PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (62)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  Insights Into the Molecular Mechanism for Type 2 Diabetes Susceptibility at the KCNQ1 Locus From Temporal Changes in Imprinting Status in Human Islets 
Diabetes  2013;62(3):987-992.
The molecular basis of type 2 diabetes predisposition at most established susceptibility loci remains poorly understood. KCNQ1 maps within the 11p15.5 imprinted domain, a region with an established role in congenital growth phenotypes. Variants intronic to KCNQ1 influence diabetes susceptibility when maternally inherited. By use of quantitative PCR and pyrosequencing of human adult islet and fetal pancreas samples, we investigated the imprinting status of regional transcripts and aimed to determine whether type 2 diabetes risk alleles influence regional DNA methylation and gene expression. The results demonstrate that gene expression patterns differ by developmental stage. CDKN1C showed monoallelic expression in both adult and fetal tissue, whereas PHLDA2, SLC22A18, and SLC22A18AS were biallelically expressed in both tissues. Temporal changes in imprinting were observed for KCNQ1 and KCNQ1OT1, with monoallelic expression in fetal tissues and biallelic expression in adult samples. Genotype at the type 2 diabetes risk variant rs2237895 influenced methylation levels of regulatory sequence in fetal pancreas but without demonstrable effects on gene expression. We demonstrate that CDKN1C, KCNQ1, and KCNQ1OT1 are most likely to mediate diabetes susceptibility at the KCNQ1 locus and identify temporal differences in imprinting status and methylation effects, suggesting that diabetes risk effects may be mediated in early development.
doi:10.2337/db12-0819
PMCID: PMC3581222  PMID: 23139357
2.  Multiple type 2 diabetes susceptibility genes following genome-wide association scan in UK samples 
Science (New York, N.Y.)  2007;316(5829):1336-1341.
The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1,924 diabetic cases and 2,938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3,757 additional cases and 5,346 controls, and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insights into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.
doi:10.1126/science.1142364
PMCID: PMC3772310  PMID: 17463249
3.  Common Variants in Left/Right Asymmetry Genes and Pathways Are Associated with Relative Hand Skill 
PLoS Genetics  2013;9(9):e1003751.
Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)] (n = 728). The most strongly associated variant, rs7182874 (P = 8.68×10−9), is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666). As PCSK6 is known to regulate NODAL in the development of left/right (LR) asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR≤5%). We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR≤5%). Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development.
Author Summary
Humans have developed a population level bias towards right-handedness for tool-use. Understanding the genetic basis of handedness can help explain why this bias exists and may offer clues into the evolution of handedness and brain asymmetry. We have tested for correlation between relative hand skill and hundreds of thousands of genetic variants in a cohort of individuals with reading disability. The strongest associated variant is in the gene PCSK6, an enzyme that cleaves NODAL into an active form. NODAL plays a key role during the establishment of left/right (LR) asymmetry in diverse species, from snails to mammals. Pcsk6 knock-out mice display LR asymmetry defects like heterotaxia (abnormal organ positioning). We uncovered further variants associated with relative hand skill in the human versions of genes that also cause the LR asymmetry phenotypes heterotaxia, and situs inversus (reversal of organ asymmetry) when knocked out in mice. These results replicate in an independent general population cohort without reading disability. We propose that handedness is under the control of many variants, some of which are in genes that also contribute to the determination of body LR asymmetry.
doi:10.1371/journal.pgen.1003751
PMCID: PMC3772043  PMID: 24068947
4.  A Flexible Approach for the Analysis of Rare Variants Allowing for a Mixture of Effects on Binary or Quantitative Traits 
PLoS Genetics  2013;9(8):e1003694.
Multiple rare variants either within or across genes have been hypothesised to collectively influence complex human traits. The increasing availability of high throughput sequencing technologies offers the opportunity to study the effect of rare variants on these traits. However, appropriate and computationally efficient analytical methods are required to account for collections of rare variants that display a combination of protective, deleterious and null effects on the trait. We have developed a novel method for the analysis of rare genetic variation in a gene, region or pathway that, by simply aggregating summary statistics at each variant, can: (i) test for the presence of a mixture of effects on a trait; (ii) be applied to both binary and quantitative traits in population-based and family-based data; (iii) adjust for covariates to allow for non-genetic risk factors and; (iv) incorporate imputed genetic variation. In addition, for preliminary identification of promising genes, the method can be applied to association summary statistics, available from meta-analysis of published data, for example, without the need for individual level genotype data. Through simulation, we show that our method is immune to the presence of bi-directional effects, with no apparent loss in power across a range of different mixtures, and can achieve greater power than existing approaches as long as summary statistics at each variant are robust. We apply our method to investigate association of type-1 diabetes with imputed rare variants within genes in the major histocompatibility complex using genotype data from the Wellcome Trust Case Control Consortium.
Author Summary
Rapid advances in sequencing technology mean that it is now possible to directly assay rare genetic variation. In addition, the availability of almost fully sequenced human genomes by the 1000 Genomes Project allows genotyping at rare variants that are not present on arrays commonly used in genome-wide association studies. Rare variants within a gene or region may act to collectively influence a complex trait. Methods for testing these rare variants should be able to account for a combination of those that serve to either increase, decrease or have no effect on the trait of interest. Here, we introduce a method for the analysis of a collection of rare genetic variants, within a gene or region, which assesses evidence for a mixture of effects. Our method simply aggregates summary statistics at each variant and, as such, can be applied to both population and family-based data, to binary or quantitative traits and to either directly genotyped or imputed data. In addition, it does not require individual level genotype or phenotype data, and can be adjusted for non-genetic risk factors. We illustrate our approach by examining imputed rare variants in the major histocompatibility complex for association with type-1 diabetes using genotype data from the Wellcome Trust case Control Consortium.
doi:10.1371/journal.pgen.1003694
PMCID: PMC3744430  PMID: 23966874
5.  Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits 
Nature genetics  2012;44(4):369-S3.
We present an approximate conditional and joint association analysis that can use summary-level statistics from a meta-analysis of genome-wide association studies (GWAS) and estimated linkage disequilibrium (LD) from a reference sample with individual-level genotype data. Using this method, we analyzed meta-analysis summary data from the GIANT Consortium for height and body mass index (BMI), with the LD structure estimated from genotype data in two independent cohorts. We identified 36 loci with multiple associated variants for height (38 leading and 49 additional SNPs, 87 in total) via a genome-wide SNP selection procedure. The 49 new SNPs explain approximately 1.3% of variance, nearly doubling the heritability explained at the 36 loci. We did not find any locus showing multiple associated SNPs for BMI. The method we present is computationally fast and is also applicable to case-control data, which we demonstrate in an example from meta-analysis of type 2 diabetes by the DIAGRAM Consortium.
doi:10.1038/ng.2213
PMCID: PMC3593158  PMID: 22426310
6.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes 
Morris, Andrew P | Voight, Benjamin F | Teslovich, Tanya M | Ferreira, Teresa | Segrè, Ayellet V | Steinthorsdottir, Valgerdur | Strawbridge, Rona J | Khan, Hassan | Grallert, Harald | Mahajan, Anubha | Prokopenko, Inga | Kang, Hyun Min | Dina, Christian | Esko, Tonu | Fraser, Ross M | Kanoni, Stavroula | Kumar, Ashish | Lagou, Vasiliki | Langenberg, Claudia | Luan, Jian'an | Lindgren, Cecilia M | Müller-Nurasyid, Martina | Pechlivanis, Sonali | Rayner, N William | Scott, Laura J | Wiltshire, Steven | Yengo, Loic | Kinnunen, Leena | Rossin, Elizabeth J | Raychaudhuri, Soumya | Johnson, Andrew D | Dimas, Antigone S | Loos, Ruth J F | Vedantam, Sailaja | Chen, Han | Florez, Jose C | Fox, Caroline | Liu, Ching-Ti | Rybin, Denis | Couper, David J | Kao, Wen Hong L | Li, Man | Cornelis, Marilyn C | Kraft, Peter | Sun, Qi | van Dam, Rob M | Stringham, Heather M | Chines, Peter S | Fischer, Krista | Fontanillas, Pierre | Holmen, Oddgeir L | Hunt, Sarah E | Jackson, Anne U | Kong, Augustine | Lawrence, Robert | Meyer, Julia | Perry, John RB | Platou, Carl GP | Potter, Simon | Rehnberg, Emil | Robertson, Neil | Sivapalaratnam, Suthesh | Stančáková, Alena | Stirrups, Kathleen | Thorleifsson, Gudmar | Tikkanen, Emmi | Wood, Andrew R | Almgren, Peter | Atalay, Mustafa | Benediktsson, Rafn | Bonnycastle, Lori L | Burtt, Noël | Carey, Jason | Charpentier, Guillaume | Crenshaw, Andrew T | Doney, Alex S F | Dorkhan, Mozhgan | Edkins, Sarah | Emilsson, Valur | Eury, Elodie | Forsen, Tom | Gertow, Karl | Gigante, Bruna | Grant, George B | Groves, Christopher J | Guiducci, Candace | Herder, Christian | Hreidarsson, Astradur B | Hui, Jennie | James, Alan | Jonsson, Anna | Rathmann, Wolfgang | Klopp, Norman | Kravic, Jasmina | Krjutškov, Kaarel | Langford, Cordelia | Leander, Karin | Lindholm, Eero | Lobbens, Stéphane | Männistö, Satu | Mirza, Ghazala | Mühleisen, Thomas W | Musk, Bill | Parkin, Melissa | Rallidis, Loukianos | Saramies, Jouko | Sennblad, Bengt | Shah, Sonia | Sigurðsson, Gunnar | Silveira, Angela | Steinbach, Gerald | Thorand, Barbara | Trakalo, Joseph | Veglia, Fabrizio | Wennauer, Roman | Winckler, Wendy | Zabaneh, Delilah | Campbell, Harry | van Duijn, Cornelia | Uitterlinden89-, Andre G | Hofman, Albert | Sijbrands, Eric | Abecasis, Goncalo R | Owen, Katharine R | Zeggini, Eleftheria | Trip, Mieke D | Forouhi, Nita G | Syvänen, Ann-Christine | Eriksson, Johan G | Peltonen, Leena | Nöthen, Markus M | Balkau, Beverley | Palmer, Colin N A | Lyssenko, Valeriya | Tuomi, Tiinamaija | Isomaa, Bo | Hunter, David J | Qi, Lu | Shuldiner, Alan R | Roden, Michael | Barroso, Ines | Wilsgaard, Tom | Beilby, John | Hovingh, Kees | Price, Jackie F | Wilson, James F | Rauramaa, Rainer | Lakka, Timo A | Lind, Lars | Dedoussis, George | Njølstad, Inger | Pedersen, Nancy L | Khaw, Kay-Tee | Wareham, Nicholas J | Keinanen-Kiukaanniemi, Sirkka M | Saaristo, Timo E | Korpi-Hyövälti, Eeva | Saltevo, Juha | Laakso, Markku | Kuusisto, Johanna | Metspalu, Andres | Collins, Francis S | Mohlke, Karen L | Bergman, Richard N | Tuomilehto, Jaakko | Boehm, Bernhard O | Gieger, Christian | Hveem, Kristian | Cauchi, Stephane | Froguel, Philippe | Baldassarre, Damiano | Tremoli, Elena | Humphries, Steve E | Saleheen, Danish | Danesh, John | Ingelsson, Erik | Ripatti, Samuli | Salomaa, Veikko | Erbel, Raimund | Jöckel, Karl-Heinz | Moebus, Susanne | Peters, Annette | Illig, Thomas | de Faire, Ulf | Hamsten, Anders | Morris, Andrew D | Donnelly, Peter J | Frayling, Timothy M | Hattersley, Andrew T | Boerwinkle, Eric | Melander, Olle | Kathiresan, Sekar | Nilsson, Peter M | Deloukas, Panos | Thorsteinsdottir, Unnur | Groop, Leif C | Stefansson, Kari | Hu, Frank | Pankow, James S | Dupuis, Josée | Meigs, James B | Altshuler, David | Boehnke, Michael | McCarthy, Mark I
Nature genetics  2012;44(9):981-990.
To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip involving 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two demonstrating sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of further common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signalling and cell cycle regulation, in diabetes pathogenesis.
doi:10.1038/ng.2383
PMCID: PMC3442244  PMID: 22885922
7.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes 
Morris, Andrew P | Voight, Benjamin F | Teslovich, Tanya M | Ferreira, Teresa | Segré, Ayellet V | Steinthorsdottir, Valgerdur | Strawbridge, Rona J | Khan, Hassan | Grallert, Harald | Mahajan, Anubha | Prokopenko, Inga | Kang, Hyun Min | Dina, Christian | Esko, Tonu | Fraser, Ross M | Kanoni, Stavroula | Kumar, Ashish | Lagou, Vasiliki | Langenberg, Claudia | Luan, Jian’an | Lindgren, Cecilia M | Müller-Nurasyid, Martina | Pechlivanis, Sonali | Rayner, N William | Scott, Laura J | Wiltshire, Steven | Yengo, Loic | Kinnunen, Leena | Rossin, Elizabeth J | Raychaudhuri, Soumya | Johnson, Andrew D | Dimas, Antigone S | Loos, Ruth J F | Vedantam, Sailaja | Chen, Han | Florez, Jose C | Fox, Caroline | Liu, Ching-Ti | Rybin, Denis | Couper, David J | Kao, Wen Hong L | Li, Man | Cornelis, Marilyn C | Kraft, Peter | Sun, Qi | van Dam, Rob M | Stringham, Heather M | Chines, Peter S | Fischer, Krista | Fontanillas, Pierre | Holmen, Oddgeir L | Hunt, Sarah E | Jackson, Anne U | Kong, Augustine | Lawrence, Robert | Meyer, Julia | Perry, John R B | Platou, Carl G P | Potter, Simon | Rehnberg, Emil | Robertson, Neil | Sivapalaratnam, Suthesh | Stančáková, Alena | Stirrups, Kathleen | Thorleifsson, Gudmar | Tikkanen, Emmi | Wood, Andrew R | Almgren, Peter | Atalay, Mustafa | Benediktsson, Rafn | Bonnycastle, Lori L | Burtt, Noël | Carey, Jason | Charpentier, Guillaume | Crenshaw, Andrew T | Doney, Alex S F | Dorkhan, Mozhgan | Edkins, Sarah | Emilsson, Valur | Eury, Elodie | Forsen, Tom | Gertow, Karl | Gigante, Bruna | Grant, George B | Groves, Christopher J | Guiducci, Candace | Herder, Christian | Hreidarsson, Astradur B | Hui, Jennie | James, Alan | Jonsson, Anna | Rathmann, Wolfgang | Klopp, Norman | Kravic, Jasmina | Krjutškov, Kaarel | Langford, Cordelia | Leander, Karin | Lindholm, Eero | Lobbens, Stéphane | Männistö, Satu | Mirza, Ghazala | Mühleisen, Thomas W | Musk, Bill | Parkin, Melissa | Rallidis, Loukianos | Saramies, Jouko | Sennblad, Bengt | Shah, Sonia | Sigurðsson, Gunnar | Silveira, Angela | Steinbach, Gerald | Thorand, Barbara | Trakalo, Joseph | Veglia, Fabrizio | Wennauer, Roman | Winckler, Wendy | Zabaneh, Delilah | Campbell, Harry | van Duijn, Cornelia | Uitterlinden, Andre G | Hofman, Albert | Sijbrands, Eric | Abecasis, Goncalo R | Owen, Katharine R | Zeggini, Eleftheria | Trip, Mieke D | Forouhi, Nita G | Syvänen, Ann-Christine | Eriksson, Johan G | Peltonen, Leena | Nöthen, Markus M | Balkau, Beverley | Palmer, Colin N A | Lyssenko, Valeriya | Tuomi, Tiinamaija | Isomaa, Bo | Hunter, David J | Qi, Lu | Shuldiner, Alan R | Roden, Michael | Barroso, Ines | Wilsgaard, Tom | Beilby, John | Hovingh, Kees | Price, Jackie F | Wilson, James F | Rauramaa, Rainer | Lakka, Timo A | Lind, Lars | Dedoussis, George | Njølstad, Inger | Pedersen, Nancy L | Khaw, Kay-Tee | Wareham, Nicholas J | Keinanen-Kiukaanniemi, Sirkka M | Saaristo, Timo E | Korpi-Hyövälti, Eeva | Saltevo, Juha | Laakso, Markku | Kuusisto, Johanna | Metspalu, Andres | Collins, Francis S | Mohlke, Karen L | Bergman, Richard N | Tuomilehto, Jaakko | Boehm, Bernhard O | Gieger, Christian | Hveem, Kristian | Cauchi, Stephane | Froguel, Philippe | Baldassarre, Damiano | Tremoli, Elena | Humphries, Steve E | Saleheen, Danish | Danesh, John | Ingelsson, Erik | Ripatti, Samuli | Salomaa, Veikko | Erbel, Raimund | Jöckel, Karl-Heinz | Moebus, Susanne | Peters, Annette | Illig, Thomas | de Faire, Ulf | Hamsten, Anders | Morris, Andrew D | Donnelly, Peter J | Frayling, Timothy M | Hattersley, Andrew T | Boerwinkle, Eric | Melander, Olle | Kathiresan, Sekar | Nilsson, Peter M | Deloukas, Panos | Thorsteinsdottir, Unnur | Groop, Leif C | Stefansson, Kari | Hu, Frank | Pankow, James S | Dupuis, Josée | Meigs, James B | Altshuler, David | Boehnke, Michael | McCarthy, Mark I
Nature genetics  2012;44(9):981-990.
To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip involving 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two demonstrating sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of further common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signalling and cell cycle regulation, in diabetes pathogenesis.
doi:10.1038/ng.2383
PMCID: PMC3442244  PMID: 22885922
8.  Low-Frequency Variants in HMGA1 Are Not Associated With Type 2 Diabetes Risk 
Diabetes  2012;61(2):524-530.
It has recently been suggested that the low-frequency c.136–14_136–13insC variant in high-mobility group A1 (HMGA1) may strongly contribute to insulin resistance and type 2 diabetes risk. In our study, we attempted to confirm that HMGA1 is a novel type 2 diabetes locus in French Caucasians. The gene was sequenced in 368 type 2 diabetic case subjects with a family history of type 2 diabetes and 372 normoglycemic control subjects without a family history of type 2 diabetes. None of the 41 genetic variations identified were associated with type 2 diabetes. The lack of association between the c.136–14_136–13insC variant and type 2 diabetes was confirmed in an independent French group of 4,538 case subjects and 4,015 control subjects and in a large meta-analysis of 16,605 case subjects and 46,179 control subjects. Finally, this variant had no effects on metabolic traits and was not involved in variations of HMGA1 and insulin receptor (INSR) expressions. The c.136–14_136–13insC variant was not associated with type 2 diabetes in individuals of European descent. Our study emphasizes the need to analyze a large number of subjects to reliably assess the association of low-frequency variants with the disease.
doi:10.2337/db11-0728
PMCID: PMC3266400  PMID: 22210315
9.  Genome-wide association meta-analysis identifies new endometriosis risk loci 
Nature genetics  2012;44(12):1355-1359.
We conducted a genome-wide association (GWA) meta-analysis of 4,604 endometriosis cases and 9,393 controls of Japanese1 and European2 ancestry. We show that rs12700667 on chromosome 7p15.2, previously found in Europeans, replicates in Japanese (P = 3.6 × 10−3), and confirm association of rs7521902 on 1p36.12 near WNT4. In addition, we establish association of rs13394619 in GREB1 on 2p25.1 and identify a novel locus on 12q22 near VEZT (rs10859871). Excluding European cases with minimal or unknown severity, we identified additional novel loci on 2p14 (rs4141819), 6p22.3 (rs7739264) and 9p21.3 (rs1537377). All seven SNP effects were replicated in an independent cohort and produced P < 5 × 10−8 in a combined analysis. Finally, we found a significant overlap in polygenic risk for endometriosis between the European and Japanese GWA cohorts (P = 8.8 × 10−11), indicating that many weakly associated SNPs represent true endometriosis risk loci and risk prediction and future targeted disease therapy may be transferred across these populations.
doi:10.1038/ng.2445
PMCID: PMC3527416  PMID: 23104006
10.  ARIEL and AMELIA: Testing for an Accumulation of Rare Variants Using Next-Generation Sequencing Data 
Human heredity  2012;73(2):84-94.
Objectives
There is increasing evidence that rare variants play a role in some complex traits, but their analysis is not straightforward. Locus-based tests become necessary due to low power in rare variant single-point association analyses. In addition, variant quality scores are available for sequencing data, but are rarely taken into account. Here, we propose two locus-based methods that incorporate variant quality scores: a regression-based collapsing approach and an allele-matching method.
Methods
Using simulated sequencing data we compare 4 locus-based tests of trait association under different scenarios of data quality. We test two collapsing-based approaches and two allele-matching-based approaches, taking into account variant quality scores and ignoring variant quality scores. We implement the collapsing and allele-matching approaches accounting for variant quality in the freely available ARIEL and AMELIA software.
Results
The incorporation of variant quality scores in locus-based association tests has power advantages over weighting each variant equally. The allele-matching methods are robust to the presence of both protective and risk variants in a locus, while collapsing methods exhibit a dramatic loss of power in this scenario.
Conclusions
The incorporation of variant quality scores should be a standard protocol when performing locus-based association analysis on sequencing data. The ARIEL and AMELIA software implement collapsing and allele-matching locus association analysis methods, respectively, that allow the incorporation of variant quality scores.
doi:10.1159/000336982
PMCID: PMC3477640  PMID: 22441326
Whole-genome sequencing; Exome sequencing; Association analysis; Accounting for uncertainty; Complex trait
11.  Genome-Wide Association Scan Allowing for Epistasis in Type 2 Diabetes 
Annals of human genetics  2010;75(1):10-19.
Summary
In the presence of epistasis multilocus association tests of human complex traits can provide powerful methods to detect susceptibility variants. We undertook multilocus analyses in 1924 type 2 diabetes cases and 2938 controls from the Wellcome Trust Case Control Consortium (WTCCC). We performed a two-dimensional genome-wide association (GWA) scan using joint two-locus tests of association including main and epistatic effects in 70,236 markers tagging common variants. We found two-locus association at 79 SNP-pairs at a Bonferroni-corrected P-value = 0.05 (uncorrected P-value = 2.14 × 10−11). The 79 pair-wise results always contained rs11196205 in TCF7L2 paired with 79 variants including confirmed variants in FTO, TSPAN8, and CDKAL1, which are associated in the absence of epistasis. However, the majority (82%) of the 79 variants did not have compelling single-locus association signals (P-value = 5 × 10−4). Analyses conditional on the single-locus effects at TCF7L2 established that the joint two-locus results could be attributed to single-locus association at TCF7L2 alone. Interaction analyses among the peak 80 regions and among 23 previously established diabetes candidate genes identified five SNP-pairs with case-control and case-only epistatic signals. Our results demonstrate the feasibility of systematic scans in GWA data, but confirm that single-locus association can underlie and obscure multilocus findings.
doi:10.1111/j.1469-1809.2010.00629.x
PMCID: PMC3430851  PMID: 21133856
Epistasis; simultaneous search; joint effects; genome-wide association
12.  Gene-Lifestyle Interaction and Type 2 Diabetes: The EPIC InterAct Case-Cohort Study 
PLoS Medicine  2014;11(5):e1001647.
In this study, Wareham and colleagues quantified the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention. The authors found that the relative effect of a type 2 diabetes genetic risk score is greater in younger and leaner participants, and the high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Please see later in the article for the Editors' Summary
Background
Understanding of the genetic basis of type 2 diabetes (T2D) has progressed rapidly, but the interactions between common genetic variants and lifestyle risk factors have not been systematically investigated in studies with adequate statistical power. Therefore, we aimed to quantify the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention.
Methods and Findings
The InterAct study includes 12,403 incident T2D cases and a representative sub-cohort of 16,154 individuals from a cohort of 340,234 European participants with 3.99 million person-years of follow-up. We studied the combined effects of an additive genetic T2D risk score and modifiable and non-modifiable risk factors using Prentice-weighted Cox regression and random effects meta-analysis methods. The effect of the genetic score was significantly greater in younger individuals (p for interaction  = 1.20×10−4). Relative genetic risk (per standard deviation [4.4 risk alleles]) was also larger in participants who were leaner, both in terms of body mass index (p for interaction  = 1.50×10−3) and waist circumference (p for interaction  = 7.49×10−9). Examination of absolute risks by strata showed the importance of obesity for T2D risk. The 10-y cumulative incidence of T2D rose from 0.25% to 0.89% across extreme quartiles of the genetic score in normal weight individuals, compared to 4.22% to 7.99% in obese individuals. We detected no significant interactions between the genetic score and sex, diabetes family history, physical activity, or dietary habits assessed by a Mediterranean diet score.
Conclusions
The relative effect of a T2D genetic risk score is greater in younger and leaner participants. However, this sub-group is at low absolute risk and would not be a logical target for preventive interventions. The high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Worldwide, more than 380 million people currently have diabetes, and the condition is becoming increasingly common. Diabetes is characterized by high levels of glucose (sugar) in the blood. Blood sugar levels are usually controlled by insulin, a hormone released by the pancreas after meals (digestion of food produces glucose). In people with type 2 diabetes (the commonest type of diabetes), blood sugar control fails because the fat and muscle cells that normally respond to insulin by removing excess sugar from the blood become less responsive to insulin. Type 2 diabetes can often initially be controlled with diet and exercise (lifestyle changes) and with antidiabetic drugs such as metformin and sulfonylureas, but patients may eventually need insulin injections to control their blood sugar levels. Long-term complications of diabetes, which include an increased risk of heart disease and stroke, reduce the life expectancy of people with diabetes by about ten years compared to people without diabetes.
Why Was This Study Done?
Type 2 diabetes is thought to originate from the interplay between genetic and lifestyle factors. But although rapid progress is being made in understanding the genetic basis of type 2 diabetes, it is not known whether the consequences of adverse lifestyles (for example, being overweight and/or physically inactive) differ according to an individual's underlying genetic risk of diabetes. It is important to investigate this question to inform strategies for prevention. If, for example, obese individuals with a high level of genetic risk have a higher risk of developing diabetes than obese individuals with a low level of genetic risk, then preventative strategies that target lifestyle interventions to obese individuals with a high genetic risk would be more effective than strategies that target all obese individuals. In this case-cohort study, researchers from the InterAct consortium quantify the combined effects of genetic and lifestyle factors on the risk of type 2 diabetes. A case-cohort study measures exposure to potential risk factors in a group (cohort) of people and compares the occurrence of these risk factors in people who later develop the disease with those who remain disease free.
What Did the Researchers Do and Find?
The InterAct study involves 12,403 middle-aged individuals who developed type 2 diabetes after enrollment (incident cases) into the European Prospective Investigation into Cancer and Nutrition (EPIC) and a sub-cohort of 16,154 EPIC participants. The researchers calculated a genetic type 2 diabetes risk score for most of these individuals by determining which of 49 gene variants associated with type 2 diabetes each person carried, and collected baseline information about exposure to lifestyle risk factors for type 2 diabetes. They then used various statistical approaches to examine the combined effects of the genetic risk score and lifestyle factors on diabetes development. The effect of the genetic score was greater in younger individuals than in older individuals and greater in leaner participants than in participants with larger amounts of body fat. The absolute risk of type 2 diabetes, expressed as the ten-year cumulative incidence of type 2 diabetes (the percentage of participants who developed diabetes over a ten-year period) increased with increasing genetic score in normal weight individuals from 0.25% in people with the lowest genetic risk scores to 0.89% in those with the highest scores; in obese people, the ten-year cumulative incidence rose from 4.22% to 7.99% with increasing genetic risk score.
What Do These Findings Mean?
These findings show that in this middle-aged cohort, the relative association with type 2 diabetes of a genetic risk score comprised of a large number of gene variants is greatest in individuals who are younger and leaner at baseline. This finding may in part reflect the methods used to originally identify gene variants associated with type 2 diabetes, and future investigations that include other genetic variants, other lifestyle factors, and individuals living in other settings should be undertaken to confirm this finding. Importantly, however, this study shows that young, lean individuals with a high genetic risk score have a low absolute risk of developing type 2 diabetes. Thus, this sub-group of individuals is not a logical target for preventative interventions. Rather, suggest the researchers, the high absolute risk of type 2 diabetes associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001647.
The US National Diabetes Information Clearinghouse provides information about diabetes for patients, health-care professionals and the general public, including detailed information on diabetes prevention (in English and Spanish)
The UK National Health Service Choices website provides information for patients and carers about type 2 diabetes and about living with diabetes; it also provides people's stories about diabetes
The charity Diabetes UK provides detailed information for patients and carers in several languages, including information on healthy lifestyles for people with diabetes
The UK-based non-profit organization Healthtalkonline has interviews with people about their experiences of diabetes
The Genetic Landscape of Diabetes is published by the US National Center for Biotechnology Information
More information on the InterAct study is available
MedlinePlus provides links to further resources and advice about diabetes and diabetes prevention (in English and Spanish)
doi:10.1371/journal.pmed.1001647
PMCID: PMC4028183  PMID: 24845081
13.  Assessing the impact of missing genotype data in rare variant association analysis 
BMC Proceedings  2011;5(Suppl 9):S107.
Human genome resequencing technologies are becoming ever more affordable and provide a valuable source of data about rare genetic variants in the human genome. Such rare variation may play an important role in explaining the missing heritability of complex human traits. We implement an existing method for analyzing rare variants by testing for association with the mutational load across genes. In this study, we make use of simulated data from the Genetic Analysis Workshop 17 to assess the power of this approach to detect association with simulated quantitative and dichotomous phenotypes and to evaluate the impact of missing genotypes on the power of the analysis. According to our results, the mutational load based rare variant analysis method is relatively robust to call-rate and is adequately powered for genome-wide association analysis.
doi:10.1186/1753-6561-5-S9-S107
PMCID: PMC3287830  PMID: 22373025
14.  Genetic variation in the CYP2B6 Gene is related to circulating 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) concentrations: an observational population-based study 
Environmental Health  2014;13:34.
Background
Since human CYP2B6 has been identified as the major CYP enzyme involved in the metabolism of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) and that human 2B6 is a highly polymorphic CYP, with known functional variants, we evaluated if circulating concentrations of a major brominated flame retardant, BDE-47, were related to genetic variation in the CYP2B6 gene in a population sample.
Methods
In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (men and women all aged 70), 25 single nucleotide polymorphisms (SNPs) in the CYP2B6 gene were genotyped. Circulating concentrations of BDE-47 were analyzed by high-resolution gas chromatography coupled to high-resolution mass spectrometry (HRGC/ HRMS).
Results
Several SNPs in the CYP2B6 gene were associated with circulating concentrations of BDE-47 (P = 10-4 to 10-9). The investigated SNPs came primarily from two haplotypes, although the correlation between the haplotypes was rather high. Conditional analyses adjusting for the SNP with the strongest association with the exposure (rs2014141) did not provide evidence for independent signals.
Conclusion
Circulating concentrations of BDE-47 were related to genetic variation in the CYP2B6 gene in an elderly population.
doi:10.1186/1476-069X-13-34
PMCID: PMC4024654  PMID: 24885815
2,2’,4,4’-tetrabromodiphenyl ether; BDE-47; CYP; Elderly; Epidemiology; Gene; SNP
15.  An Evaluation of Statistical Approaches to Rare Variant Analysis in Genetic Association Studies 
Genetic Epidemiology  2009;34(2):188-193.
Genome-wide association (GWA) studies have proved to be extremely successful in identifying novel common polymorphisms contributing effects to the genetic component underlying complex traits. Nevertheless, one source of, as yet, undiscovered genetic determinants of complex traits are those mediated through the effects of rare variants. With the increasing availability of large-scale re-sequencing data for rare variant discovery, we have developed a novel statistical method for the detection of complex trait associations with these loci, based on searching for accumulations of minor alleles within the same functional unit. We have undertaken simulations to evaluate strategies for the identification of rare variant associations in population-based genetic studies when data are available from re-sequencing discovery efforts or from commercially available GWA chips. Our results demonstrate that methods based on accumulations of rare variants discovered through re-sequencing offer substantially greater power than conventional analysis of GWA data, and thus provide an exciting opportunity for future discovery of genetic determinants of complex traits. Genet. Epidemiol. 34: 188–193, 2010. © 2009 Wiley-Liss, Inc.
doi:10.1002/gepi.20450
PMCID: PMC2962811  PMID: 19810025
rare variant association; re-sequencing data; genome-wide association data
16.  Meta-analysis of sex-specific genome-wide association studies 
Genetic Epidemiology  2010;34(8):846-853.
Despite the success of genome-wide association studies, much of the genetic contribution to complex human traits is still unexplained. One potential source of genetic variation that may contribute to this “missing heritability” is that which differs in magnitude and/or direction between males and females, which could result from sexual dimorphism in gene expression. Such sex-differentiated effects are common in model organisms, and are becoming increasingly evident in human complex traits through large-scale male- and female-specific meta-analyses. In this article, we review the methodology for meta-analysis of sex-specific genome-wide association studies, and propose a sex-differentiated test of association with quantitative or dichotomous traits, which allows for heterogeneity of allelic effects between males and females. We perform detailed simulations to compare the power of the proposed sex-differentiated meta-analysis with the more traditional “sex-combined” approach, which is ambivalent to gender. The results of this study highlight only a small loss in power for the sex-differentiated meta-analysis when the allelic effects of the causal variant are the same in males and females. However, over a range of models of heterogeneity in allelic effects between genders, our sex-differentiated meta-analysis strategy offers substantial gains in power, and thus has the potential to discover novel loci contributing effects to complex human traits with existing genome-wide association data. Genet. Epidemiol. 34:846–853, 2010. © 2010 Wiley-Liss, Inc.
doi:10.1002/gepi.20540
PMCID: PMC3410525  PMID: 21104887
genome-wide association study; meta-analysis; sex-specific effects; heterogeneity; gene-sex interaction
17.  Transethnic Meta-Analysis of Genomewide Association Studies 
Genetic Epidemiology  2011;35(8):809-822.
The detection of loci contributing effects to complex human traits, and their subsequent fine-mapping for the location of causal variants, remains a considerable challenge for the genetics research community. Meta-analyses of genomewide association studies, primarily ascertained from European-descent populations, have made considerable advances in our understanding of complex trait genetics, although much of their heritability is still unexplained. With the increasing availability of genomewide association data from diverse populations, transethnic meta-analysis may offer an exciting opportunity to increase the power to detect novel complex trait loci and to improve the resolution of fine-mapping of causal variants by leveraging differences in local linkage disequilibrium structure between ethnic groups. However, we might also expect there to be substantial genetic heterogeneity between diverse populations, both in terms of the spectrum of causal variants and their allelic effects, which cannot easily be accommodated through traditional approaches to meta-analysis. In order to address this challenge, I propose novel transethnic meta-analysis methodology that takes account of the expected similarity in allelic effects between the most closely related populations, while allowing for heterogeneity between more diverse ethnic groups. This approach yields substantial improvements in performance, compared to fixed-effects meta-analysis, both in terms of power to detect association, and localization of the causal variant, over a range of models of heterogeneity between ethnic groups. Furthermore, when the similarity in allelic effects between populations is well captured by their relatedness, this approach has increased power and mapping resolution over random-effects meta-analysis. Genet. Epidemiol. 2011. © 2011 Wiley Periodicals, Inc.35: 809–;822, 2011.
doi:10.1002/gepi.20630
PMCID: PMC3460225  PMID: 22125221
meta-analysis; transethnic; genomewide association study; diverse populations; Bayesian partition model; fine-mapping
18.  Genome-Wide Association Analysis of Imputed Rare Variants: Application to Seven Common Complex Diseases 
Genetic Epidemiology  2012;36(8):785-796.
Genome-wide association studies have been successful in identifying loci contributing effects to a range of complex human traits. The majority of reproducible associations within these loci are with common variants, each of modest effect, which together explain only a small proportion of heritability. It has been suggested that much of the unexplained genetic component of complex traits can thus be attributed to rare variation. However, genome-wide association study genotyping chips have been designed primarily to capture common variation, and thus are underpowered to detect the effects of rare variants. Nevertheless, we demonstrate here, by simulation, that imputation from an existing scaffold of genome-wide genotype data up to high-density reference panels has the potential to identify rare variant associations with complex traits, without the need for costly re-sequencing experiments. By application of this approach to genome-wide association studies of seven common complex diseases, imputed up to publicly available reference panels, we identify genome-wide significant evidence of rare variant association in PRDM10 with coronary artery disease and multiple genes in the major histocompatibility complex (MHC) with type 1 diabetes. The results of our analyses highlight that genome-wide association studies have the potential to offer an exciting opportunity for gene discovery through association with rare variants, conceivably leading to substantial advancements in our understanding of the genetic architecture underlying complex human traits.
doi:10.1002/gepi.21675
PMCID: PMC3569874  PMID: 22951892
genome-wide association study; rare variants; imputation
19.  Basic statistical analysis in genetic case-control studies 
Nature protocols  2011;6(2):121-133.
This protocol describes how to perform basic statistical analysis in a population-based genetic association case-control study. The steps described involve the (i) appropriate selection of measures of association and relevance of disease models; (ii) appropriate selection of tests of association; (iii) visualization and interpretation of results; (iv) consideration of appropriate methods to control for multiple testing; and (v) replication strategies. Assuming no previous experience with software such as PLINK, R or Haploview, we describe how to use these popular tools for handling single-nucleotide polymorphism data in order to carry out tests of association and visualize and interpret results. This protocol assumes that data quality assessment and control has been performed, as described in a previous protocol, so that samples and markers deemed to have the potential to introduce bias to the study have been identified and removed. Study design, marker selection and quality control of case-control studies have also been discussed in earlier protocols. The protocol should take ~1 h to complete.
doi:10.1038/nprot.2010.182
PMCID: PMC3154648  PMID: 21293453
20.  DCDC2, KIAA0319 and CMIP Are Associated with Reading-Related Traits 
Biological Psychiatry  2011;70(3):237-245.
Background
Several susceptibility genes have been proposed for dyslexia (reading disability; RD) and specific language impairment (SLI). RD and SLI show comorbidity, but it is unclear whether a common genetic component is shared.
Methods
We have investigated whether candidate genes for RD and SLI affect specific cognitive traits or have broad effect on cognition. We have analyzed common risk variants within RD (MRPL19/C2ORF3, KIAA0319, and DCDC2) and language impairment (CMIP and ATP2C2) candidate loci in the Avon Longitudinal Study of Parents and Children cohort (n = 3725), representing children born in southwest England in the early 1990s.
Results
We detected associations between reading skills and KIAA0319, DCDC2, and CMIP. We show that DCDC2 is specifically associated with RD, whereas variants in CMIP and KIAA0319 are associated with reading skills across the ability range. The strongest associations were restricted to single-word reading and spelling measures, suggesting that these genes do not extend their effect to other reading and language-related skills. Inclusion of individuals with comorbidity tends to strengthen these associations. Our data do not support MRPL19/C2ORF3 as a locus involved in reading abilities nor CMIP/ATP2C2 as genes regulating language skills.
Conclusions
We provide further support for the role of KIAA0319 and DCDC2 in contributing to reading abilities and novel evidence that the language-disorder candidate gene CMIP is also implicated in reading processes. Additionally, we present novel data to evaluate the prevalence and comorbidity of RD and SLI, and we recommend not excluding individuals with comorbid RD and SLI when designing genetic association studies for RD.
doi:10.1016/j.biopsych.2011.02.005
PMCID: PMC3139836  PMID: 21457949
ALSPAC; association study; dyslexia; language; reading abilities; specific language impairment (SLI)
21.  Genome-Wide Association Study Identifies a Novel Locus Contributing to Type 2 Diabetes Susceptibility in Sikhs of Punjabi Origin From India 
Diabetes  2013;62(5):1746-1755.
We performed a genome-wide association study (GWAS) and a multistage meta-analysis of type 2 diabetes (T2D) in Punjabi Sikhs from India. Our discovery GWAS in 1,616 individuals (842 case subjects) was followed by in silico replication of the top 513 independent single nucleotide polymorphisms (SNPs) (P < 10−3) in Punjabi Sikhs (n = 2,819; 801 case subjects). We further replicated 66 SNPs (P < 10−4) through genotyping in a Punjabi Sikh sample (n = 2,894; 1,711 case subjects). On combined meta-analysis in Sikh populations (n = 7,329; 3,354 case subjects), we identified a novel locus in association with T2D at 13q12 represented by a directly genotyped intronic SNP (rs9552911, P = 1.82 × 10−8) in the SGCG gene. Next, we undertook in silico replication (stage 2b) of the top 513 signals (P < 10−3) in 29,157 non-Sikh South Asians (10,971 case subjects) and de novo genotyping of up to 31 top signals (P < 10−4) in 10,817 South Asians (5,157 case subjects) (stage 3b). In combined South Asian meta-analysis, we observed six suggestive associations (P < 10−5 to < 10−7), including SNPs at HMG1L1/CTCFL, PLXNA4, SCAP, and chr5p11. Further evaluation of 31 top SNPs in 33,707 East Asians (16,746 case subjects) (stage 3c) and 47,117 Europeans (8,130 case subjects) (stage 3d), and joint meta-analysis of 128,127 individuals (44,358 case subjects) from 27 multiethnic studies, did not reveal any additional loci nor was there any evidence of replication for the new variant. Our findings provide new evidence on the presence of a population-specific signal in relation to T2D, which may provide additional insights into T2D pathogenesis.
doi:10.2337/db12-1077
PMCID: PMC3636649  PMID: 23300278
22.  Genome-wide association study identifies a locus at 7p15.2 associated with endometriosis 
Nature genetics  2010;43(1):51-54.
Endometriosis is a common gynaecological disease associated with pelvic pain and sub-fertility. We conducted a genome-wide association (GWA) study in 3,194 surgically confirmed endometriosis cases and 7,060 controls from Australia and the UK. Polygenic predictive modelling showed significantly increased genetic loading among 1,364 cases with moderate-severe endometriosis. The strongest association signal was on 7p15.2 (rs12700667) for ‘all’ endometriosis (P = 2.6 × 10−7, OR = 1.22 (1.13-1.32)) and for moderate-severe disease (P = 1.5 × 10−9 (OR = 1.38 (1.24-1.53)). We replicated rs12700667 in an independent US cohort of 2,392 self-reported surgically confirmed endometriosis cases and 2,271 controls (P = 1.2 × 10−3, OR = 1.17 (1.06-1.28)), resulting in a genome-wide significant P-value of 1.4 × 10−9 (OR = 1.20 (1.13-1.27)) for ‘all’ endometriosis in our combined datasets of 5,586 cases and 9,331 controls. SNP rs12700667 is located in an inter-genic region upstream of plausible candidate genes NFE2L3 and HOXA10.
doi:10.1038/ng.731
PMCID: PMC3019124  PMID: 21151130
23.  Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis 
Voight, Benjamin F | Scott, Laura J | Steinthorsdottir, Valgerdur | Morris, Andrew P | Dina, Christian | Welch, Ryan P | Zeggini, Eleftheria | Huth, Cornelia | Aulchenko, Yurii S | Thorleifsson, Gudmar | McCulloch, Laura J | Ferreira, Teresa | Grallert, Harald | Amin, Najaf | Wu, Guanming | Willer, Cristen J | Raychaudhuri, Soumya | McCarroll, Steve A | Langenberg, Claudia | Hofmann, Oliver M | Dupuis, Josée | Qi, Lu | Segrè, Ayellet V | van Hoek, Mandy | Navarro, Pau | Ardlie, Kristin | Balkau, Beverley | Benediktsson, Rafn | Bennett, Amanda J | Blagieva, Roza | Boerwinkle, Eric | Bonnycastle, Lori L | Boström, Kristina Bengtsson | Bravenboer, Bert | Bumpstead, Suzannah | Burtt, Noisël P | Charpentier, Guillaume | Chines, Peter S | Cornelis, Marilyn | Couper, David J | Crawford, Gabe | Doney, Alex S F | Elliott, Katherine S | Elliott, Amanda L | Erdos, Michael R | Fox, Caroline S | Franklin, Christopher S | Ganser, Martha | Gieger, Christian | Grarup, Niels | Green, Todd | Griffin, Simon | Groves, Christopher J | Guiducci, Candace | Hadjadj, Samy | Hassanali, Neelam | Herder, Christian | Isomaa, Bo | Jackson, Anne U | Johnson, Paul R V | Jørgensen, Torben | Kao, Wen H L | Klopp, Norman | Kong, Augustine | Kraft, Peter | Kuusisto, Johanna | Lauritzen, Torsten | Li, Man | Lieverse, Aloysius | Lindgren, Cecilia M | Lyssenko, Valeriya | Marre, Michel | Meitinger, Thomas | Midthjell, Kristian | Morken, Mario A | Narisu, Narisu | Nilsson, Peter | Owen, Katharine R | Payne, Felicity | Perry, John R B | Petersen, Ann-Kristin | Platou, Carl | Proença, Christine | Prokopenko, Inga | Rathmann, Wolfgang | Rayner, N William | Robertson, Neil R | Rocheleau, Ghislain | Roden, Michael | Sampson, Michael J | Saxena, Richa | Shields, Beverley M | Shrader, Peter | Sigurdsson, Gunnar | Sparsø, Thomas | Strassburger, Klaus | Stringham, Heather M | Sun, Qi | Swift, Amy J | Thorand, Barbara | Tichet, Jean | Tuomi, Tiinamaija | van Dam, Rob M | van Haeften, Timon W | van Herpt, Thijs | van Vliet-Ostaptchouk, Jana V | Walters, G Bragi | Weedon, Michael N | Wijmenga, Cisca | Witteman, Jacqueline | Bergman, Richard N | Cauchi, Stephane | Collins, Francis S | Gloyn, Anna L | Gyllensten, Ulf | Hansen, Torben | Hide, Winston A | Hitman, Graham A | Hofman, Albert | Hunter, David J | Hveem, Kristian | Laakso, Markku | Mohlke, Karen L | Morris, Andrew D | Palmer, Colin N A | Pramstaller, Peter P | Rudan, Igor | Sijbrands, Eric | Stein, Lincoln D | Tuomilehto, Jaakko | Uitterlinden, Andre | Walker, Mark | Wareham, Nicholas J | Watanabe, Richard M | Abecasis, Gonçalo R | Boehm, Bernhard O | Campbell, Harry | Daly, Mark J | Hattersley, Andrew T | Hu, Frank B | Meigs, James B | Pankow, James S | Pedersen, Oluf | Wichmann, H-Erich | Barroso, Inês | Florez, Jose C | Frayling, Timothy M | Groop, Leif | Sladek, Rob | Thorsteinsdottir, Unnur | Wilson, James F | Illig, Thomas | Froguel, Philippe | van Duijn, Cornelia M | Stefansson, Kari | Altshuler, David | Boehnke, Michael | McCarthy, Mark I
Nature genetics  2010;42(7):579-589.
By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combinedP < 5 × 10−8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
doi:10.1038/ng.609
PMCID: PMC3080658  PMID: 20581827
24.  Examining the Statistical Properties of Fine-Scale Mapping in Large-Scale Association Studies 
Genetic epidemiology  2008;32(3):204-214.
Interpretation of dense single nucleotide polymorphism (SNP) follow-up of genome-wide association or linkage scan signals can be facilitated by establishing expectation for the behaviour of primary mapping signals upon fine-mapping, under both null and alternative hypotheses. We examined the inferences that can be made regarding the posterior probability of a real genetic effect and considered different disease-mapping strategies and prior probabilities of association. We investigated the impact of the extent of linkage disequilibrium between the disease SNP and the primary analysis signal and the extent to which the disease gene can be physically localised under these scenarios. We found that large increases in significance (>2 orders of magnitude) appear in the exclusive domain of genuine genetic effects, especially in the follow-up of genome-wide association scans or consensus regions from multiple linkage scans. Fine-mapping significant association signals that reside directly under linkage peaks yield little improvement in an already high posterior probability of a real effect. Following fine-mapping, those signals that increase in significance also demonstrate improved localisation. We found local linkage disequiliptium patterns around the primary analysis signal(s) and tagging efficacy of typed markers to play an important role in determining a suitable interval for fine-mapping. Our findings help inform the interpretation and design of dense SNP-mapping follow-up studies, thus facilitating discrimination between a genuine genetic effect and chance fluctuation (false positive).
doi:10.1002/gepi.20295
PMCID: PMC3076696  PMID: 18064636
genome-wide association; false positive; localization; disease gene; linkage disequilibrium; haplotype; fine-scale mapping
25.  Detailed Investigation of the Role of Common and Low-Frequency WFS1 Variants in Type 2 Diabetes Risk 
Diabetes  2009;59(3):741-746.
OBJECTIVE
Wolfram syndrome 1 (WFS1) single nucleotide polymorphisms (SNPs) are associated with risk of type 2 diabetes. In this study we aimed to refine this association and investigate the role of low-frequency WFS1 variants in type 2 diabetes risk.
RESEARCH DESIGN AND METHODS
For fine-mapping, we sequenced WFS1 exons, splice junctions, and conserved noncoding sequences in samples from 24 type 2 diabetic case and 68 control subjects, selected tagging SNPs, and genotyped these in 959 U.K. type 2 diabetic case and 1,386 control subjects. The same genomic regions were sequenced in samples from 1,235 type 2 diabetic case and 1,668 control subjects to compare the frequency of rarer variants between case and control subjects.
RESULTS
Of 31 tagging SNPs, the strongest associated was the previously untested 3′ untranslated region rs1046320 (P = 0.008); odds ratio 0.84 and P = 6.59 × 10−7 on further replication in 3,753 case and 4,198 control subjects. High correlation between rs1046320 and the original strongest SNP (rs10010131) (r2 = 0.92) meant that we could not differentiate between their effects in our samples. There was no difference in the cumulative frequency of 82 rare (minor allele frequency [MAF] <0.01) nonsynonymous variants between type 2 diabetic case and control subjects (P = 0.79). Two intermediate frequency (MAF 0.01–0.05) nonsynonymous changes also showed no statistical association with type 2 diabetes.
CONCLUSIONS
We identified six highly correlated SNPs that show strong and comparable associations with risk of type 2 diabetes, but further refinement of these associations will require large sample sizes (>100,000) or studies in ethnically diverse populations. Low frequency variants in WFS1 are unlikely to have a large impact on type 2 diabetes risk in white U.K. populations, highlighting the complexities of undertaking association studies with low-frequency variants identified by resequencing.
doi:10.2337/db09-0920
PMCID: PMC2828659  PMID: 20028947

Results 1-25 (62)