephen | Hawkins, Stanley | Giannoulatou, Eleni | D’alfonso, Sandra | Blackburn, Hannah | Boneschi, Filippo Martinelli | Liddle, Jennifer | Harbo, Hanne F. | Perez, Marc L. | Spurkland, Anne | Waller, Matthew J | Mycko, Marcin P. | Ricketts, Michelle | Comabella, Manuel | Hammond, Naomi | Kockum, Ingrid | McCann, Owen T. | Ban, Maria | Whittaker, Pamela | Kemppinen, Anu | Weston, Paul | Hawkins, Clive | Widaa, Sara | Zajicek, John | Dronov, Serge | Robertson, Neil | Bumpstead, Suzannah J. | Barcellos, Lisa F. | Ravindrarajah, Rathi | Abraham, Roby | Alfredsson, Lars | Ardlie, Kristin | Aubin, Cristin | Baker, Amie | Baker, Katharine | Baranzini, Sergio E. | Bergamaschi, Laura | Bergamaschi, Roberto | Bernstein, Allan | Berthele, Achim | Boggild, Mike | Bradfield, Jonathan P. | Brassat, David | Broadley, Simon A. | Buck, Dorothea | Butzkueven, Helmut | Capra, Ruggero | Carroll, William M. | Cavalla, Paola | Celius, Elisabeth G. | Cepok, Sabine | Chiavacci, Rosetta | Clerget-Darpoux, Françoise | Clysters, Katleen | Comi, Giancarlo | Cossburn, Mark | Cournu-Rebeix, Isabelle | Cox, Mathew B. | Cozen, Wendy | Cree, Bruce A.C. | Cross, Anne H. | Cusi, Daniele | Daly, Mark J. | Davis, Emma | de Bakker, Paul I.W. | Debouverie, Marc | D’hooghe, Marie Beatrice | Dixon, Katherine | Dobosi, Rita | Dubois, Bénédicte | Ellinghaus, David | Elovaara, Irina | Esposito, Federica | Fontenille, Claire | Foote, Simon | Franke, Andre | Galimberti, Daniela | Ghezzi, Angelo | Glessner, Joseph | Gomez, Refujia | Gout, Olivier | Graham, Colin | Grant, Struan F.A. | Guerini, Franca Rosa | Hakonarson, Hakon | Hall, Per | Hamsten, Anders | Hartung, Hans-Peter | Heard, Rob N. | Heath, Simon | Hobart, Jeremy | Hoshi, Muna | Infante-Duarte, Carmen | Ingram, Gillian | Ingram, Wendy | Islam, Talat | Jagodic, Maja | Kabesch, Michael | Kermode, Allan G. | Kilpatrick, Trevor J. | Kim, Cecilia | Klopp, Norman | Koivisto, Keijo | Larsson, Malin | Lathrop, Mark | Lechner-Scott, Jeannette S. | Leone, Maurizio A. | Leppä, Virpi | Liljedahl, Ulrika | Bomfim, Izaura Lima | Lincoln, Robin R. | Link, Jenny | Liu, Jianjun | Lorentzen, Åslaug R. | Lupoli, Sara | Macciardi, Fabio | Mack, Thomas | Marriott, Mark | Martinelli, Vittorio | Mason, Deborah | McCauley, Jacob L. | Mentch, Frank | Mero, Inger-Lise | Mihalova, Tania | Montalban, Xavier | Mottershead, John | Myhr, Kjell-Morten | Naldi, Paola | Ollier, William | Page, Alison | Palotie, Aarno | Pelletier, Jean | Piccio, Laura | Pickersgill, Trevor | Piehl, Fredrik | Pobywajlo, Susan | Quach, Hong L. | Ramsay, Patricia P. | Reunanen, Mauri | Reynolds, Richard | Rioux, John D. | Rodegher, Mariaemma | Roesner, Sabine | Rubio, Justin P. | Rückert, Ina-Maria | Salvetti, Marco | Salvi, Erika | Santaniello, Adam | Schaefer, Catherine A. | Schreiber, Stefan | Schulze, Christian | Scott, Rodney J. | Sellebjerg, Finn | Selmaj, Krzysztof W. | Sexton, David | Shen, Ling | Simms-Acuna, Brigid | Skidmore, Sheila | Sleiman, Patrick M.A. | Smestad, Cathrine | Sørensen, Per Soelberg | Søndergaard, Helle Bach | Stankovich, Jim | Strange, Richard C. | Sulonen, Anna-Maija | Sundqvist, Emilie | Syvänen, Ann-Christine | Taddeo, Francesca | Taylor, Bruce | Blackwell, Jenefer M. | Tienari, Pentti | Bramon, Elvira | Tourbah, Ayman | Brown, Matthew A. | Tronczynska, Ewa | Casas, Juan P. | Tubridy, Niall | Corvin, Aiden | Vickery, Jane | Jankowski, Janusz | Villoslada, Pablo | Markus, Hugh S. | Wang, Kai | Mathew, Christopher G. | Wason, James | Palmer, Colin N.A. | Wichmann, H-Erich | Plomin, Robert | Willoughby, Ernest | Rautanen, Anna | Winkelmann, Juliane | Wittig, Michael | Trembath, Richard C. | Yaouanq, Jacqueline | Viswanathan, Ananth C. | Zhang, Haitao | Wood, Nicholas W. | Zuvich, Rebecca | Deloukas, Panos | Langford, Cordelia | Duncanson, Audrey | Oksenberg, Jorge R. | Pericak-Vance, Margaret A. | Haines, Jonathan L. | Olsson, Tomas | Hillert, Jan | Ivinson, Adrian J. | De Jager, Philip L. | Peltonen, Leena | Stewart, Graeme J. | Hafler, David A. | Hauser, Stephen L. | McVean, Gil | Donnelly, Peter | Compston, Alastair
Nature  2011;476(7359):214-219.
Multiple sclerosis (OMIM 126200) is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability.1 Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals;2,3 and systematic attempts to identify linkage in multiplex families have confirmed that variation within the Major Histocompatibility Complex (MHC) exerts the greatest individual effect on risk.4 Modestly powered Genome-Wide Association Studies (GWAS)5-10 have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects play a key role in disease susceptibility.11 Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the Class I region. Immunologically relevant genes are significantly over-represented amongst those mapping close to the identified loci and particularly implicate T helper cell differentiation in the pathogenesis of multiple sclerosis.
doi:10.1038/nature10251
PMCID: PMC3182531  PMID: 21833088
multiple sclerosis; GWAS; genetics
19.  Association of RASGRP1 with type 1 diabetes is revealed by combined follow-up of two genome-wide studies 
Journal of Medical Genetics  2009;46(8):553-554.
Background
The two genome-wide association studies published by us and by the Wellcome Trust Case-Control Consortium (WTCCC) revealed a number of novel loci but neither had the statistical power to elucidate all of the genetic components of type 1 diabetes risk, a task for which larger effective sample sizes are needed.
Methods
We analyzed data from two sources: 1) The previously published second stage of our study, with a total sample size of the two stages consisting of 1,046 Canadian case-parent trios and 538 multiplex families with 929 affected offspring from the Type 1 Diabetes Genetics Consortium (T1DGC); 2) The RR2 project of the T1DGC, which genotyped 4,417 individuals from 1,062 non-overlapping families, including 2,059 affected individuals (mostly sibling pairs) for the 1,536 markers with the highest statistical significance for type 1 diabetes in the WTCCC results.
Results
One locus, mapping to an LD block at chr15q14, reached statistical significance by combining results from two markers (rs17574546 and rs7171171) in perfect linkage disequilibrium (LD) with each other (r2=1). We obtained a joint p value of 1.3 ×10−6, which exceeds by an order of magnitude the conservative threshold of 3.26×10−5 obtained by correcting for the 1,536 SNPs tested in our study. Meta-analysis with the original WTCCC genome-wide data produced a p value of 5.83×10−9.
Conclusions
A novel type 1 diabetes locus was discovered. It involves RASGRP1, a gene known to play a crucial role in thymocyte differentiation and TCR signaling by activating the Ras signaling pathway.
doi:10.1136/jmg.2009.067140
PMCID: PMC3272492  PMID: 19465406
Etiology; Genetic susceptibility; Type 1 diabetes; RASGRP1
20.  Common variants at five new loci associated with early-onset inflammatory bowel disease 
Nature Genetics  2009;41(12):1335-1340.
The inflammatory bowel diseases (IBD) Crohn’s disease and ulcerative colitis are common causes of morbidity in children and young adults in the western world. Here we report the results of a genome-wide association study in early-onset IBD involving 3,426 affected individuals and 11,963 genetically matched controls recruited through international collaborations in Europe and North America, thereby extending the results from a previous study of 1,011 individuals with early-onset IBD1. We have identified five new regions associated with early-onset IBD susceptibility, including 16p11 near the cytokine gene IL27 (rs8049439, P = 2.41 × 10−9), 22q12 (rs2412973, P = 1.55 × 10−9), 10q22 (rs1250550, P = 5.63 × 10−9), 2q37 (rs4676410, P = 3.64 × 10−8) and 19q13.11 (rs10500264, P = 4.26 × 10−10). Our scan also detected associations at 23 of 32 loci previously implicated in adult-onset Crohn’s disease and at 8 of 17 loci implicated in adult-onset ulcerative colitis, highlighting the close pathogenetic relationship between early- and adult-onset IBD.
doi:10.1038/ng.489
PMCID: PMC3267927  PMID: 19915574
21.  Genome Wide Association Identifies PPFIA1 as a Candidate Gene for Acute Lung Injury Risk Following Major Trauma 
PLoS ONE  2012;7(1):e28268.
Acute Lung Injury (ALI) is a syndrome with high associated mortality characterized by severe hypoxemia and pulmonary infiltrates in patients with critical illness. We conducted the first investigation to use the genome wide association (GWA) approach to identify putative risk variants for ALI. Genome wide genotyping was performed using the Illumina Human Quad 610 BeadChip. We performed a two-stage GWA study followed by a third stage of functional characterization. In the discovery phase (Phase 1), we compared 600 European American trauma-associated ALI cases with 2266 European American population-based controls. We carried forward the top 1% of single nucleotide polymorphisms (SNPs) at p<0.01 to a replication phase (Phase 2) comprised of a nested case-control design sample of 212 trauma-associated ALI cases and 283 at-risk trauma non-ALI controls from ongoing cohort studies. SNPs that replicated at the 0.05 level in Phase 2 were subject to functional validation (Phase 3) using expression quantitative trait loci (eQTL) analyses in stimulated B-lymphoblastoid cell lines (B-LCL) in family trios. 159 SNPs from the discovery phase replicated in Phase 2, including loci with prior evidence for a role in ALI pathogenesis. Functional evaluation of these replicated SNPs revealed rs471931 on 11q13.3 to exert a cis-regulatory effect on mRNA expression in the PPFIA1 gene (p = 0.0021). PPFIA1 encodes liprin alpha, a protein involved in cell adhesion, integrin expression, and cell-matrix interactions. This study supports the feasibility of future multi-center GWA investigations of ALI risk, and identifies PPFIA1 as a potential functional candidate ALI risk gene for future research.
doi:10.1371/journal.pone.0028268
PMCID: PMC3266233  PMID: 22295056
22.  A Genome-Wide Meta-Analysis of Six Type 1 Diabetes Cohorts Identifies Multiple Associated Loci 
PLoS Genetics  2011;7(9):e1002293.
Diabetes impacts approximately 200 million people worldwide, of whom approximately 10% are affected by type 1 diabetes (T1D). The application of genome-wide association studies (GWAS) has robustly revealed dozens of genetic contributors to the pathogenesis of T1D, with the most recent meta-analysis identifying in excess of 40 loci. To identify additional genetic loci for T1D susceptibility, we examined associations in the largest meta-analysis to date between the disease and ∼2.54 million SNPs in a combined cohort of 9,934 cases and 16,956 controls. Targeted follow-up of 53 SNPs in 1,120 affected trios uncovered three new loci associated with T1D that reached genome-wide significance. The most significantly associated SNP (rs539514, P = 5.66×10−11) resides in an intronic region of the LMO7 (LIM domain only 7) gene on 13q22. The second most significantly associated SNP (rs478222, P = 3.50×10−9) resides in an intronic region of the EFR3B (protein EFR3 homolog B) gene on 2p23; however, the region of linkage disequilibrium is approximately 800 kb and harbors additional multiple genes, including NCOA1, C2orf79, CENPO, ADCY3, DNAJC27, POMC, and DNMT3A. The third most significantly associated SNP (rs924043, P = 8.06×10−9) lies in an intergenic region on 6q27, where the region of association is approximately 900 kb and harbors multiple genes including WDR27, C6orf120, PHF10, TCTE3, C6orf208, LOC154449, DLL1, FAM120B, PSMB1, TBP, and PCD2. These latest associated regions add to the growing repertoire of gene networks predisposing to T1D.
Author Summary
Despite the fact that there is clearly a large genetic component to type 1 diabetes (T1D), uncovering the genes contributing to this disease has proven challenging. However, in the past three years there has been relatively major progress in this regard, with advances in genetic screening technologies allowing investigators to scan the genome for variants conferring risk for disease without prior hypotheses. Such genome-wide association studies have revealed multiple regions of the genome to be robustly and consistently associated with T1D. More recent findings have been a consequence of combining of multiple datasets from independent investigators in meta-analyses, which have more power to pick up additional variants contributing to the trait. In the current study, we describe the largest meta-analysis of T1D genome-wide genotyped datasets to date, which combines six large studies. As a consequence, we have uncovered three new signals residing at the chromosomal locations 13q22, 2p23, and 6q27, which went on to be replicated in independent sample sets. These latest associated regions add to the growing repertoire of gene networks predisposing to T1D.
doi:10.1371/journal.pgen.1002293
PMCID: PMC3183083  PMID: 21980299
23.  Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects 
Human Molecular Genetics  2010;19(10):2059-2067.
Inflammatory bowel disease, including Crohn's disease (CD) and ulcerative colitis (UC), and type 1 diabetes (T1D) are autoimmune diseases that may share common susceptibility pathways. We examined known susceptibility loci for these diseases in a cohort of 1689 CD cases, 777 UC cases, 989 T1D cases and 6197 shared control subjects of European ancestry, who were genotyped by the Illumina HumanHap550 SNP arrays. We identified multiple previously unreported or unconfirmed disease associations, including known CD loci (ICOSLG and TNFSF15) and T1D loci (TNFAIP3) that confer UC risk, known UC loci (HERC2 and IL26) that confer T1D risk and known UC loci (IL10 and CCNY) that confer CD risk. Additionally, we show that T1D risk alleles residing at the PTPN22, IL27, IL18RAP and IL10 loci protect against CD. Furthermore, the strongest risk alleles for T1D within the major histocompatibility complex (MHC) confer strong protection against CD and UC; however, given the multi-allelic nature of the MHC haplotypes, sequencing of the MHC locus will be required to interpret this observation. These results extend our current knowledge on genetic variants that predispose to autoimmunity, and suggest that many loci involved in autoimmunity may be under a balancing selection due to antagonistic pleiotropic effect. Our analysis implies that variants with opposite effects on different diseases may facilitate the maintenance of common susceptibility alleles in human populations, making autoimmune diseases especially amenable to genetic dissection by genome-wide association studies.
doi:10.1093/hmg/ddq078
PMCID: PMC2860894  PMID: 20176734
24.  Examination of All Type 2 Diabetes GWAS Loci Reveals HHEX-IDE as a Locus Influencing Pediatric BMI 
Diabetes  2009;59(3):751-755.
OBJECTIVE
A number of studies have found that BMI in early life influences the risk of developing type 2 diabetes later in life. Our goal was to investigate if any type 2 diabetes variants uncovered through genome-wide association studies (GWAS) impact BMI in childhood.
RESEARCH DESIGN AND METHODS
Using data from an ongoing GWAS of pediatric BMI in our cohort, we investigated the association of pediatric BMI with 20 single nucleotide polymorphisms at 18 type 2 diabetes loci uncovered through GWAS, consisting of ADAMTS9, CDC123-CAMK1D, CDKAL1, CDKN2A/B, EXT2, FTO, HHEX-IDE, IGF2BP2, the intragenic region on 11p12, JAZF1, KCNQ1, LOC387761, MTNR1B, NOTCH2, SLC30A8, TCF7L2, THADA, and TSPAN8-LGR5. We randomly partitioned our cohort exactly in half in order to have a discovery cohort (n = 3,592) and a replication cohort (n = 3,592).
RESULTS
Our data show that the major type 2 diabetes risk–conferring G allele of rs7923837 at the HHEX-IDE locus was associated with higher pediatric BMI in both the discovery (P = 0.0013 and survived correction for 20 tests) and replication (P = 0.023) sets (combined P = 1.01 × 10−4). Association was not detected with any other known type 2 diabetes loci uncovered to date through GWAS except for the well-established FTO.
CONCLUSIONS
Our data show that the same genetic HHEX-IDE variant, which is associated with type 2 diabetes from previous studies, also influences pediatric BMI.
doi:10.2337/db09-0972
PMCID: PMC2828649  PMID: 19933996
25.  Duplication of the SLIT3 Locus on 5q35.1 Predisposes to Major Depressive Disorder 
PLoS ONE  2010;5(12):e15463.
Major depressive disorder (MDD) is a common psychiatric and behavioral disorder. To discover novel variants conferring risk to MDD, we conducted a whole-genome scan of copy number variation (CNV), including 1,693 MDD cases and 4,506 controls genotyped on the Perlegen 600K platform. The most significant locus was observed on 5q35.1, harboring the SLIT3 gene (P = 2×10−3). Extending the controls with 30,000 subjects typed on the Illumina 550 k array, we found the CNV to remain exclusive to MDD cases (P = 3.2×10−9). Duplication was observed in 5 unrelated MDD cases encompassing 646 kb with highly similar breakpoints. SLIT3 is integral to repulsive axon guidance based on binding to Roundabout receptors. Duplication of 5q35.1 is a highly penetrant variation accounting for 0.7% of the subset of 647 cases harboring large CNVs, using a threshold of a minimum of 10 SNPs and 100 kb. This study leverages a large dataset of MDD cases and controls for the analysis of CNVs with matched platform and ethnicity. SLIT3 duplication is a novel association which explains a definitive proportion of the largely unknown etiology of MDD.
doi:10.1371/journal.pone.0015463
PMCID: PMC2995745  PMID: 21152026

Results 1-25 (43)