Search tips
Search criteria

Results 1-25 (40)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
2.  Identifying Good Responders to Glucose Lowering Therapy in Type 2 Diabetes: Implications for Stratified Medicine 
PLoS ONE  2014;9(10):e111235.
Defining responders to glucose lowering therapy can be important for both clinical care and for the development of a stratified approach to diabetes management. Response is commonly defined by either HbA1c change after treatment or whether a target HbA1c is achieved. We aimed to determine the extent to which the individuals identified as responders and non-responders to glucose lowering therapy, and their characteristics, depend on the response definition chosen.
We prospectively studied 230 participants commencing GLP-1 agonist therapy. We assessed participant characteristics at baseline and repeated HbA1c after 3 months treatment. We defined responders (best quartile of response) based on HbA1c change or HbA1c achieved. We assessed the extent to which these methods identified the same individuals and how this affected the baseline characteristics associated with treatment response.
Different definitions of response identified different participants. Only 39% of responders by one definition were also good responders by the other. Characteristics associated with good response depend on the response definition chosen: good response by HbA1c achieved was associated with low baseline HbA1c (p<0.001), high C-peptide (p<0.001) and shorter diabetes duration (p = 0.01) whereas response defined by HbA1c change was associated with high HbA1c (p<0.001) only. We describe a simple novel method of defining treatment response based on a combination of HbA1c change and HbA1c achieved that defines response groups with similar baseline glycaemia.
The outcome of studies aiming to identify predictors of treatment response to glucose lowering therapy may depend on how response is defined. Alternative definitions of response should be considered which minimise influence of baseline glycaemia.
PMCID: PMC4207765  PMID: 25340784
4.  Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease 
Medici, Marco | Porcu, Eleonora | Pistis, Giorgio | Teumer, Alexander | Brown, Suzanne J. | Jensen, Richard A. | Rawal, Rajesh | Roef, Greet L. | Plantinga, Theo S. | Vermeulen, Sita H. | Lahti, Jari | Simmonds, Matthew J. | Husemoen, Lise Lotte N. | Freathy, Rachel M. | Shields, Beverley M. | Pietzner, Diana | Nagy, Rebecca | Broer, Linda | Chaker, Layal | Korevaar, Tim I. M. | Plia, Maria Grazia | Sala, Cinzia | Völker, Uwe | Richards, J. Brent | Sweep, Fred C. | Gieger, Christian | Corre, Tanguy | Kajantie, Eero | Thuesen, Betina | Taes, Youri E. | Visser, W. Edward | Hattersley, Andrew T. | Kratzsch, Jürgen | Hamilton, Alexander | Li, Wei | Homuth, Georg | Lobina, Monia | Mariotti, Stefano | Soranzo, Nicole | Cocca, Massimiliano | Nauck, Matthias | Spielhagen, Christin | Ross, Alec | Arnold, Alice | van de Bunt, Martijn | Liyanarachchi, Sandya | Heier, Margit | Grabe, Hans Jörgen | Masciullo, Corrado | Galesloot, Tessel E. | Lim, Ee M. | Reischl, Eva | Leedman, Peter J. | Lai, Sandra | Delitala, Alessandro | Bremner, Alexandra P. | Philips, David I. W. | Beilby, John P. | Mulas, Antonella | Vocale, Matteo | Abecasis, Goncalo | Forsen, Tom | James, Alan | Widen, Elisabeth | Hui, Jennie | Prokisch, Holger | Rietzschel, Ernst E. | Palotie, Aarno | Feddema, Peter | Fletcher, Stephen J. | Schramm, Katharina | Rotter, Jerome I. | Kluttig, Alexander | Radke, Dörte | Traglia, Michela | Surdulescu, Gabriela L. | He, Huiling | Franklyn, Jayne A. | Tiller, Daniel | Vaidya, Bijay | de Meyer, Tim | Jørgensen, Torben | Eriksson, Johan G. | O'Leary, Peter C. | Wichmann, Eric | Hermus, Ad R. | Psaty, Bruce M. | Ittermann, Till | Hofman, Albert | Bosi, Emanuele | Schlessinger, David | Wallaschofski, Henri | Pirastu, Nicola | Aulchenko, Yurii S. | de la Chapelle, Albert | Netea-Maier, Romana T. | Gough, Stephen C. L. | Meyer zu Schwabedissen, Henriette | Frayling, Timothy M. | Kaufman, Jean-Marc | Linneberg, Allan | Räikkönen, Katri | Smit, Johannes W. A. | Kiemeney, Lambertus A. | Rivadeneira, Fernando | Uitterlinden, André G. | Walsh, John P. | Meisinger, Christa | den Heijer, Martin | Visser, Theo J. | Spector, Timothy D. | Wilson, Scott G. | Völzke, Henry | Cappola, Anne | Toniolo, Daniela | Sanna, Serena | Naitza, Silvia | Peeters, Robin P.
PLoS Genetics  2014;10(2):e1004123.
Autoimmune thyroid diseases (AITD) are common, affecting 2-5% of the general population. Individuals with positive thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune hypothyroidism (Hashimoto's thyroiditis), as well as autoimmune hyperthyroidism (Graves' disease). As the possible causative genes of TPOAbs and AITD remain largely unknown, we performed GWAS meta-analyses in 18,297 individuals for TPOAb-positivity (1769 TPOAb-positives and 16,528 TPOAb-negatives) and in 12,353 individuals for TPOAb serum levels, with replication in 8,990 individuals. Significant associations (P<5×10−8) were detected at TPO-rs11675434, ATXN2-rs653178, and BACH2-rs10944479 for TPOAb-positivity, and at TPO-rs11675434, MAGI3-rs1230666, and KALRN-rs2010099 for TPOAb levels. Individual and combined effects (genetic risk scores) of these variants on (subclinical) hypo- and hyperthyroidism, goiter and thyroid cancer were studied. Individuals with a high genetic risk score had, besides an increased risk of TPOAb-positivity (OR: 2.18, 95% CI 1.68–2.81, P = 8.1×10−8), a higher risk of increased thyroid-stimulating hormone levels (OR: 1.51, 95% CI 1.26–1.82, P = 2.9×10−6), as well as a decreased risk of goiter (OR: 0.77, 95% CI 0.66–0.89, P = 6.5×10−4). The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, which was replicated in an independent cohort of patients with Graves' disease (OR: 1.37, 95% CI 1.22–1.54, P = 1.2×10−7 and OR: 1.25, 95% CI 1.12–1.39, P = 6.2×10−5). The MAGI3 variant was also associated with an increased risk of hypothyroidism (OR: 1.57, 95% CI 1.18–2.10, P = 1.9×10−3). This first GWAS meta-analysis for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. The results provide insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers may therefore predict which TPOAb-positives are particularly at risk of developing clinical thyroid dysfunction.
Author Summary
Individuals with thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune thyroid diseases (AITD), which are common in the general population and associated with increased cardiovascular, metabolic and psychiatric morbidity and mortality. As the causative genes of TPOAbs and AITD remain largely unknown, we performed a genome-wide scan for TPOAbs in 18,297 individuals, with replication in 8,990 individuals. Significant associations were detected with variants at TPO, ATXN2, BACH2, MAGI3, and KALRN. Individuals carrying multiple risk variants also had a higher risk of increased thyroid-stimulating hormone levels (including subclinical and overt hypothyroidism), and a decreased risk of goiter. The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, and the MAGI3 variant was also associated with an increased risk of hypothyroidism. This first genome-wide scan for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. These results provide insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers may therefore predict which individuals are particularly at risk of developing clinical thyroid dysfunction.
PMCID: PMC3937134  PMID: 24586183
5.  The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a β cell phenotype 
Journal of Medical Genetics  2013;51(3):165-169.
Mutation specific effects in monogenic disorders are rare. We describe atypical Fanconi syndrome caused by a specific heterozygous mutation in HNF4A. Heterozygous HNF4A mutations cause a beta cell phenotype of neonatal hyperinsulinism with macrosomia and young onset diabetes. Autosomal dominant idiopathic Fanconi syndrome (a renal proximal tubulopathy) is described but no genetic cause has been defined.
Methods and Results
We report six patients heterozygous for the p.R76W HNF4A mutation who have Fanconi syndrome and nephrocalcinosis in addition to neonatal hyperinsulinism and macrosomia. All six displayed a novel phenotype of proximal tubulopathy, characterised by generalised aminoaciduria, low molecular weight proteinuria, glycosuria, hyperphosphaturia and hypouricaemia, and additional features not seen in Fanconi syndrome: nephrocalcinosis, renal impairment, hypercalciuria with relative hypocalcaemia, and hypermagnesaemia. This was mutation specific, with the renal phenotype not being seen in patients with other HNF4A mutations. In silico modelling shows the R76 residue is directly involved in DNA binding and the R76W mutation reduces DNA binding affinity. The target(s) selectively affected by altered DNA binding of R76W that results in Fanconi syndrome is not known.
The HNF4A R76W mutation is an unusual example of a mutation specific phenotype, with autosomal dominant atypical Fanconi syndrome in addition to the established beta cell phenotype.
PMCID: PMC3932761  PMID: 24285859
Renal Medicine; Calcium and Bone; Clinical Genetics; Diabetes; Metabolic Disorders
6.  Lessons From the Mixed-Meal Tolerance Test 
Diabetes Care  2013;36(2):195-201.
Mixed-meal tolerance test (MMTT) area under the curve C-peptide (AUC CP) is the gold-standard measure of endogenous insulin secretion in type 1 diabetes but is intensive and invasive to perform. The 90-min MMTT-stimulated CP ≥0.2 nmol/L (90CP) is related to improved clinical outcomes, and CP ≥0.1 nmol/L is the equivalent fasting measure (FCP). We assessed whether 90CP or FCP are alternatives to a full MMTT.
CP was measured during 1,334 MMTTs in 421 type 1 diabetes patients aged <18 years at 3, 9, 18, 48, and 72 months duration. We assessed: 1) correlation between mean AUC CP and 90CP or FCP; 2) sensitivity and specificity of 90CP ≥0.2 nmol/L and FCP ≥ 0.1 nmol/L to detect peak CP ≥0.2 nmol/L and the equivalent AUC CP; and 3) how the time taken to reach the CP peak varied with age of diagnosis and diabetes duration.
AUC CP was highly correlated to 90CP (rs = 0.96; P < 0.0001) and strongly correlated to FCP (rs = 0.84; P < 0.0001). AUC CP ≥23 nmol/L/150 min was the equivalent cutoff for peak CP ≥0.2 nmol/L (98% sensitivity/97% specificity). A 90CP ≥0.2 nmol/L correctly classified 96% patients using AUC or peak CP, whereas FCP ≥0.1 nmol/L classified 83 and 85% patients, respectively. There was only a small difference seen between peak and 90CP (median 0.02 nmol/L). The CP peak occurred earlier in patients with longer diabetes duration (6.1 min each 1-year increase in duration) and younger age (2.5 min each 1-year increase).
90CP is a highly sensitive and specific measure of AUC and peak CP in children and adolescents with type 1 diabetes and offers a practical alternative to a full MMTT.
PMCID: PMC3554273  PMID: 23111058
8.  Urine C-peptide creatinine ratio can be used to assess insulin resistance and insulin production in people without diabetes: an observational study 
BMJ Open  2013;3(12):e003193.
The current assessment of insulin resistance (IR) in epidemiology studies relies on the blood measurement of C-peptide or insulin. A urine C-peptide creatinine ratio (UCPCR) can be posted from home unaided. It is validated against serum measures of the insulin in people with diabetes. We tested whether UCPCR could be a surrogate measure of IR by examining the correlation of UCPCR with serum insulin, C-peptide and HOMA2 (Homeostasis Model Assessment 2)-IR in participants without diabetes and with chronic kidney disease (CKD).
Observational study.
Single-centre clinical research facility.
37 healthy volunteers and 30 patients with CKD (glomerular filtration rate 15–60) were recruited.
Primary and secondary endpoints
Serum insulin, C-peptide and glucose at fasting (0), 30, 60, 90 and 120 min were measured during an oral glucose tolerance test (OGTT). Second-void fasting UCPCR and 120 min post-OGTT UCPCR were collected. HOMA2-IR was calculated using fasting insulin and glucose. The associations between UCPCR and serum measures were assessed using Spearman's correlations.
In healthy volunteers, fasting second-void UCPCR strongly correlated with serum insulin (rs=0.69, p<0.0001), C-peptide (rs=0.73, p<0.0001) and HOMA2-IR (rs=−0.69, p<0.0001). 120 min post-OGTT UCPCR correlated strongly with C-peptide and insulin area under the curve. In patients with CKD, UCPCR did not correlate with serum C-peptide, insulin or HOMA2-IR.
In participants with normal renal function, UCPCR may be a simple, practical method for the assessment of IR in epidemiology studies.
PMCID: PMC3884748  PMID: 24353253
Diabetes & Endocrinology; Statistics & Research Methods
9.  Five-Year Follow-Up for Women With Subclinical Hypothyroidism in Pregnancy 
Increasing numbers of women are being treated with l-thyroxine in pregnancy for mild thyroid dysfunction because of its association with impaired neuropsychological development in their offspring and other adverse obstetric outcomes. However, there are limited data to indicate whether treatment should be continued outside of pregnancy.
We aimed to determine whether subclinical hypothyroidism and maternal hypothyroxinemia resolve postdelivery.
Design, Setting, and Participants:
A total of 523 pregnant healthy women with no known thyroid disorders were recruited during routine antenatal care and provided blood samples at 28 weeks of pregnancy and at a mean of 4.9 years postpregnancy.
Main Outcome Measures:
TSH, free T4, free T3, and thyroid peroxidase antibody levels were measured in serum taken in pregnancy and at follow-up.
Subclinical hypothyroidism in pregnancy (TSH >3 mIU/L) was present in 65 of 523 (12.4%) women. Of these, 49 (75.4%) women had normal thyroid function postpregnancy; 16 of 65 (24.6%) had persistent high TSH (TSH >4.5 mIU/L postpregnancy) with 3 women receiving l-thyroxine treatment. A total of 44 of 523 (8.4%) women had isolated maternal hypothyroxinemia in pregnancy (free T4 <10th centile and TSH ≤3 mIU/L). Only 2 of 44 (4.5%) had TSH >4.5 mIU/L outside pregnancy. Of the women with subclinical hypothyroidism in pregnancy with antibody measurements available, those with thyroid peroxidase antibodies in pregnancy were more likely to have persistently elevated TSH or be receiving l-thyroxine replacement after pregnancy (6 of 7 [86%] vs 10 of 57 [18%], P < .001).
The majority of cases of subclinical hypothyroidism in pregnancy are transient, so treatment with l-thyroxine in these patients should be reviewed because it may not be warranted after pregnancy.
PMCID: PMC4207946  PMID: 24217906
10.  The majority of patients with long-duration type 1 diabetes are insulin microsecretors and have functioning beta cells 
Diabetologia  2013;57(1):187-191.
Classically, type 1 diabetes is thought to proceed to absolute insulin deficiency. Recently developed ultrasensitive assays capable of detecting C-peptide under 5 pmol/l now allow very low levels of C-peptide to be detected in patients with long-standing type 1 diabetes. It is not known whether this low-level endogenous insulin secretion responds to physiological stimuli. We aimed to assess how commonly low-level detectable C-peptide occurs in long-duration type 1 diabetes and whether it responds to a meal stimulus.
We performed a mixed-meal tolerance test in 74 volunteers with long-duration (>5 years) type 1 diabetes, i.e. with age at diagnosis 16 (9–23) years (median [interquartile range]) and diabetes duration of 30 (19–41) years. We assessed fasting and stimulated serum C-peptide levels using an electrochemiluminescence assay (detection limit 3.3 pmol/l), and also the urinary C-peptide:creatinine ratio (UCPCR).
Post-stimulation serum C-peptide was detectable at very low levels (>3.3 pmol/l) in 54 of 74 (73%) patients. In all patients with detectable serum C-peptide, C-peptide either increased (n = 43, 80%) or stayed the same (n = 11) in response to a meal, with no indication of levels falling (p < 0.0001). With increasing disease duration, absolute C-peptide levels fell although the numbers with detectable C-peptide remained high (68%, i.e. 25 of 37 patients with >30 years duration). Similar results were obtained for UCPCR.
Most patients with long-duration type 1 diabetes continue to secrete very low levels of endogenous insulin, which increase after meals. This is consistent with the presence of a small number of still functional beta cells and implies that beta cells are either escaping immune attack or undergoing regeneration.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-013-3067-x) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
PMCID: PMC3855529  PMID: 24121625
C-peptide; Insulin; Microsecretor
11.  Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia 
Diabetologia  2013;57(1):54-56.
Heterozygous glucokinase (GCK) mutations cause mild, fasting hyperglycaemia from birth. Although patients are usually asymptomatic and have glycaemia within target ranges, some are put on pharmacological treatment. We aimed to investigate how many patients are on pharmacological treatment and the impact of treatment on glycaemic control.
Treatment details were ascertained for 799 patients with heterozygous GCK mutations. In a separate, longitudinal study, HbA1c was obtained for 16 consecutive patients receiving insulin (n = 10) or oral hypoglycaemic agents (OHAs) (n = 6) whilst on treatment, and again having discontinued treatment following a genetic diagnosis of GCK-MODY. For comparison, HbA1c before and after genetic testing was studied in a control group (n = 18) not receiving pharmacological therapy.
At referral for genetic testing, 168/799 (21%) of patients were on pharmacological treatment (13.5% OHAs, 7.5% insulin). There was no difference in the HbA1c of these patients compared with those receiving no treatment(median [IQR]: 48 [43, 51] vs 46 [43, 50] mmol/mol, respectively; 6.5% [6.1%, 6.8%] vs 6.4% [6.1%, 6.7%]; p = 0.11). Following discontinuation of pharmacological treatment in 16 patients, HbA1c did not change. The mean change in HbA1c was −0.68 mmol/mol (95% CI: −2.97, 1.61) (−0.06% [95% CI: −0.27, 0.15]).
Prior to a genetic diagnosis, 21% of patients were on pharmacological treatment. HbA1c was no higher than in untreated patients and did not change when therapy was discontinued, suggesting no impact on glycaemia. The lack of response to pharmacological therapy is likely to reflect the regulated hyperglycaemia seen in these patients owing to their glucose sensing defect and is an example of pharmacogenetics.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-013-3075-x) contains peer reviewed but unedited supplementary material, which is available to authorised users.
PMCID: PMC3855531  PMID: 24092492
GCK mutation; Glucokinase; MODY; Pharmacogenetics; Treatment
12.  Multiple type 2 diabetes susceptibility genes following genome-wide association scan in UK samples 
Science (New York, N.Y.)  2007;316(5829):1336-1341.
The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1,924 diabetic cases and 2,938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3,757 additional cases and 5,346 controls, and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insights into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.
PMCID: PMC3772310  PMID: 17463249
13.  New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism 
Horikoshi, Momoko | Yaghootkar, Hanieh | Mook-Kanamori, Dennis O. | Sovio, Ulla | Taal, H. Rob | Hennig, Branwen J. | Bradfield, Jonathan P. | St. Pourcain, Beate | Evans, David M. | Charoen, Pimphen | Kaakinen, Marika | Cousminer, Diana L. | Lehtimäki, Terho | Kreiner-Møller, Eskil | Warrington, Nicole M. | Bustamante, Mariona | Feenstra, Bjarke | Berry, Diane J. | Thiering, Elisabeth | Pfab, Thiemo | Barton, Sheila J. | Shields, Beverley M. | Kerkhof, Marjan | van Leeuwen, Elisabeth M. | Fulford, Anthony J. | Kutalik, Zoltán | Zhao, Jing Hua | den Hoed, Marcel | Mahajan, Anubha | Lindi, Virpi | Goh, Liang-Kee | Hottenga, Jouke-Jan | Wu, Ying | Raitakari, Olli T. | Harder, Marie N. | Meirhaeghe, Aline | Ntalla, Ioanna | Salem, Rany M. | Jameson, Karen A. | Zhou, Kaixin | Monies, Dorota M. | Lagou, Vasiliki | Kirin, Mirna | Heikkinen, Jani | Adair, Linda S. | Alkuraya, Fowzan S. | Al-Odaib, Ali | Amouyel, Philippe | Andersson, Ehm Astrid | Bennett, Amanda J. | Blakemore, Alexandra I.F. | Buxton, Jessica L. | Dallongeville, Jean | Das, Shikta | de Geus, Eco J. C. | Estivill, Xavier | Flexeder, Claudia | Froguel, Philippe | Geller, Frank | Godfrey, Keith M. | Gottrand, Frédéric | Groves, Christopher J. | Hansen, Torben | Hirschhorn, Joel N. | Hofman, Albert | Hollegaard, Mads V. | Hougaard, David M. | Hyppönen, Elina | Inskip, Hazel M. | Isaacs, Aaron | Jørgensen, Torben | Kanaka-Gantenbein, Christina | Kemp, John P. | Kiess, Wieland | Kilpeläinen, Tuomas O. | Klopp, Norman | Knight, Bridget A. | Kuzawa, Christopher W. | McMahon, George | Newnham, John P. | Niinikoski, Harri | Oostra, Ben A. | Pedersen, Louise | Postma, Dirkje S. | Ring, Susan M. | Rivadeneira, Fernando | Robertson, Neil R. | Sebert, Sylvain | Simell, Olli | Slowinski, Torsten | Tiesler, Carla M.T. | Tönjes, Anke | Vaag, Allan | Viikari, Jorma S. | Vink, Jacqueline M. | Vissing, Nadja Hawwa | Wareham, Nicholas J. | Willemsen, Gonneke | Witte, Daniel R. | Zhang, Haitao | Zhao, Jianhua | Wilson, James F. | Stumvoll, Michael | Prentice, Andrew M. | Meyer, Brian F. | Pearson, Ewan R. | Boreham, Colin A.G. | Cooper, Cyrus | Gillman, Matthew W. | Dedoussis, George V. | Moreno, Luis A | Pedersen, Oluf | Saarinen, Maiju | Mohlke, Karen L. | Boomsma, Dorret I. | Saw, Seang-Mei | Lakka, Timo A. | Körner, Antje | Loos, Ruth J.F. | Ong, Ken K. | Vollenweider, Peter | van Duijn, Cornelia M. | Koppelman, Gerard H. | Hattersley, Andrew T. | Holloway, John W. | Hocher, Berthold | Heinrich, Joachim | Power, Chris | Melbye, Mads | Guxens, Mònica | Pennell, Craig E. | Bønnelykke, Klaus | Bisgaard, Hans | Eriksson, Johan G. | Widén, Elisabeth | Hakonarson, Hakon | Uitterlinden, André G. | Pouta, Anneli | Lawlor, Debbie A. | Smith, George Davey | Frayling, Timothy M. | McCarthy, Mark I. | Grant, Struan F.A. | Jaddoe, Vincent W.V. | Jarvelin, Marjo-Riitta | Timpson, Nicholas J. | Prokopenko, Inga | Freathy, Rachel M.
Nature genetics  2012;45(1):76-82.
Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood1. Previous genome-wide association studies identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes, and a second variant, near CCNL1, with no obvious link to adult traits2. In an expanded genome-wide association meta-analysis and follow-up study (up to 69,308 individuals of European descent from 43 studies), we have now extended the number of genome-wide significant loci to seven, accounting for a similar proportion of variance to maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes; ADRB1 with adult blood pressure; and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.
PMCID: PMC3605762  PMID: 23202124
14.  Use of HbA1c in the Identification of Patients with Hyperglycaemia Caused by a Glucokinase Mutation: Observational Case Control Studies 
PLoS ONE  2013;8(6):e65326.
HaemoglobinA1c (HbA1c) is recommended for diabetes diagnosis but fasting plasma glucose (FPG) has been useful for identifying patients with glucokinase (GCK) mutations which cause lifelong persistent fasting hyperglycaemia. We aimed to derive age-related HbA1c reference ranges for these patients to determine how well HbA1c can discriminate patients with a GCK mutation from unaffected family members and young-onset type 1 (T1D) and type 2 diabetes (T2D) and to investigate the proportion of GCK mutation carriers diagnosed with diabetes using HbA1c and/or FPG diagnostic criteria.
Individuals with inactivating GCK mutations (n = 129), familial controls (n = 100), T1D (n = 278) and T2D (n = 319) aged ≥18years were recruited. Receiver Operating Characteristic (ROC) analysis determined effectiveness of HbA1c and FPG to discriminate between groups.
HbA1c reference ranges in subjects with GCK mutations were: 38–56 mmol/mol (5.6–7.3%) if aged ≤40years; 41–60 mmol/mol (5.9–7.6%) if >40years. All patients (123/123) with a GCK mutation were above the lower limit of the HbA1c age-appropriate reference ranges. 69% (31/99) of controls were below these lower limits. HbA1c was also effective in discriminating those with a GCK mutation from those with T1D/T2D. Using the upper limit of the age-appropriate reference ranges to discriminate those with a mutation from those with T1D/T2D correctly identified 97% of subjects with a mutation. The majority (438/597 (73%)) with other types of young-onset diabetes had an HbA1c above the upper limit of the age-appropriate GCK reference range. HbA1c ≥48 mmol/mol classified more people with GCK mutations as having diabetes than FPG ≥7 mmol/l (68% vs. 48%, p = 0.0009).
Current HbA1c diagnostic criteria increase diabetes diagnosis in patients with a GCK mutation. We have derived age-related HbA1c reference ranges that can be used for discriminating hyperglycaemia likely to be caused by a GCK mutation and aid identification of probands and family members for genetic testing.
PMCID: PMC3683003  PMID: 23799006
15.  A Meta-Analysis of Thyroid-Related Traits Reveals Novel Loci and Gender-Specific Differences in the Regulation of Thyroid Function 
Porcu, Eleonora | Medici, Marco | Pistis, Giorgio | Volpato, Claudia B. | Wilson, Scott G. | Cappola, Anne R. | Bos, Steffan D. | Deelen, Joris | den Heijer, Martin | Freathy, Rachel M. | Lahti, Jari | Liu, Chunyu | Lopez, Lorna M. | Nolte, Ilja M. | O'Connell, Jeffrey R. | Tanaka, Toshiko | Trompet, Stella | Arnold, Alice | Bandinelli, Stefania | Beekman, Marian | Böhringer, Stefan | Brown, Suzanne J. | Buckley, Brendan M. | Camaschella, Clara | de Craen, Anton J. M. | Davies, Gail | de Visser, Marieke C. H. | Ford, Ian | Forsen, Tom | Frayling, Timothy M. | Fugazzola, Laura | Gögele, Martin | Hattersley, Andrew T. | Hermus, Ad R. | Hofman, Albert | Houwing-Duistermaat, Jeanine J. | Jensen, Richard A. | Kajantie, Eero | Kloppenburg, Margreet | Lim, Ee M. | Masciullo, Corrado | Mariotti, Stefano | Minelli, Cosetta | Mitchell, Braxton D. | Nagaraja, Ramaiah | Netea-Maier, Romana T. | Palotie, Aarno | Persani, Luca | Piras, Maria G. | Psaty, Bruce M. | Räikkönen, Katri | Richards, J. Brent | Rivadeneira, Fernando | Sala, Cinzia | Sabra, Mona M. | Sattar, Naveed | Shields, Beverley M. | Soranzo, Nicole | Starr, John M. | Stott, David J. | Sweep, Fred C. G. J. | Usala, Gianluca | van der Klauw, Melanie M. | van Heemst, Diana | van Mullem, Alies | H.Vermeulen, Sita | Visser, W. Edward | Walsh, John P. | Westendorp, Rudi G. J. | Widen, Elisabeth | Zhai, Guangju | Cucca, Francesco | Deary, Ian J. | Eriksson, Johan G. | Ferrucci, Luigi | Fox, Caroline S. | Jukema, J. Wouter | Kiemeney, Lambertus A. | Pramstaller, Peter P. | Schlessinger, David | Shuldiner, Alan R. | Slagboom, Eline P. | Uitterlinden, André G. | Vaidya, Bijay | Visser, Theo J. | Wolffenbuttel, Bruce H. R. | Meulenbelt, Ingrid | Rotter, Jerome I. | Spector, Tim D. | Hicks, Andrew A. | Toniolo, Daniela | Sanna, Serena | Peeters, Robin P. | Naitza, Silvia
PLoS Genetics  2013;9(2):e1003266.
Thyroid hormone is essential for normal metabolism and development, and overt abnormalities in thyroid function lead to common endocrine disorders affecting approximately 10% of individuals over their life span. In addition, even mild alterations in thyroid function are associated with weight changes, atrial fibrillation, osteoporosis, and psychiatric disorders. To identify novel variants underlying thyroid function, we performed a large meta-analysis of genome-wide association studies for serum levels of the highly heritable thyroid function markers TSH and FT4, in up to 26,420 and 17,520 euthyroid subjects, respectively. Here we report 26 independent associations, including several novel loci for TSH (PDE10A, VEGFA, IGFBP5, NFIA, SOX9, PRDM11, FGF7, INSR, ABO, MIR1179, NRG1, MBIP, ITPK1, SASH1, GLIS3) and FT4 (LHX3, FOXE1, AADAT, NETO1/FBXO15, LPCAT2/CAPNS2). Notably, only limited overlap was detected between TSH and FT4 associated signals, in spite of the feedback regulation of their circulating levels by the hypothalamic-pituitary-thyroid axis. Five of the reported loci (PDE8B, PDE10A, MAF/LOC440389, NETO1/FBXO15, and LPCAT2/CAPNS2) show strong gender-specific differences, which offer clues for the known sexual dimorphism in thyroid function and related pathologies. Importantly, the TSH-associated loci contribute not only to variation within the normal range, but also to TSH values outside the reference range, suggesting that they may be involved in thyroid dysfunction. Overall, our findings explain, respectively, 5.64% and 2.30% of total TSH and FT4 trait variance, and they improve the current knowledge of the regulation of hypothalamic-pituitary-thyroid axis function and the consequences of genetic variation for hypo- or hyperthyroidism.
Author Summary
Levels of thyroid hormones are tightly regulated by TSH produced in the pituitary, and even mild alterations in their concentrations are strong indicators of thyroid pathologies, which are very common worldwide. To identify common genetic variants associated with the highly heritable markers of thyroid function, TSH and FT4, we conducted a meta-analysis of genome-wide association studies in 26,420 and 17,520 individuals, respectively, of European ancestry with normal thyroid function. Our analysis identified 26 independent genetic variants regulating these traits, several of which are new, and confirmed previously detected polymorphisms affecting TSH (within the PDE8B gene and near CAPZB, MAF/LOC440389, and NR3C2) and FT4 (within DIO1) levels. Gender-specific differences in the genetic effects of several variants for TSH and FT4 levels were identified at several loci, which offer clues to understand the known sexual dimorphism in thyroid function and pathology. Of particular clinical interest, we show that TSH-associated loci contribute not only to normal variation, but also to TSH values outside reference range, suggesting that they may be involved in thyroid dysfunction. Overall, our findings add to the developing landscape of the regulation of thyroid homeostasis and the consequences of genetic variation for thyroid related diseases.
PMCID: PMC3567175  PMID: 23408906
16.  Identifying clinical criteria to predict Type 1 diabetes, as defined by absolute insulin deficiency: a systematic review protocol 
BMJ Open  2012;2(6):e002309.
Management of a patient's diabetes is entirely dependent upon the type of diabetes they are deemed to have. Patients with Type 1 diabetes are insulin deficient so require multiple daily insulin injections, whereas patients with Type 2 diabetes still have some endogenous insulin production so insulin treatment is only required when diet and tablets do not establish good glycaemic control. Despite the importance of a correct diagnosis, classification of diabetes is based on aetiology and relies on clinical judgement. There are no clinical guidelines on how to determine whether a patient has Type 1 or Type 2 diabetes. We aim to systematically review the literature to derive evidence-based clinical criteria for the classification of the major subtypes of diabetes.
Methods and analysis
We will perform a systematic review of diagnostic accuracy studies to establish clinical criteria that predict the subsequent development of absolute insulin deficiency seen in Type 1 diabetes. Insulin deficiency will be determined by reference standard C-peptide concentrations. Synthesis of criteria identified will be undertaken using hierarchical summary receiver operating characteristic curves.
Ethics and dissemination
As this is a systematic review, there will be no ethical issues. We will disseminate results by writing up the final systematic review and synthesis for publication in a peer-reviewed journal and will present at national and international diabetes-related meetings.
PMCID: PMC4399143  PMID: 23274675
Statistics & Research Methods
17.  High-Sensitivity CRP Discriminates HNF1A-MODY From Other Subtypes of Diabetes 
Diabetes Care  2011;34(8):1860-1862.
Maturity-onset diabetes of the young (MODY) as a result of mutations in hepatocyte nuclear factor 1-α (HNF1A) is often misdiagnosed as type 1 diabetes or type 2 diabetes. Recent work has shown that high-sensitivity C-reactive protein (hs-CRP) levels are lower in HNF1A-MODY than type 1 diabetes, type 2 diabetes, or glucokinase (GCK)-MODY. We aim to replicate these findings in larger numbers and other MODY subtypes.
hs-CRP levels were assessed in 750 patients (220 HNF1A, 245 GCK, 54 HNF4-α [HNF4A], 21 HNF1-β (HNF1B), 53 type 1 diabetes, and 157 type 2 diabetes).
hs-CRP was lower in HNF1A-MODY (median [IQR] 0.3 [0.1–0.6] mg/L) than type 2 diabetes (1.40 [0.60–3.45] mg/L; P < 0.001) and type 1 diabetes (1.10 [0.50–1.85] mg/L; P < 0.001), HNF4A-MODY (1.45 [0.46–2.88] mg/L; P < 0.001), GCK-MODY (0.60 [0.30–1.80] mg/L; P < 0.001), and HNF1B-MODY (0.60 [0.10–2.8] mg/L; P = 0.07). hs-CRP discriminated HNF1A-MODY from type 2 diabetes with hs-CRP <0.75 mg/L showing 79% sensitivity and 70% specificity (receiver operating characteristic area under the curve = 0.84).
hs-CRP levels are lower in HNF1A-MODY than other forms of diabetes and may be used as a biomarker to select patients for diagnostic HNF1A genetic testing.
PMCID: PMC3142017  PMID: 21700917
18.  EDTA Improves Stability of Whole Blood C-Peptide and Insulin to Over 24 Hours at Room Temperature 
PLoS ONE  2012;7(7):e42084.
C-peptide and insulin measurements in blood provide useful information regarding endogenous insulin secretion. Conflicting evidence on sample stability and handling procedures continue to limit the widespread clinical use of these tests. We assessed the factors that altered the stability of insulin and C-peptide in blood.
We investigated the impact of preservative type, time to centrifugation, storage conditions and duration of storage on the stability of C-peptide and insulin on three different analytical platforms.
C-peptide was stable for at least 24 hours at room temperature in both centrifuged and whole blood collected in K+-EDTA and serum gel tubes, with the exception of whole blood serum gel, which decreased to 78% of baseline at 24 hours, (p = 0.008). Insulin was stable at room temperature for 24 hours in both centrifuged and whole blood collected in K+-EDTA tubes. In contrast insulin levels decreased in serum gel tubes both centrifuged and whole blood (66% of baseline, p = 0.01 and 76% of baseline p = 0.01, by 24 hours respectively). C-peptide and insulin remained stable after 6 freeze-thaw cycles.
The stability of C-peptide and insulin in whole blood K+-EDTA tubes negates the need to conform to strict sample handling procedures for these assays, greatly increasing their clinical utility.
PMCID: PMC3408407  PMID: 22860060
19.  Urine C-Peptide Creatinine Ratio Is a Noninvasive Alternative to the Mixed-Meal Tolerance Test in Children and Adults With Type 1 Diabetes 
Diabetes Care  2011;34(3):607-609.
Stimulated serum C-peptide (sCP) during a mixed-meal tolerance test (MMTT) is the gold standard measure of endogenous insulin secretion, but practical issues limit its use. We assessed urine C-peptide creatinine ratio (UCPCR) as an alternative.
Seventy-two type 1 diabetic patients (age of diagnosis median 14 years [interquartile range 10–22]; diabetes duration 6.5 [2.3–32.7]) had an MMTT. sCP was collected at 90 min. Urine for UCPCR was collected at 120 min and following a home evening meal.
MMTT 120-min UCPCR was highly correlated to 90-min sCP (r = 0.97; P < 0.0001). UCPCR ≥0.53 nmol/mmol had 94% sensitivity/100% specificity for significant endogenous insulin secretion (90-min sCP ≥0.2 nmol/L). The 120-min postprandial evening meal UCPCR was highly correlated to 90-min sCP (r = 0.91; P < 0.0001). UCPCR ≥0.37 nmol/mmol had 84% sensitivity/97% specificity for sCP ≥0.2 nmol/L.
UCPCR testing is a sensitive and specific method for detecting insulin secretion. UCPCR may be a practical alternative to serum C-peptide testing, avoiding the need for inpatient investigation.
PMCID: PMC3041191  PMID: 21285386
20.  Mendelian Randomization Studies Do Not Support a Role for Raised Circulating Triglyceride Levels Influencing Type 2 Diabetes, Glucose Levels, or Insulin Resistance 
Diabetes  2011;60(3):1008-1018.
The causal nature of associations between circulating triglycerides, insulin resistance, and type 2 diabetes is unclear. We aimed to use Mendelian randomization to test the hypothesis that raised circulating triglyceride levels causally influence the risk of type 2 diabetes and raise normal fasting glucose levels and hepatic insulin resistance.
We tested 10 common genetic variants robustly associated with circulating triglyceride levels against the type 2 diabetes status in 5,637 case and 6,860 control subjects and four continuous outcomes (reflecting glycemia and hepatic insulin resistance) in 8,271 nondiabetic individuals from four studies.
Individuals carrying greater numbers of triglyceride-raising alleles had increased circulating triglyceride levels (SD 0.59 [95% CI 0.52–0.65] difference between the 20% of individuals with the most alleles and the 20% with the fewest alleles). There was no evidence that the carriers of greater numbers of triglyceride-raising alleles were at increased risk of type 2 diabetes (per weighted allele odds ratio [OR] 0.99 [95% CI 0.97–1.01]; P = 0.26). In nondiabetic individuals, there was no evidence that carriers of greater numbers of triglyceride-raising alleles had increased fasting insulin levels (SD 0.00 per weighted allele [95% CI −0.01 to 0.02]; P = 0.72) or increased fasting glucose levels (0.00 [−0.01 to 0.01]; P = 0.88). Instrumental variable analyses confirmed that genetically raised circulating triglyceride levels were not associated with increased diabetes risk, fasting glucose, or fasting insulin and, for diabetes, showed a trend toward a protective association (OR per 1-SD increase in log10 triglycerides: 0.61 [95% CI 0.45–0.83]; P = 0.002).
Genetically raised circulating triglyceride levels do not increase the risk of type 2 diabetes or raise fasting glucose or fasting insulin levels in nondiabetic individuals. One explanation for our results is that raised circulating triglycerides are predominantly secondary to the diabetes disease process rather than causal.
PMCID: PMC3046819  PMID: 21282362
21.  Urinary C-Peptide Creatinine Ratio Is a Practical Outpatient Tool for Identifying Hepatocyte Nuclear Factor 1-α/Hepatocyte Nuclear Factor 4-α Maturity-Onset Diabetes of the Young From Long-Duration Type 1 Diabetes 
Diabetes Care  2011;34(2):286-291.
Hepatocyte nuclear factor 1-α (HNF1A)/hepatocyte nuclear factor 4-α (HNF4A) maturity-onset diabetes of the young (MODY) is frequently misdiagnosed as type 1 diabetes, and patients are inappropriately treated with insulin. Blood C-peptide can aid in the diagnosis of MODY, but practical reasons limit its widespread use. Urinary C-peptide creatinine ratio (UCPCR), a stable measure of endogenous insulin secretion, is a noninvasive alternative. We aimed to compare stimulated UCPCR in adults with HNF1A/4A MODY, type 1 diabetes, and type 2 diabetes.
Adults with diabetes for ≥5years, without renal impairment, were studied (HNF1A MODY [n = 54], HNF4A MODY [n = 23], glucokinase MODY [n = 20], type 1 diabetes [n = 69], and type 2 diabetes [n = 54]). The UCPCR was collected in boric acid 120 min after the largest meal of the day and mailed for analysis. Receiver operating characteristic (ROC) curves were used to identify optimal UCPCR cutoffs to differentiate HNF1A/4A MODY from type 1 and type 2 diabetes.
UCPCR was lower in type 1 diabetes than HNF1A/4A MODY (median [interquartile range]) (<0.02 nmol/mmol [<0.02 to <0.02] vs. 1.72 nmol/mmol [0.98–2.90]; P < 0.0001). ROC curves showed excellent discrimination (area under curve [AUC] 0.98) and identified a cutoff UCPCR of ≥0.2 nmol/mmol for differentiating HNF1A/4A MODY from type 1 diabetes (97% sensitivity, 96% specificity). UCPCR was lower in HNF1A/4A MODY than in type 2 diabetes (1.72 nmol/mmol [0.98–2.90] vs. 2.47 nmol/mmol [1.4–4.13]); P = 0.007). ROC curves showed a weak distinction between HNF1A/4A MODY and type 2 diabetes (AUC 0.64).
UCPCR is a noninvasive outpatient tool that can be used to discriminate HNF1A and HNF4A MODY from long-duration type 1 diabetes. To differentiate MODY from type 1 diabetes of >5 years’ duration, UCPCR could be used to determine whether genetic testing is indicated.
PMCID: PMC3024335  PMID: 21270186
22.  Mendelian Randomization Studies do not Support a Role for Raised Circulating Triglyceride Levels influencing Type 2 Diabetes, Glucose Levels, or Insulin Resistance 
Diabetes  2011;60(3):1008-1018.
The causal nature of associations between circulating triglycerides, insulin resistance and type 2 diabetes is unclear. We aimed to use Mendelian randomization to test the hypothesis that raised circulating triglyceride levels causally influence the risk of type 2 diabetes, raised normal fasting glucose levels, and hepatic insulin resistance.
Research design and methods
We tested 10 common genetic variants robustly associated with circulating triglyceride levels against type 2 diabetes status in 5637 cases, 6860 controls, and four continuous outcomes (reflecting glycemia and hepatic insulin resistance) in 8271 non-diabetic individuals from four studies.
Individuals carrying greater numbers of triglyceride-raising alleles had increased circulating triglyceride levels (0.59 SD [95% CI: 0.52, 0.65] difference between the 20% of individuals with the most alleles and the 20% with the fewest alleles). There was no evidence that carriers of greater numbers of triglyceride-raising alleles were at increased risk of type 2 diabetes (per weighted allele odds ratio (OR) 0.99 [95% CI: 0.97, 1.01]; P = 0.26). In non-diabetic individuals, there was no evidence that carriers of greater numbers of triglyceride-raising alleles had increased fasting insulin levels (0.00 SD per weighted allele [95% CI: −0.01, 0.02]; P = 0.72) or increased fasting glucose levels (0.00 SD per weighted allele [95% CI: −0.01, 0.01]; P = 0.88). Instrumental variable analyses confirmed that genetically raised circulating triglyceride levels were not associated with increased diabetes risk, fasting glucose or fasting insulin, and, for diabetes, showed a trend towards a protective association (OR per 1 SD increase in log10-triglycerides: 0.61 [95% CI: 0.45, 0.83]; P = 0.002).
Genetically raised circulating triglyceride levels do not increase the risk of type 2 diabetes, or raise fasting glucose or fasting insulin levels in non-diabetic individuals. One explanation for our results is that raised circulating triglycerides are predominantly secondary to the diabetes disease process rather than causal.
PMCID: PMC3046819  PMID: 21282362
23.  A common variant of HMGA2 is associated with adult and childhood height in the general population 
Nature genetics  2007;39(10):1245-1250.
Human height is a classic, highly heritable quantitative trait. To begin to identify genetic variants influencing height, we examined genome-wide association data from 4,921 individuals. Common variants in the HMGA2 oncogene, exemplified by rs1042725, were associated with height (P = 4 × 10−8). HMGA2 is also a strong biological candidate for height, as rare, severe mutations in this gene alter body size in mice and humans, so we tested rs1042725 in additional samples. We confirmed the association in 19,064 adults from four further studies (P = 3 × 10−11, overall P = 4 × 10−16, including the genome-wide association data). We also observed the association in children (P = 1 × 10−6, N = 6,827) and a tall/short case-control study (P = 4 × 10−6, N = 3,207). We estimate that rs1042725 explains ~0.3% of population variation in height (~0.4 cm increased adult height per C allele). There are few examples of common genetic variants reproducibly associated with human quantitative traits; these results represent, to our knowledge, the first consistently replicated association with adult and childhood height.
PMCID: PMC3086278  PMID: 17767157
24.  A meta-analysis of the associations between common variation in the PDE8B gene and thyroid hormone parameters, including assessment of longitudinal stability of associations over time and effect of thyroid hormone replacement 
European Journal of Endocrinology  2011;164(5):773-780.
Common variants in PDE8B are associated with TSH but apparently without any effect on thyroid hormone levels that is difficult to explain. Furthermore, the stability of the association has not been examined in longitudinal studies or in patients on levothyroxine (l-T4).
Totally, four cohorts were used (n=2557): the Busselton Health Study (thyroid function measured on two occasions), DEPTH, EFSOCH (selective cohorts), and WATTS (individuals on l-T4).
Meta-analysis to clarify associations between the rs4704397 single nucleotide polymorphism in PDE8B on TSH, tri-iodothyronine (T3), and T4 levels.
Meta-analysis confirmed that genetic variation in PDE8B was associated with TSH (P=1.64×10−10 0.20 s.d./allele, 95% confidence interval (CI) 0.142, 0.267) and identified a possible new association with free T4 (P=0.023, −0.07 s.d./allele, 95% CI −0.137, −0.01), no association was seen with free T3 (P=0.218). The association between PDE8B and TSH was similar in 1981 (0.14 s.d./allele, 95% CI 0.04, 0.238) and 1994 (0.20 s.d./allele, 95% CI 0.102, 0.300) and even more consistent between PDE8B and free T4 in 1981 (−0.068 s.d./allele, 95% CI −0.167, 0.031) and 1994 (−0.07 s.d./allele, 95% CI −0.170, 0.030). No associations were seen between PDE8B and thyroid hormone parameters in individuals on l-T4.
Common genetic variation in PDE8B is associated with reciprocal changes in TSH and free T4 levels that are consistent over time and lost in individuals on l-T4. These findings identify a possible genetic marker reflecting variation in thyroid hormone output that will be of value in epidemiological studies and provides additional evidence that PDE8B is involved in TSH signaling in the thyroid.
PMCID: PMC3080745  PMID: 21317282
25.  Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis 
Voight, Benjamin F | Scott, Laura J | Steinthorsdottir, Valgerdur | Morris, Andrew P | Dina, Christian | Welch, Ryan P | Zeggini, Eleftheria | Huth, Cornelia | Aulchenko, Yurii S | Thorleifsson, Gudmar | McCulloch, Laura J | Ferreira, Teresa | Grallert, Harald | Amin, Najaf | Wu, Guanming | Willer, Cristen J | Raychaudhuri, Soumya | McCarroll, Steve A | Langenberg, Claudia | Hofmann, Oliver M | Dupuis, Josée | Qi, Lu | Segrè, Ayellet V | van Hoek, Mandy | Navarro, Pau | Ardlie, Kristin | Balkau, Beverley | Benediktsson, Rafn | Bennett, Amanda J | Blagieva, Roza | Boerwinkle, Eric | Bonnycastle, Lori L | Boström, Kristina Bengtsson | Bravenboer, Bert | Bumpstead, Suzannah | Burtt, Noisël P | Charpentier, Guillaume | Chines, Peter S | Cornelis, Marilyn | Couper, David J | Crawford, Gabe | Doney, Alex S F | Elliott, Katherine S | Elliott, Amanda L | Erdos, Michael R | Fox, Caroline S | Franklin, Christopher S | Ganser, Martha | Gieger, Christian | Grarup, Niels | Green, Todd | Griffin, Simon | Groves, Christopher J | Guiducci, Candace | Hadjadj, Samy | Hassanali, Neelam | Herder, Christian | Isomaa, Bo | Jackson, Anne U | Johnson, Paul R V | Jørgensen, Torben | Kao, Wen H L | Klopp, Norman | Kong, Augustine | Kraft, Peter | Kuusisto, Johanna | Lauritzen, Torsten | Li, Man | Lieverse, Aloysius | Lindgren, Cecilia M | Lyssenko, Valeriya | Marre, Michel | Meitinger, Thomas | Midthjell, Kristian | Morken, Mario A | Narisu, Narisu | Nilsson, Peter | Owen, Katharine R | Payne, Felicity | Perry, John R B | Petersen, Ann-Kristin | Platou, Carl | Proença, Christine | Prokopenko, Inga | Rathmann, Wolfgang | Rayner, N William | Robertson, Neil R | Rocheleau, Ghislain | Roden, Michael | Sampson, Michael J | Saxena, Richa | Shields, Beverley M | Shrader, Peter | Sigurdsson, Gunnar | Sparsø, Thomas | Strassburger, Klaus | Stringham, Heather M | Sun, Qi | Swift, Amy J | Thorand, Barbara | Tichet, Jean | Tuomi, Tiinamaija | van Dam, Rob M | van Haeften, Timon W | van Herpt, Thijs | van Vliet-Ostaptchouk, Jana V | Walters, G Bragi | Weedon, Michael N | Wijmenga, Cisca | Witteman, Jacqueline | Bergman, Richard N | Cauchi, Stephane | Collins, Francis S | Gloyn, Anna L | Gyllensten, Ulf | Hansen, Torben | Hide, Winston A | Hitman, Graham A | Hofman, Albert | Hunter, David J | Hveem, Kristian | Laakso, Markku | Mohlke, Karen L | Morris, Andrew D | Palmer, Colin N A | Pramstaller, Peter P | Rudan, Igor | Sijbrands, Eric | Stein, Lincoln D | Tuomilehto, Jaakko | Uitterlinden, Andre | Walker, Mark | Wareham, Nicholas J | Watanabe, Richard M | Abecasis, Gonçalo R | Boehm, Bernhard O | Campbell, Harry | Daly, Mark J | Hattersley, Andrew T | Hu, Frank B | Meigs, James B | Pankow, James S | Pedersen, Oluf | Wichmann, H-Erich | Barroso, Inês | Florez, Jose C | Frayling, Timothy M | Groop, Leif | Sladek, Rob | Thorsteinsdottir, Unnur | Wilson, James F | Illig, Thomas | Froguel, Philippe | van Duijn, Cornelia M | Stefansson, Kari | Altshuler, David | Boehnke, Michael | McCarthy, Mark I
Nature genetics  2010;42(7):579-589.
By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combinedP < 5 × 10−8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
PMCID: PMC3080658  PMID: 20581827

Results 1-25 (40)