PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Peripheral Neuroblastic Tumors with Genotype-Phenotype Discordance: A Report from the Children’s Oncology Groupand the International Neuroblastoma Pathology Committee 
Pediatric blood & cancer  2012;60(3):363-370.
Background
Of 4,706 peripheral neuroblastic tumors (pNTs) registered on the Children’s Cancer Group and Children’s Oncology Group Neuroblastoma Study between 1989 and 2010, 51 cases (1.1%) had genotype-phenotype discordance characterized by MYCN amplification (indicating poor prognosis) and Favorable Histology (indicating better prognosis).
Procedure
To distinguish prognostic subgroups in the genotype-phenotype discordant pNTs, two subgroups, “conventional” and “bull’s eye”, were identified based on the nuclear morphology. The “conventional” tumors (35 cases) included: Neuroblastoma, Poorly differentiated subtype (NB-PD, 26 cases) with “salt-and-pepper” nuclei; Neuroblastoma, Differentiating subtype (4 cases); Ganglioneuroblastoma, Intermixed (3 cases); and Ganglioneuroma, Maturing subtype (2 cases). The “bull’s eye” tumors included NB-PD with prominent nucleoli (16 cases). Clinicopathologic characteristics of these two subgroups were analyzed. N-myc protein expression was tested immunohistochemically on available tumors.
Results
No significant difference was found between these two subgroups in the distribution of prognostic factors such as age at diagnosis, clinical stage, histopathology category/subtype, mitosis-karyorrhexis index, ploidy, 1p LOH, and unbalanced 11qLOH. However, prognosis of the patients with “conventional” tumors (5-year EFS 85.7±12.2%; OS 89.3±10.3%) was significantly better than those with “bull’s eye” tumors (EFS 31.3±13.0%; OS 42.9±16.2%) (P=0.0010 and 0.0008, respectively). Immunohistochemically all (11/11) tested “conventional” tumors were negative, and 10/11 tested “bull’s eye” tumors were positive for N-myc protein expression.
Conclusions
Based on the presence or absence of prominent nucleoli (the putative site of RNA synthesis/accumulation leading to N-myc protein expression), two prognostic subgroups, “conventional” with a better prognosis and “bull’s eye” with a poor prognosis, were distinguished among the genotype-phenotype discordant pNTs.
doi:10.1002/pbc.24238
PMCID: PMC3397468  PMID: 22744966
neuroblastoma; International Neuroblastoma Pathology Classification; MYCN; genotype-phenotype correlation; prognosis; immunohistochemistry
2.  Malignant Phyllodes Tumor and Acute Megakaryoblastic Leukemia Sharing a Common Clonal Origin 
Case Reports in Hematology  2013;2013:934781.
There is a well-known association in male patients between mediastinal germ cell tumors (GCT) and hematologic malignancies, with a propensity towards acute megakaryoblastic leukemia. These rare malignancies have been shown to share a common clonal origin, often deduced from the finding of isochromosome 12p, i(12p), in cells from both the solid tumor and the leukemia, and thus are now known to represent different manifestations of the same clonal process. We treated a young female patient with a malignant phyllodes tumor followed by an acute megakaryoblastic leukemia and found several of the same marker chromosomes by karyotype analysis of cells from both the tumor and the leukemia implying a common clonal origin of the two. To the best of our knowledge, this has not been demonstrated in phyllodes tumors before, but indicates that the same type of leukemization may occur of this tumor as has been described in mediastinal GCT.
doi:10.1155/2013/934781
PMCID: PMC3877602  PMID: 24455338
3.  Prognostic variables in oligodendroglial tumors: a single-institution study of 95 cases 
Neuro-Oncology  2011;13(11):1225-1233.
We analyzed the relationships among clinical variables, histology, 1p/19q status, and outcome in 95 patients with oligodendroglial tumors.
The study enrolled adult patients who underwent first-time surgery for a supratentorial oligodendroglial tumor at Oslo University Hospital, Rikshospitalet. Tumors were: 27 oligodendrogliomas, WHO grade II; 32 oligoastrocytomas, WHO grade II; 16 anaplastic oligodendrogliomas, WHO grade III; 14 anaplastic oligoastrocytomas, WHO grade III; and 6 glioblastomas with a major oligodendroglial component, WHO grade IV. The clinical files were reviewed. Three neuropathologists evaluated the histological slides independently. Loss-of-heterozygosity analysis for 1p and 19q was performed by PCR.
Favorable prognostic factors from univariate analyses included seizures as presenting symptom, female sex, location in the frontal lobe, low WHO grade, classic histology, absence of gemistocytic cells, and combined 1p/19q loss. Solitary 19q loss was a negative prognostic marker. 1p/19q status was of prognostic significance in both tumors with classic and nonclassic oligodendroglial histology. In the multivariate analysis, WHO grade II (P< .001), frontal tumor location (P= .002), and combined 1p/19q loss (P< .001) remained favorable prognostic variables.
Our results suggest that tumor location, WHO grade, and 1p/19q status are important independent variables associated with survival in oligodendroglial tumors. The study suggests that solitary 19q loss is a negative prognostic variable and that 1p/19q loss is associated with prolonged survival also in oligodendroglial tumors without classic histology.
doi:10.1093/neuonc/nor114
PMCID: PMC3199152  PMID: 21856683
oligodendroglioma; 1p; 19q; prognostic
4.  N-Cadherin in Neuroblastoma Disease: Expression and Clinical Significance 
PLoS ONE  2012;7(2):e31206.
One of the first and most important steps in the metastatic cascade is the loss of cell-cell and cell-matrix interactions. N-cadherin, a crucial mediator of homotypic and heterotypic cell-cell interactions, might play a central role in the metastasis of neuroblastoma (NB), a solid tumor of neuroectodermal origin. Using Reverse Transcription Quantitative PCR (RT-qPCR), Western blot, immunocytochemistry and Tissue MicroArrays (TMA) we demonstrate the expression of N-cadherin in neuroblastoma tumors and cell lines. All neuroblastic tumors (n = 356) and cell lines (n = 10) expressed various levels of the adhesion protein. The N-cadherin mRNA expression was significantly lower in tumor samples from patients suffering metastatic disease. Treatment of NB cell lines with the N-cadherin blocking peptide ADH-1 (Exherin, Adherex Technologies Inc.), strongly inhibited tumor cell proliferation in vitro by inducing apoptosis. Our results suggest that N-cadherin signaling may play a role in neuroblastoma disease, marking involvement of metastasis and determining neuroblastoma cell viability.
doi:10.1371/journal.pone.0031206
PMCID: PMC3280274  PMID: 22355346
5.  Genome wide single cell analysis of chemotherapy resistant metastatic cells in a case of gastroesophageal adenocarcinoma 
BMC Cancer  2011;11:455.
Background
Metastatic progression due to development or enrichment of therapy-resistant tumor cells is eventually lethal. Molecular characterization of such chemotherapy resistant tumor cell clones may identify markers responsible for malignant progression and potential targets for new treatment. Here, in a case of stage IV adenocarcinoma of the gastroesophageal junction, we report the successful genome wide analysis using array comparative genomic hybridization (CGH) of DNA from only fourteen tumor cells using a bead-based single cell selection method from a bone metastasis progressing during chemotherapy.
Case presentation
In a case of metastatic adenocarcinoma of the gastroesophageal junction, the progression of bone metastasis was observed during a chemotherapy regimen of epirubicin, oxaliplatin and capecitabine, whereas lung-, liver and lymph node metastases as well as the primary tumor were regressing. A bone marrow aspirate sampled at the site of progressing metastasis in the right iliac bone was performed, and single cell molecular analysis using array-CGH of Epithelial Specific Antigen (ESA)-positive metastatic cells, and revealed two distinct regions of amplification, 12p12.1 and 17q12-q21.2 amplicons, containing the KRAS (12p) and ERBB2 (HER2/NEU) (17q) oncogenes. Further intrapatient tumor heterogeneity of these highlighted gene copy number changes was analyzed by fluorescence in situ hybridization (FISH) in all available primary and metastatic tumor biopsies, and ErbB2 protein expression was investigated by immunohistochemistry.
ERBB2 was heterogeneously amplified by FISH analysis in the primary tumor, as well as liver and bone metastasis, but homogenously amplified in biopsy specimens from a progressing bone metastasis after three initial cycles of chemotherapy, indicating a possible enrichment of erbB2 positive tumor cells in the progressing bone marrow metastasis during chemotherapy. A similar amplification profile was detected for wild-type KRAS, although more heterogeneously expressed in the bone metastasis progressing on chemotherapy. Correspondingly, the erbB2 protein was found heterogeneously expressed by immunohistochemical staining of the primary tumor of the gastroesophageal junction, while negative in liver and bone metastases, but after three initial cycles of palliative chemotherapy with epirubicin, oxaliplatin and capecetabine, the representative bone metastasis stained strongly positive for erbB2.
Conclusion
Global analysis of genetic aberrations, as illustrated by performing array-CGH analysis on genomic DNA from only a few selected tumor cells of interest sampled from a progressing bone metastasis, can identify relevant therapeutic targets and genetic aberrations involved in malignant progression, thus emphasizing the importance and feasibility of this powerful tool on the road to more personalized cancer therapies in the future.
doi:10.1186/1471-2407-11-455
PMCID: PMC3208621  PMID: 22014070
6.  Outcome Prediction of Children with Neuroblastoma using a Multigene Expression Signature, a Retrospective SIOPEN/COG/GPOH Study 
The lancet oncology  2009;10(7):663-671.
BACKGROUND
More accurate prognostic assessment of patients with neuroblastoma is required to improve the choice of risk-related therapy. The aim of this study is to develop and validate a gene expression signature for improved outcome prediction.
METHODS
Fifty-nine genes were carefully selected based on an innovative data-mining strategy and profiled in the largest neuroblastoma patient series (n=579) to date using RT-qPCR starting from only 20 ng of RNA. A multigene expression signature was built using 30 training samples, tested on 313 test samples and subsequently validated in a blind study on an independent set of 236 additional tumours.
FINDINGS
The signature accurately classifies patients with respect to overall and progression-free survival (p<0·0001). The signature has a performance, sensitivity, and specificity of 85·4% (95%CI: 77·7–93·2), 84·4% (95%CI: 66·5–94·1), and 86·5% (95%CI: 81·1–90·6), respectively to predict patient outcome. Multivariate analysis indicates that the signature is a significant independent predictor after controlling for currently used riskfactors. Patients with high molecular risk have a higher risk to die from disease and for relapse/progression than patients with low molecular risk (odds ratio of 19·32 (95%CI: 6·50–57·43) and 3·96 (95%CI: 1·97–7·97) for OS and PFS, respectively). Patients with increased risk for adverse outcome can also be identified within the current treatment groups demonstrating the potential of this signature for improved clinical management. These results were confirmed in the validation study in which the signature was also independently statistically significant in a model adjusted for MYCN status, age, INSS stage, ploidy, INPC grade of differentiation, and MKI. The high patient/gene ratio (579/59) underlies the observed statistical power and robustness.
INTERPRETATION
A 59-gene expression signature predicts outcome of neuroblastoma patients with high accuracy. The signature is an independent risk predictor, identifying patients with increased risk in the current clinical risk groups. The applied method and signature is suitable for routine lab testing and ready for evaluation in prospective studies.
FUNDING
The Belgian Foundation Against Cancer, found of public interest (project SCIE2006-25), the Children Cancer Fund Ghent, the Belgian Society of Paediatric Haematology and Oncology, the Belgian Kid’s Fund and the Fondation Nuovo-Soldati (JV), the Fund for Scientific Research Flanders (KDP, JH), the Fund for Scientific Research Flanders (grant number: G•0198•08), the Institute for the Promotion of Innovation by Science and Technology in Flanders, Strategisch basisonderzoek (IWT-SBO 60848), the Fondation Fournier Majoie pour l’Innovation, the Instituto Carlos III,RD 06/0020/0102 Spain, the Italian Neuroblastoma Foundation, the European Community under the FP6 (project: STREP: EET-pipeline, number: 037260), and the Belgian program of Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office, Science Policy Programming.
doi:10.1016/S1470-2045(09)70154-8
PMCID: PMC3045079  PMID: 19515614
7.  Transformation of B cell lymphoma to histiocytic sarcoma: somatic mutations of PAX-5 gene with loss of expression cannot explain transdifferentiation 
Journal of Hematopathology  2009;2(3):135-141.
Transdifferentiation of B cell lymphoma of germinal center cell origin to histiocytic sarcoma has recently been described but is a rare occurrence. The cause for loss of B cell differentiation in these lymphomas is unknown. We investigated whether somatic hypermutation of the PAX-5 gene, a transcription factor that is important for maintaining B cell identity and is frequently mutated in B cell lymphomas of germinal center cell origin, might be a cause for loss of PAX-5 expression and thus B cell phenotype. However, no somatic hypermutation of the PAX-5 gene was detected in the two cases we studied. The molecular basis for transdifferentiation of B cell lymphoma to histiocytic sarcoma remains therefore unresolved.
doi:10.1007/s12308-009-0031-2
PMCID: PMC2766441  PMID: 19669194
PAX-5; B-cell; Lymphoma; Histiocytic sarcoma; Transdifferentiation
8.  Transformation of B cell lymphoma to histiocytic sarcoma: somatic mutations of PAX-5 gene with loss of expression cannot explain transdifferentiation 
Journal of Hematopathology  2009;2(3):135-141.
Transdifferentiation of B cell lymphoma of germinal center cell origin to histiocytic sarcoma has recently been described but is a rare occurrence. The cause for loss of B cell differentiation in these lymphomas is unknown. We investigated whether somatic hypermutation of the PAX-5 gene, a transcription factor that is important for maintaining B cell identity and is frequently mutated in B cell lymphomas of germinal center cell origin, might be a cause for loss of PAX-5 expression and thus B cell phenotype. However, no somatic hypermutation of the PAX-5 gene was detected in the two cases we studied. The molecular basis for transdifferentiation of B cell lymphoma to histiocytic sarcoma remains therefore unresolved.
doi:10.1007/s12308-009-0031-2
PMCID: PMC2766441  PMID: 19669194
PAX-5; B-cell; Lymphoma; Histiocytic sarcoma; Transdifferentiation
9.  Primary chronic cold agglutinin disease: An update on pathogenesis, clinical features and therapy 
Chronic cold agglutinin disease (CAD) is a subgroup of autoimmune hemolytic anemia. Primary CAD has traditionally been defined by the absence of any underlying or associated disease. The results of therapy with corticosteroids, alkylating agents and interferon-a have been poor. Cold reactive immunoglobulins against erythrocyte surface antigens are essential to pathogenesis of CAD. These cold agglutinins are monoclonal, usually IgMκ auto antibodies with heavy chain variable regions encoded by the VH4-34 gene segment. By flowcytometric and immunohistochemical assessments, a monoclonal CD20+κ+B-lymphocyte population has been demonstrated in the bone marrow of 90% of the patients, and lymphoplasmacytic lymphoma is a frequent finding. Novel attempts at treatment for primary CAD have mostly been directed against the clonal B-lymphocytes. Phase 2 studies have shown that therapy with the chimeric anti-CD20 antibody rituximab produced partial response rates of more than 50% and occasional complete responses. Median response duration, however, was only 11 months. In this review, we discuss the clinical and pathogenetic features of primary CAD, emphasizing the more recent data on its close association with clonal lymphoproliferative bone marrow disorders and implications for therapy. We also review the management and outline some perspectives on new therapy modalities.
doi:10.1080/10245330701445392
PMCID: PMC2409172  PMID: 17891600
B-lymphocytes; cold agglutinin disease; fludarabine; hemolytic anemia; lymphoproliferative; rituximab

Results 1-9 (9)