Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Human metabolic individuality in biomedical and pharmaceutical research 
Nature  2011;477(7362):10.1038/nature10354.
Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 exhibit effect sizes that are unusually high for GWAS and account for 10-60% of metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism, and Crohn’s disease. Taken together our study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.
PMCID: PMC3832838  PMID: 21886157
2.  Mining the Unknown: A Systems Approach to Metabolite Identification Combining Genetic and Metabolic Information 
PLoS Genetics  2012;8(10):e1003005.
Recent genome-wide association studies (GWAS) with metabolomics data linked genetic variation in the human genome to differences in individual metabolite levels. A strong relevance of this metabolic individuality for biomedical and pharmaceutical research has been reported. However, a considerable amount of the molecules currently quantified by modern metabolomics techniques are chemically unidentified. The identification of these “unknown metabolites” is still a demanding and intricate task, limiting their usability as functional markers of metabolic processes. As a consequence, previous GWAS largely ignored unknown metabolites as metabolic traits for the analysis. Here we present a systems-level approach that combines genome-wide association analysis and Gaussian graphical modeling with metabolomics to predict the identity of the unknown metabolites. We apply our method to original data of 517 metabolic traits, of which 225 are unknowns, and genotyping information on 655,658 genetic variants, measured in 1,768 human blood samples. We report previously undescribed genotype–metabotype associations for six distinct gene loci (SLC22A2, COMT, CYP3A5, CYP2C18, GBA3, UGT3A1) and one locus not related to any known gene (rs12413935). Overlaying the inferred genetic associations, metabolic networks, and knowledge-based pathway information, we derive testable hypotheses on the biochemical identities of 106 unknown metabolites. As a proof of principle, we experimentally confirm nine concrete predictions. We demonstrate the benefit of our method for the functional interpretation of previous metabolomics biomarker studies on liver detoxification, hypertension, and insulin resistance. Our approach is generic in nature and can be directly transferred to metabolomics data from different experimental platforms.
Author Summary
Genome-wide association studies on metabolomics data have demonstrated that genetic variation in metabolic enzymes and transporters leads to concentration changes in the respective metabolite levels. The conventional goal of these studies is the detection of novel interactions between the genome and the metabolic system, providing valuable insights for both basic research as well as clinical applications. In this study, we borrow the metabolomics GWAS concept for a novel, entirely different purpose. Metabolite measurements frequently produce signals where a certain substance can be reliably detected in the sample, but it has not yet been elucidated which specific metabolite this signal actually represents. The concept is comparable to a fingerprint: each one is uniquely identifiable, but as long as it is not registered in a database one cannot tell to whom this fingerprint belongs. Obviously, this issue tremendously reduces the usability of a metabolomics analyses. The genetic associations of such an “unknown,” however, give us concrete evidence of the metabolic pathway this substance is most probably involved in. Moreover, we complement the approach with a specific measure of correlation between metabolites, providing further evidence of the metabolic processes of the unknown. For a number of cases, this even allows for a concrete identity prediction, which we then experimentally validate in the lab.
PMCID: PMC3475673  PMID: 23093944
3.  MassTRIX Reloaded: Combined Analysis and Visualization of Transcriptome and Metabolome Data 
PLoS ONE  2012;7(7):e39860.
Systems Biology is a field in biological science that focuses on the combination of several or all “omics”-approaches in order to find out how genes, transcripts, proteins and metabolites act together in the network of life. Metabolomics as analog to genomics, transcriptomics and proteomics is more and more integrated into biological studies and often transcriptomic and metabolomic experiments are combined in one setup. At a first glance both data types seem to be completely different, but both produce information on biological entities, either transcripts or metabolites. Both types can be overlaid on metabolic pathways to obtain biological information on the studied system. For the joint analysis of both data types the MassTRIX webserver was updated. MassTRIX is freely available at
PMCID: PMC3391204  PMID: 22815716
4.  On the hypothesis-free testing of metabolite ratios in genome-wide and metabolome-wide association studies 
BMC Bioinformatics  2012;13:120.
Genome-wide association studies (GWAS) with metabolic traits and metabolome-wide association studies (MWAS) with traits of biomedical relevance are powerful tools to identify the contribution of genetic, environmental and lifestyle factors to the etiology of complex diseases. Hypothesis-free testing of ratios between all possible metabolite pairs in GWAS and MWAS has proven to be an innovative approach in the discovery of new biologically meaningful associations. The p-gain statistic was introduced as an ad-hoc measure to determine whether a ratio between two metabolite concentrations carries more information than the two corresponding metabolite concentrations alone. So far, only a rule of thumb was applied to determine the significance of the p-gain.
Here we explore the statistical properties of the p-gain through simulation of its density and by sampling of experimental data. We derive critical values of the p-gain for different levels of correlation between metabolite pairs and show that B/(2*α) is a conservative critical value for the p-gain, where α is the level of significance and B the number of tested metabolite pairs.
We show that the p-gain is a well defined measure that can be used to identify statistically significant metabolite ratios in association studies and provide a conservative significance cut-off for the p-gain for use in future association studies with metabolic traits.
PMCID: PMC3537592  PMID: 22672667
p-gain; Metabolomics; MWAS; GWAS; Genome-wide association studies; Metabolome-wide association studies
5.  Insulin Sensitivity Is Reflected by Characteristic Metabolic Fingerprints - A Fourier Transform Mass Spectrometric Non-Targeted Metabolomics Approach 
PLoS ONE  2010;5(10):e13317.
A decline in body insulin sensitivity in apparently healthy individuals indicates a high risk to develop type 2 diabetes. Investigating the metabolic fingerprints of individuals with different whole body insulin sensitivity according to the formula of Matsuda, et al. (ISIMatsuda) by a non-targeted metabolomics approach we aimed a) to figure out an unsuspicious and altered metabolic pattern, b) to estimate a threshold related to these changes based on the ISI, and c) to identify the metabolic pathways responsible for the discrimination of the two patterns.
Methodology and Principal Findings
By applying infusion ion cyclotron resonance Fourier transform mass spectrometry, we analyzed plasma of 46 non-diabetic subjects exhibiting high to low insulin sensitivities. The orthogonal partial least square model revealed a cluster of 28 individuals with alterations in their metabolic fingerprints associated with a decline in insulin sensitivity. This group could be separated from 18 subjects with an unsuspicious metabolite pattern. The orthogonal signal correction score scatter plot suggests a threshold of an ISIMatsuda of 15 for the discrimination of these two groups. Of note, a potential subgroup represented by eight individuals (ISIMatsuda value between 8.5 and 15) was identified in different models. This subgroup may indicate a metabolic transition state, since it is already located within the cluster of individuals with declined insulin sensitivity but the metabolic fingerprints still show some similarities with unaffected individuals (ISI >15). Moreover, the highest number of metabolite intensity differences between unsuspicious and altered metabolic fingerprints was detected in lipid metabolic pathways (arachidonic acid metabolism, metabolism of essential fatty acids and biosynthesis of unsaturated fatty acids), steroid hormone biosyntheses and bile acid metabolism, based on data evaluation using the metabolic annotation interface MassTRIX.
Our results suggest that altered metabolite patterns that reflect changes in insulin sensitivity respectively the ISIMatsuda are dominated by lipid-related pathways. Furthermore, a metabolic transition state reflected by heterogeneous metabolite fingerprints may precede severe alterations of metabolism. Our findings offer future prospects for novel insights in the pathogenesis of the pre-diabetic phase.
PMCID: PMC2955523  PMID: 20976215
6.  metaP-Server: A Web-Based Metabolomics Data Analysis Tool 
Metabolomics is an emerging field that is based on the quantitative measurement of as many small organic molecules occurring in a biological sample as possible. Due to recent technical advances, metabolomics can now be used widely as an analytical high-throughput technology in drug testing and epidemiological metabolome and genome wide association studies. Analogous to chip-based gene expression analyses, the enormous amount of data produced by modern kit-based metabolomics experiments poses new challenges regarding their biological interpretation in the context of various sample phenotypes. We developed metaP-server to facilitate data interpretation. metaP-server provides automated and standardized data analysis for quantitative metabolomics data, covering the following steps from data acquisition to biological interpretation: (i) data quality checks, (ii) estimation of reproducibility and batch effects, (iii) hypothesis tests for multiple categorical phenotypes, (iv) correlation tests for metric phenotypes, (v) optionally including all possible pairs of metabolite concentration ratios, (vi) principal component analysis (PCA), and (vii) mapping of metabolites onto colored KEGG pathway maps. Graphical output is clickable and cross-linked to sample and metabolite identifiers. Interactive coloring of PCA and bar plots by phenotype facilitates on-line data exploration. For users of commercial metabolomics kits, cross-references to the HMDB, LipidMaps, KEGG, PubChem, and CAS databases are provided. metaP-server is freely accessible at
PMCID: PMC2946609  PMID: 20936179

Results 1-6 (6)