PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Development of an open-source, flexible framework for complex inter-institutional disparate data sharing and collaboration 
Clinical information, “-omic” datasets, and tissue samples are difficult to harmonize and manage for data mining. We have developed a platform for storing clinical research data while providing access to associated data from other information stores. Data on 34 metrics from 11,000 neuroblastoma patients were instantiated into a database. The Django web framework was used to create a model for rapid development of tools and views with a front-end interface for generating complex queries. Working with Nationwide Children’s Hospital, we can now consume their tissue inventory data through an API. The end-user sees the number of patients who both match their search and have tissue available. Since initial implementation, the current tasks revolve around developing a governance structure and the necessary data use agreements. Efforts now are to (1) update the data with 5000 more patients, and (2) link to genomic data stores, facilitating disparate data acquisition for research studies.
PMCID: PMC3814475  PMID: 24303312
2.  Prognostic Value of the Stage 4S Metastatic Pattern and Tumor Biology in Patients With Metastatic Neuroblastoma Diagnosed Between Birth and 18 Months of Age 
Journal of Clinical Oncology  2011;29(33):4358-4364.
Purpose
Patients with neuroblastoma younger than 12 months of age with a 4S pattern of disease (metastases limited to liver, skin, bone marrow) have better outcomes than infants with stage 4 disease. The new International Neuroblastoma Risk Group (INRG) staging system extends age to 18 months for the 4S pattern. Our aim was to determine which prognostic features could be used for optimal risk classification among patients younger than 18 months with metastatic disease.
Methods
Event-free survival (EFS) and overall survival were analyzed by log-rank tests, Cox models, and survival tree regression for 656 infants with stage 4S neuroblastoma younger than 12 months of age and 1,019 patients with stage 4 disease younger than 18 months of age in the INRG database.
Results
Unfavorable biologic features were more frequent in infants with stage 4 disease than in infants with 4S tumors and higher overall in those age 12 to 18 months (although not different for stage 4 v 4S pattern). EFS was significantly better for infants younger than 12 months with 4S pattern than with stage 4 disease (P < .01) but similar for toddlers age 12 to 18 months with stage 4 versus 4S pattern. Among 717 patients with stage 4S pattern, patients age 12 to 18 months had worse EFS than those age younger than 12 months (P < .01). MYCN, 11q, mitosis-karyorrhexis index (MKI), ploidy, and lactate dehydrogenase were independently statistically significant predictors of EFS and more highly predictive than age or metastatic pattern. MYCN, 11q, MKI, histology, and 1p were combined in a survival tree for improved risk stratification.
Conclusion
Tumor biology is more critical than age or metastatic pattern for prognosis of patients age younger than 18 months with metastatic neuroblastoma and should be considered for risk stratification.
doi:10.1200/JCO.2011.35.9570
PMCID: PMC3221520  PMID: 21969516
3.  Clinical and Biologic Features Predictive of Survival After Relapse of Neuroblastoma: A Report From the International Neuroblastoma Risk Group Project 
Journal of Clinical Oncology  2011;29(24):3286-3292.
Purpose
Survival after neuroblastoma relapse is poor. Understanding the relationship between clinical and biologic features and outcome after relapse may help in selection of optimal therapy. Our aim was to determine which factors were significantly predictive of postrelapse overall survival (OS) in patients with recurrent neuroblastoma—particularly whether time from diagnosis to first relapse (TTFR) was a significant predictor of OS.
Patients and Methods
Patients with first relapse/progression were identified in the International Neuroblastoma Risk Group (INRG) database. Time from study enrollment until first event and OS time starting from first event were calculated. Cox regression models were used to calculate the hazard ratio of increased death risk and perform survival tree regression. TTFR was tested in a multivariable Cox model with other factors.
Results
In the INRG database (N = 8,800), 2,266 patients experienced first progression/relapse. Median time to relapse was 13.2 months (range, 1 day to 11.4 years). Five-year OS from time of first event was 20% (SE, ± 1%). TTFR was statistically significantly associated with OS time in a nonlinear relationship; patients with TTFR of 36 months or longer had the lowest risk of death, followed by patients who relapsed in the period of 0 to less than 6 months or 18 to 36 months. Patients who relapsed between 6 and 18 months after diagnosis had the highest risk of death. TTFR, age, International Neuroblastoma Staging System stage, and MYCN copy number status were independently predictive of postrelapse OS in multivariable analysis.
Conclusion
Age, stage, MYCN status, and TTFR are significant prognostic factors for postrelapse survival and may help in the design of clinical trials evaluating novel agents.
doi:10.1200/JCO.2010.34.3392
PMCID: PMC3158599  PMID: 21768459
4.  Identification of the human homolog of the imprinted mouse Air non-coding RNA 
Genomics  2008;92(6):464-473.
Genomic imprinting is widely conserved amongst placental mammals. Imprinted expression of IGF2R, however, differs between mice and humans. In mice, Igf2r imprinted expression is seen in all fetal and adult tissues. In humans, adult tissues lack IGF2R imprinted expression, but it is found in fetal tissues and Wilms' tumors where it is polymorphic and only seen in a small proportion of tested samples. Mouse Igf2r imprinted expression is controlled by the Air (Airn) ncRNA whose promoter lies in an intronic maternally-methylated CpG island. The human IGF2R gene carries a homologous intronic maternally-methylated CpG island of unknown function. Here, we use transfection and transgenic studies to show that the human IGF2R intronic CpG island is a ncRNA promoter. We also identify the same ncRNA at the endogenous human locus in 16–40% of Wilms' tumors. Thus, the human IGF2R gene shows evolutionary conservation of key features that control imprinted expression in the mouse.
doi:10.1016/j.ygeno.2008.08.004
PMCID: PMC2846268  PMID: 18789384
Genomic imprinting; IGF2R; AIR (AIRN) ncRNA; Wilms' tumor
5.  Significance of MYCN Amplification in International Neuroblastoma Staging System Stage 1 and 2 Neuroblastoma: A Report From the International Neuroblastoma Risk Group Database 
Journal of Clinical Oncology  2009;27(3):365-370.
Purpose
Treatment of patients with localized neuroblastoma with unfavorable biologic features is controversial. To evaluate the outcome of children with low-stage MYCN-amplified neuroblastoma and develop a rational treatment strategy, data from the International Neuroblastoma Risk Group (INRG) database were analyzed.
Patients and Methods
The database is comprised of 8,800 patients. Of these, 2,660 patients (30%) had low-stage (International Neuroblastoma Staging System stages 1 and 2) neuroblastoma, known MYCN status, and available follow-up data. Eighty-seven of these patients (3%) had MYCN amplified tumors.
Results
Patients with MYCN-amplified, low-stage tumors had less favorable event-free survival (EFS) and overall survival (OS) than did patients with nonamplified tumors (53% ± 8% and 72% ± 7% v 90% ± 1% and 98% ± 1%, respectively). EFS and OS were statistically significantly higher for patients whose tumors were hyperdiploid rather than diploid (EFS, 82% ± 20% v 37% ± 21%; P = .0069; OS, 94% ± 11% v 54% ± 15%; P = .0056, respectively). No other variable had prognostic significance. Initial treatment consisted of surgery alone for 29 (33%) of 87 patients. Details of additional therapy were unknown for 14 patients. Twenty-two patients (25%) underwent surgery and moderate-intensity chemotherapy; another 22 underwent surgery, intensive chemotherapy, and radiation therapy. Nine of the latter 22 underwent stem cell transplantation. Survival in patients who received transplantation did not differ from survival in those who did not receive transplantation.
Conclusion
Among patients with low-stage, MYCN-amplified neuroblastoma, outcomes of patients with hyperdiploid tumors were statistically, significantly better than those with diploid tumors. The data suggest that tumor cell ploidy could potentially be used to identify candidates for reductions in therapy. Further study of MYCN-amplified, low-stage neuroblastoma is warranted.
doi:10.1200/JCO.2008.17.9184
PMCID: PMC2651034  PMID: 19047282
6.  The International Neuroblastoma Risk Group (INRG) Staging System: An INRG Task Force Report 
Journal of Clinical Oncology  2009;27(2):298-303.
Purpose
The International Neuroblastoma Risk Group (INRG) classification system was developed to establish a consensus approach for pretreatment risk stratification. Because the International Neuroblastoma Staging System (INSS) is a postsurgical staging system, a new clinical staging system was required for the INRG pretreatment risk classification system.
Methods
To stage patients before any treatment, the INRG Task Force, consisting of neuroblastoma experts from Australia/New Zealand, China, Europe, Japan, and North America, developed a new INRG staging system (INRGSS) based on clinical criteria and image-defined risk factors (IDRFs). To investigate the impact of IDRFs on outcome, survival analyses were performed on 661 European patients with INSS stages 1, 2, or 3 disease for whom IDRFs were known.
Results
In the INGRSS, locoregional tumors are staged L1 or L2 based on the absence or presence of one or more of 20 IDRFs, respectively. Metastatic tumors are defined as stage M, except for stage MS, in which metastases are confined to the skin, liver, and/or bone marrow in children younger than 18 months of age. Within the 661-patient cohort, IDRFs were present (ie, stage L2) in 21% of patients with stage 1, 45% of patients with stage 2, and 94% of patients with stage 3 disease. Patients with INRGSS stage L2 disease had significantly lower 5-year event-free survival than those with INRGSS stage L1 disease (78% ± 4% v 90% ± 3%; P = .0010).
Conclusion
Use of the new staging (INRGSS) and risk classification (INRG) of neuroblastoma will greatly facilitate the comparison of risk-based clinical trials conducted in different regions of the world.
doi:10.1200/JCO.2008.16.6876
PMCID: PMC2650389  PMID: 19047290
7.  The International Neuroblastoma Risk Group (INRG) Classification System: An INRG Task Force Report 
Journal of Clinical Oncology  2009;27(2):289-297.
Purpose
Because current approaches to risk classification and treatment stratification for children with neuroblastoma (NB) vary greatly throughout the world, it is difficult to directly compare risk-based clinical trials. The International Neuroblastoma Risk Group (INRG) classification system was developed to establish a consensus approach for pretreatment risk stratification.
Patients and Methods
The statistical and clinical significance of 13 potential prognostic factors were analyzed in a cohort of 8,800 children diagnosed with NB between 1990 and 2002 from North America and Australia (Children's Oncology Group), Europe (International Society of Pediatric Oncology Europe Neuroblastoma Group and German Pediatric Oncology and Hematology Group), and Japan. Survival tree regression analyses using event-free survival (EFS) as the primary end point were performed to test the prognostic significance of the 13 factors.
Results
Stage, age, histologic category, grade of tumor differentiation, the status of the MYCN oncogene, chromosome 11q status, and DNA ploidy were the most highly statistically significant and clinically relevant factors. A new staging system (INRG Staging System) based on clinical criteria and tumor imaging was developed for the INRG Classification System. The optimal age cutoff was determined to be between 15 and 19 months, and 18 months was selected for the classification system. Sixteen pretreatment groups were defined on the basis of clinical criteria and statistically significantly different EFS of the cohort stratified by the INRG criteria. Patients with 5-year EFS more than 85%, more than 75% to ≤ 85%, ≥ 50% to ≤ 75%, or less than 50% were classified as very low risk, low risk, intermediate risk, or high risk, respectively.
Conclusion
By defining homogenous pretreatment patient cohorts, the INRG classification system will greatly facilitate the comparison of risk-based clinical trials conducted in different regions of the world and the development of international collaborative studies.
doi:10.1200/JCO.2008.16.6785
PMCID: PMC2650388  PMID: 19047291
8.  Lung Metastases in Neuroblastoma at Initial Diagnosis: A Report from the International Neuroblastoma Risk Group (INRG) Project 
Pediatric blood & cancer  2008;51(5):589-592.
Background
Neuroblastoma is the most common extracranial pediatric solid cancer. Lung metastasis is rarely detected in children with newly diagnosed neuroblastoma. We aimed to describe the incidence, clinical characteristics, and outcome of patients with lung metastasis at initial diagnosis using a large international database.
Procedure
The subset of patients from the International Neuroblastoma Risk Group database with INSS stage 4 neuroblastoma and known data regarding lung metastasis at diagnosis was selected for analysis. Clinical and biological characteristics were compared between patients with and without lung metastasis. Survival for patients with and without lung metastasis was estimated by Kaplan-Meier methods. Cox proportional hazards methods were used to determine the independent prognostic value of lung metastasis at diagnosis.
Results
Of the 2,808 patients with INSS stage 4 neuroblastoma diagnosed between 1990 and 2002, 100 patients (3.6%) were reported to have lung metastasis at diagnosis. Lung metastasis was more common among patients with MYCN amplified tumors, adrenal primary tumors, or elevated lactate dehydrogenase (LDH) levels (p < 0.02 in each case). Five-year overall survival ± standard error for patients with lung metastasis was 34.5% ± 6.8% compared to 44.7% ± 1.3% for patients without lung metastasis (p=0.0002). However, in multivariable analysis, the presence of lung metastasis was not independently predictive of outcome.
Conclusions
Lung metastasis at initial diagnosis of neuroblastoma is associated with MYCN amplification and elevated LDH levels. Although lung metastasis at diagnosis was not independently predictive of outcome in this analysis, it remains a useful prognostic marker of unfavorable outcome.
doi:10.1002/pbc.21684
PMCID: PMC2746936  PMID: 18649370
Neuroblastoma; Lung Metastases; Pulmonary; MYCN
9.  Chromosomally integrated human herpesvirus 6: questions and answers 
Reviews in Medical Virology  2011;22(3):144-155.
SUMMARY
Chromosomally integrated human herpesvirus 6 (ciHHV-6) is a condition in which the complete HHV-6 genome is integrated into the host germ line genome and is vertically transmitted in a Mendelian manner. The condition is found in less than 1% of controls in the USA and UK, but has been found at a somewhat higher prevalence in transplant recipients and other patient populations in several small studies. HHV-6 levels in whole blood that exceed 5.5 log10 copies/ml are strongly suggestive of ciHHV-6. Monitoring DNA load in plasma and serum is unreliable, both for identifying and for monitoring subjects with ciHHV-6 due to cell lysis and release of cellular DNA. High HHV-6 DNA loads associated with ciHHV-6 can lead to erroneous diagnosis of active infection. Transplant recipients with ciHHV-6 may be at increased risk for bacterial infection and graft rejection. ciHHV-6 can be induced to a state of active viral replication in vitro. It is not known whether ciHHV-6 individuals are put at clinical risk by the use of drugs that have been associated with HHV-6 reactivation in vivo or in vitro. Nonetheless, we urge careful observation when use of such drugs is indicated in individuals known to have ciHHV-6. Little is known about whether individuals with ciHHV-6 develop immune tolerance for viral proteins. Further research is needed to determine the role of ciHHV-6 in disease. Copyright © 2011 John Wiley & Sons, Ltd.
doi:10.1002/rmv.715
PMCID: PMC3498727  PMID: 22052666
10.  Redirecting T Cells to Ewing's Sarcoma Family of Tumors by a Chimeric NKG2D Receptor Expressed by Lentiviral Transduction or mRNA Transfection 
PLoS ONE  2012;7(2):e31210.
We explored the possibility to target Ewing's sarcoma family of tumors (ESFT) by redirecting T cells. To this aim, we considered NKG2D-ligands (NKG2D-Ls) as possible target antigens. Detailed analysis of the expression of MICA, MICB, ULBP-1, -2, and -3 in fourteen ESFT cell lines revealed consistent expression of at least one NKG2D-L. Thus, for redirecting T cells, we fused a CD3ζ/CD28-derived signaling domain to the ectodomain of NKG2D, however, opposite transmembrane orientation of this signaling domain and NKG2D required inverse orientation fusion of either of them. We hypothesized that the particularly located C-terminus of the NKG2D ectodomain should allow reengineering of the membrane anchoring from a native N-terminal to an artificial C-terminal linkage. Indeed, the resulting chimeric NKG2D receptor (chNKG2D) was functional and efficiently mediated ESFT cell death triggered by activated T cells. Notably, ESFT cells with even low NKG2D-L expression were killed by CD8pos and also CD4pos cells. Both, mRNA transfection and lentiviral transduction resulted in high level surface expression of chNKG2D. However, upon target-cell recognition receptor surface levels were maintained by tranfected RNA only during the first couple of hours after transfection. Later, target-cell contact resulted in strong and irreversible receptor down-modulation, whereas lentivirally mediated expression of chNKG2D remained constant under these conditions. Together, our study defines NKG2D-Ls as targets for a CAR-mediated T cell based immunotherapy of ESFT. A comparison of two different methods of gene transfer reveals strong differences in the susceptibility to ligand-induced receptor down-modulation with possible implications for the applicability of RNA transfection.
doi:10.1371/journal.pone.0031210
PMCID: PMC3280271  PMID: 22355347
11.  DNA Damage, Somatic Aneuploidy, and Malignant Sarcoma Susceptibility in Muscular Dystrophies 
PLoS Genetics  2011;7(4):e1002042.
Albeit genetically highly heterogeneous, muscular dystrophies (MDs) share a convergent pathology leading to muscle wasting accompanied by proliferation of fibrous and fatty tissue, suggesting a common MD–pathomechanism. Here we show that mutations in muscular dystrophy genes (Dmd, Dysf, Capn3, Large) lead to the spontaneous formation of skeletal muscle-derived malignant tumors in mice, presenting as mixed rhabdomyo-, fibro-, and liposarcomas. Primary MD–gene defects and strain background strongly influence sarcoma incidence, latency, localization, and gender prevalence. Combined loss of dystrophin and dysferlin, as well as dystrophin and calpain-3, leads to accelerated tumor formation. Irrespective of the primary gene defects, all MD sarcomas share non-random genomic alterations including frequent losses of tumor suppressors (Cdkn2a, Nf1), amplification of oncogenes (Met, Jun), recurrent duplications of whole chromosomes 8 and 15, and DNA damage. Remarkably, these sarcoma-specific genetic lesions are already regularly present in skeletal muscles in aged MD mice even prior to sarcoma development. Accordingly, we show also that skeletal muscle from human muscular dystrophy patients is affected by gross genomic instability, represented by DNA double-strand breaks and age-related accumulation of aneusomies. These novel aspects of molecular pathologies common to muscular dystrophies and tumor biology will potentially influence the strategies to combat these diseases.
Author Summary
All kinds of muscular dystrophies (MDs) are characterized by progressive muscle wasting due to life-long proliferation of precursor cells of myo- (muscle), fibro- (connective tissue), and lipogenic (fat) origin. Despite discovery of many MD genes over the past 25 years, MDs still represent debilitating, incurable diseases, which frequently lead to premature death. Thus, it is imperative to gain novel insights into the underlying MD pathomechanisms. Here, we show that different mouse models for the most common human MDs frequently develop skeletal musculature-associated tumors, presenting as complex sarcomas, consisting of myo-, lipo-, and fibrogenic compartments. Collectively, these tumors are characterized by profound genomic instability such as DNA damage, recurring mutations in cancer genes, and aberrant chromosome copy numbers. We also demonstrate the presence of these cancer-related aberrations in dystrophic muscles from MD mice prior to formation of visible sarcomas. Moreover, we discovered corresponding genomic lesions also in skeletal muscles from human MD patients, as well as stem cells cultured thereof, and show that genomic instability precedes muscle degeneration in MDs. We thus propose that cancer-like genomic instability represents a novel, unifying pathomechanism underlying the entire group of genetically distinct MDs, which will hopefully open new therapeutic avenues.
doi:10.1371/journal.pgen.1002042
PMCID: PMC3077392  PMID: 21533183
12.  Outcome Prediction of Children with Neuroblastoma using a Multigene Expression Signature, a Retrospective SIOPEN/COG/GPOH Study 
The lancet oncology  2009;10(7):663-671.
BACKGROUND
More accurate prognostic assessment of patients with neuroblastoma is required to improve the choice of risk-related therapy. The aim of this study is to develop and validate a gene expression signature for improved outcome prediction.
METHODS
Fifty-nine genes were carefully selected based on an innovative data-mining strategy and profiled in the largest neuroblastoma patient series (n=579) to date using RT-qPCR starting from only 20 ng of RNA. A multigene expression signature was built using 30 training samples, tested on 313 test samples and subsequently validated in a blind study on an independent set of 236 additional tumours.
FINDINGS
The signature accurately classifies patients with respect to overall and progression-free survival (p<0·0001). The signature has a performance, sensitivity, and specificity of 85·4% (95%CI: 77·7–93·2), 84·4% (95%CI: 66·5–94·1), and 86·5% (95%CI: 81·1–90·6), respectively to predict patient outcome. Multivariate analysis indicates that the signature is a significant independent predictor after controlling for currently used riskfactors. Patients with high molecular risk have a higher risk to die from disease and for relapse/progression than patients with low molecular risk (odds ratio of 19·32 (95%CI: 6·50–57·43) and 3·96 (95%CI: 1·97–7·97) for OS and PFS, respectively). Patients with increased risk for adverse outcome can also be identified within the current treatment groups demonstrating the potential of this signature for improved clinical management. These results were confirmed in the validation study in which the signature was also independently statistically significant in a model adjusted for MYCN status, age, INSS stage, ploidy, INPC grade of differentiation, and MKI. The high patient/gene ratio (579/59) underlies the observed statistical power and robustness.
INTERPRETATION
A 59-gene expression signature predicts outcome of neuroblastoma patients with high accuracy. The signature is an independent risk predictor, identifying patients with increased risk in the current clinical risk groups. The applied method and signature is suitable for routine lab testing and ready for evaluation in prospective studies.
FUNDING
The Belgian Foundation Against Cancer, found of public interest (project SCIE2006-25), the Children Cancer Fund Ghent, the Belgian Society of Paediatric Haematology and Oncology, the Belgian Kid’s Fund and the Fondation Nuovo-Soldati (JV), the Fund for Scientific Research Flanders (KDP, JH), the Fund for Scientific Research Flanders (grant number: G•0198•08), the Institute for the Promotion of Innovation by Science and Technology in Flanders, Strategisch basisonderzoek (IWT-SBO 60848), the Fondation Fournier Majoie pour l’Innovation, the Instituto Carlos III,RD 06/0020/0102 Spain, the Italian Neuroblastoma Foundation, the European Community under the FP6 (project: STREP: EET-pipeline, number: 037260), and the Belgian program of Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office, Science Policy Programming.
doi:10.1016/S1470-2045(09)70154-8
PMCID: PMC3045079  PMID: 19515614

Results 1-12 (12)