PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (45)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Genome- and Phenome-Wide Analysis of Cardiac Conduction Identifies Markers of Arrhythmia Risk 
Circulation  2013;127(13):1377-1385.
Background
Electrocardiographic QRS duration, a measure of cardiac intraventricular conduction, varies ~2-fold in individuals without cardiac disease. Slow conduction may promote reentrant arrhythmias.
Methods and Results
We performed a genome-wide association study (GWAS) to identify genomic markers of QRS duration in 5,272 individuals without cardiac disease selected from electronic medical record (EMR) algorithms at five sites in the Electronic Medical Records and Genomics (eMERGE) network. The most significant loci were evaluated within the CHARGE consortium QRS GWAS meta-analysis. Twenty-three single nucleotide polymorphisms in 5 loci, previously described by CHARGE, were replicated in the eMERGE samples; 18 SNPs were in the chromosome 3 SCN5A and SCN10A loci, where the most significant SNPs were rs1805126 in SCN5A with p=1.2×10−8 (eMERGE) and p=2.5×10−20 (CHARGE) and rs6795970 in SCN10A with p=6×10−6 (eMERGE) and p=5×10−27 (CHARGE). The other loci were in NFIA, near CDKN1A, and near C6orf204. We then performed phenome-wide association studies (PheWAS) on variants in these five loci in 13,859 European Americans to search for diagnoses associated with these markers. PheWAS identified atrial fibrillation and cardiac arrhythmias as the most common associated diagnoses with SCN10A and SCN5A variants. SCN10A variants were also associated with subsequent development of atrial fibrillation and arrhythmia in the original 5,272 “heart-healthy” study population.
Conclusions
We conclude that DNA biobanks coupled to EMRs provide a platform not only for GWAS but may also allow broad interrogation of the longitudinal incidence of disease associated with genetic variants. The PheWAS approach implicated sodium channel variants modulating QRS duration in subjects without cardiac disease as predictors of subsequent arrhythmias.
doi:10.1161/CIRCULATIONAHA.112.000604
PMCID: PMC3713791  PMID: 23463857
cardiac conduction; QRS duration; atrial fibrillation; genome-wide association study; phenome-wide association study; electronic medical records
2.  Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data 
Nature biotechnology  2013;31(12):1102-1110.
Candidate gene and genome-wide association studies (GWAS) have identified genetic variants that modulate risk for human disease; many of these associations require further study to replicate the results. Here we report the first large-scale application of the phenome-wide association study (PheWAS) paradigm within electronic medical records (EMRs), an unbiased approach to replication and discovery that interrogates relationships between targeted genotypes and multiple phenotypes. We scanned for associations between 3,144 single-nucleotide polymorphisms (previously implicated by GWAS as mediators of human traits) and 1,358 EMR-derived phenotypes in 13,835 individuals of European ancestry. This PheWAS replicated 66% (51/77) of sufficiently powered prior GWAS associations and revealed 63 potentially pleiotropic associations with P < 4.6 × 10−6 (false discovery rate < 0.1); the strongest of these novel associations were replicated in an independent cohort (n = 7,406). These findings validate PheWAS as a tool to allow unbiased interrogation across multiple phenotypes in EMR-based cohorts and to enhance analysis of the genomic basis of human disease.
doi:10.1038/nbt.2749
PMCID: PMC3969265  PMID: 24270849
3.  Counterpoint: “Streamlined” Does Not Mean Simple 
American Journal of Epidemiology  2013;177(4):283-284.
doi:10.1093/aje/kws417
PMCID: PMC3626054  PMID: 23296355
4.  Vehement Agreement on New Models? 
American Journal of Epidemiology  2013;177(4):290-291.
doi:10.1093/aje/kws410
PMCID: PMC3626056  PMID: 23296352
5.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations 
Nucleic Acids Research  2013;42(D1):D1001-D1006.
The National Human Genome Research Institute (NHGRI) Catalog of Published Genome-Wide Association Studies (GWAS) Catalog provides a publicly available manually curated collection of published GWAS assaying at least 100 000 single-nucleotide polymorphisms (SNPs) and all SNP-trait associations with P <1 × 10−5. The Catalog includes 1751 curated publications of 11 912 SNPs. In addition to the SNP-trait association data, the Catalog also publishes a quarterly diagram of all SNP-trait associations mapped to the SNPs’ chromosomal locations. The Catalog can be accessed via a tabular web interface, via a dynamic visualization on the human karyotype, as a downloadable tab-delimited file and as an OWL knowledge base. This article presents a number of recent improvements to the Catalog, including novel ways for users to interact with the Catalog and changes to the curation infrastructure.
doi:10.1093/nar/gkt1229
PMCID: PMC3965119  PMID: 24316577
7.  CHRNB3 is more strongly associated with FTCD-based nicotine dependence than cigarettes per day: phenotype definition changes GWAS results 
Addiction (Abingdon, England)  2012;107(11):2019-2028.
Aims
Nicotine dependence is a highly heritable disorder associated with severe medical morbidity and mortality. Recent meta-analyses have found novel genetic loci associated with cigarettes per day (CPD), a proxy for nicotine dependence. The aim of this paper is to evaluate the importance of phenotype definition (i.e. CPD versus Fagerström Test for Cigarette Dependence (FTCD) score as a measure of nicotine dependence) on genome-wide association studies of nicotine dependence.
Design
Genome-wide association study
Setting
Community sample
Participants
A total of 3,365 subjects who had smoked at least one cigarette were selected from the Study of Addiction: Genetics and Environment (SAGE). Of the participants, 2,267 were European Americans,999 were African Americans.
Measurements
Nicotine dependence defined by FTCD score ≥4, CPD
Findings
The genetic locus most strongly associated with nicotine dependence was rs1451240 on chromosome 8 in the region of CHRNB3 (OR=0.65, p=2.4×10−8). This association was further strengthened in a meta-analysis with a previously published dataset (combined p=6.7 ×10−16, total n=4,200).When CPD was used as an alternate phenotype, the association no longer reached genome-wide significance (β=−0.08, p=0.0007).
Conclusions
Daily cigarette consumption and the Fagerstrom Test for Cigarette Dependence (FTCD) show different associations with polymorphisms in genetic loci.
doi:10.1111/j.1360-0443.2012.03922.x
PMCID: PMC3427406  PMID: 22524403
8.  The Electronic Medical Records and Genomics (eMERGE) Network: Past, Present and Future 
The Electronic Medical Records and Genomics (eMERGE) Network is a National Human Genome Research Institute (NHGRI)-funded consortium engaged in the development of methods and best-practices for utilizing the Electronic Medical Record (EMR) as a tool for genomic research. Now in its sixth year, its second funding cycle and comprising nine research groups and a coordinating center, the network has played a major role in validating the concept that clinical data derived from EMRs can be used successfully for genomic research. Current work is advancing knowledge in multiple disciplines at the intersection of genomics and healthcare informatics, particularly electronic phenotyping, genome-wide association studies, genomic medicine implementation and the ethical and regulatory issues associated with genomics research and returning results to study participants. Here we describe the evolution, accomplishments, opportunities and challenges of the network since its inception as a five-group consortium focused on genotype-phenotype associations for genomic discovery to its current form as a nine-group consortium pivoting towards implementation of genomic medicine.
doi:10.1038/gim.2013.72
PMCID: PMC3795928  PMID: 23743551
electronic medical records; personalized medicine; genome-wide association studies; genetics and genomics; collaborative research
9.  High Density GWAS for LDL Cholesterol in African Americans Using Electronic Medical Records Reveals a Strong Protective Variant in APOE 
Only one LDL-C GWAS has been reported in African Americans. We performed a GWAS of LDL-C in African Americans using data extracted from electronic medical records (EMR) in the eMERGE network. African Americans were genotyped on the Illumina 1M chip. All LDL-C measurements, prescriptions, and diagnoses of concomitant disease were extracted from EMR. We created two analytic datasets; one dataset having median LDL-C calculated after the exclusion of some lab values based on co-morbidities and medication (n = 618) and another dataset having median LDL-C calculated without any exclusions (n = 1249). Rs7412 in APOE was strongly associated with LDL-C at levels of GWAS significance in both datasets (p < 5 X 10−8). In the dataset with exclusions, a decrease of 20.0 mg/dl per minor allele was observed. The effect size was attenuated (12.3 mg/dl) in the dataset without any lab values excluded. Although other signals in APOE have been detected in previous GWAS, this large and important SNP association has not been well detected in large GWAS because rs7412 was not included on many genotyping arrays. Use of median LDL-C extracted from EMR after exclusions for medications and co-morbidities increased the percentage of trait variance explained by genetic variation.
doi:10.1111/j.1752-8062.2012.00446.x
PMCID: PMC3521536  PMID: 23067351
GWAS; LDL; electronic medical records
10.  Genetic Variants That Confer Resistance to Malaria Are Associated with Red Blood Cell Traits in African-Americans: An Electronic Medical Record-based Genome-Wide Association Study 
G3: Genes|Genomes|Genetics  2013;3(7):1061-1068.
To identify novel genetic loci influencing interindividual variation in red blood cell (RBC) traits in African-Americans, we conducted a genome-wide association study (GWAS) in 2315 individuals, divided into discovery (n = 1904) and replication (n = 411) cohorts. The traits included hemoglobin concentration (HGB), hematocrit (HCT), RBC count, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC). Patients were participants in the electronic MEdical Records and GEnomics (eMERGE) network and underwent genotyping of ~1.2 million single-nucleotide polymorphisms on the Illumina Human1M-Duo array. Association analyses were performed adjusting for age, sex, site, and population stratification. Three loci previously associated with resistance to malaria—HBB (11p15.4), HBA1/HBA2 (16p13.3), and G6PD (Xq28)—were associated (P ≤ 1 × 10−6) with RBC traits in the discovery cohort. The loci replicated in the replication cohort (P ≤ 0.02), and were significant at a genome-wide significance level (P < 5 × 10−8) in the combined cohort. The proportions of variance in RBC traits explained by significant variants at these loci were as follows: rs7120391 (near HBB) 1.3% of MCHC, rs9924561 (near HBA1/A2) 5.5% of MCV, 6.9% of MCH and 2.9% of MCHC, and rs1050828 (in G6PD) 2.4% of RBC count, 2.9% of MCV, and 1.4% of MCH, respectively. We were not able to replicate loci identified by a previous GWAS of RBC traits in a European ancestry cohort of similar sample size, suggesting that the genetic architecture of RBC traits differs by race. In conclusion, genetic variants that confer resistance to malaria are associated with RBC traits in African-Americans.
doi:10.1534/g3.113.006452
PMCID: PMC3704235  PMID: 23696099
red blood cell (RBC) traits; genome-wide association study; African-Americans; natural selection; informatics; electronic medical record
11.  Electronic Medical Records for Genetic Research: Results of the eMERGE Consortium 
Science translational medicine  2011;3(79):79re1.
Clinical data in Electronic Medical Records (EMRs) is a potential source of longitudinal clinical data for research. The Electronic Medical Records and Genomics Network or eMERGE investigates whether data captured through routine clinical care using EMRs can identify disease phenotypes with sufficient positive and negative predictive values for use in genome wide association studies (GWAS). Using data from five different sets of EMRs, we have identified five disease phenotypes with positive predictive values of 73–98% and negative predictive values of 98–100%. A majority of EMRs captured key information (diagnoses, medications, laboratory tests) used to define phenotypes in a structured format. We identified natural language processing as an important tool to improve case identification rates. Efforts and incentives to increase the implementation of interoperable EMRs will markedly improve the availability of clinical data for genomics research.
doi:10.1126/scitranslmed.3001807
PMCID: PMC3690272  PMID: 21508311
12.  Pitfalls of Merging GWAS Data: Lessons Learned in the eMERGE Network and Quality Control Procedures to Maintain High Data Quality 
Genetic epidemiology  2011;35(8):887-898.
Genome-wide association studies (GWAS) are a useful approach in the study of the genetic components of complex phenotypes. Aside from large cohorts, GWAS have generally been limited to the study of one or a few diseases or traits. The emergence of biobanks linked to electronic medical records (EMRs) allows the efficient re-use of genetic data to yield meaningful genotype-phenotype associations for multiple phenotypes or traits. Phase I of the electronic MEdical Records and GEnomics (eMERGE-I) Network is a National Human Genome Research Institute (NHGRI)-supported consortium composed of five sites to perform various genetic association studies using DNA repositories and EMR systems. Each eMERGE site has developed EMR-based algorithms to comprise a core set of fourteen phenotypes for extraction of study samples from each site’s DNA repository. Each eMERGE site selected samples for a specific phenotype, and these samples were genotyped at either the Broad Institute or at the Center for Inherited Disease Research (CIDR) using the Illumina Infinium BeadChip technology. In all, approximately 17,000 samples from across the five sites were genotyped. A unified quality control (QC) pipeline was developed by the eMERGE Genomics Working Group and used to ensure thorough cleaning of the data. This process includes examination of sample quality, marker quality, and various batch effects. Upon completion of the genotyping and QC analyses for each site’s primary study, the eMERGE Coordinating Center merged the datasets from all five sites. This larger merged dataset re-entered the established eMERGE QC pipeline. Based on lessons learned during the process, additional analyses and QC checkpoints were added to the pipeline to ensure proper merging. Here we explore the challenges associated with combining datasets from different genotyping centers and describe the expansion to the eMERGE QC pipeline for merged datasets. These additional steps will be useful as the eMERGE project expands to include additional sites in eMERGE-II and also serve as a starting point for investigators merging multiple genotype data sets accessible through the National Center for Biotechnology Information (NCBI) in the database of Genotypes and Phenotypes (dbGaP). Our experience demonstrates that merging multiple datasets after additional QC can be an efficient use of genotype data despite new challenges that appear in the process.
doi:10.1002/gepi.20639
PMCID: PMC3592376  PMID: 22125226
quality control; genome-wide association (GWAS); eMERGE; dbGaP; merging datasets
13.  Genotype Imputation of Metabochip SNPs Using a Study-Specific Reference Panel of ~4,000 Haplotypes in African Americans From the Women’s Health Initiative 
Genetic epidemiology  2012;36(2):107-117.
Genetic imputation has become standard practice in modern genetic studies. However, several important issues have not been adequately addressed including the utility of study-specific reference, performance in admixed populations, and quality for less common (minor allele frequency [MAF] 0.005–0.05) and rare (MAF < 0.005) variants. These issues only recently became addressable with genome-wide association studies (GWAS) follow-up studies using dense genotyping or sequencing in large samples of non-European individuals. In this work, we constructed a study-specific reference panel of 3,924 haplotypes using African Americans in the Women’s Health Initiative (WHI) genotyped on both the Metabochip and the Affymetrix 6.0 GWAS platform. We used this reference panel to impute into 6,459 WHI SNP Health Association Resource (SHARe) study subjects with only GWAS genotypes. Our analysis confirmed the imputation quality metric Rsq (estimated r2, specific to each SNP) as an effective post-imputation filter. We recommend different Rsq thresholds for different MAF categories such that the average (across SNPs) Rsq is above the desired dosage r2 (squared Pearson correlation between imputed and experimental genotypes).With a desired dosage r2 of 80%, 99.9% (97.5%, 83.6%, 52.0%, 20.5%) of SNPs with MAF > 0.05 (0.03–0.05, 0.01–0.03, 0.005–0.01, and 0.001–0.005) passed the post-imputation filter. The average dosage r2 for these SNPs is 94.7%, 92.1%, 89.0%, 83.1%, and 79.7%, respectively. These results suggest that for African Americans imputation of Metabochip SNPs from GWAS data, including low frequency SNPs with MAF 0.005–0.05, is feasible and worthwhile for power increase in downstream association analysis provided a sizable reference panel is available.
doi:10.1002/gepi.21603
PMCID: PMC3410659  PMID: 22851474
genotype imputation; Metabochip; internal reference; African Americans; rare variants
14.  Incidental genetic findings in randomized clinical trials: recommendations from the Genomics and Randomized Trials Network (GARNET) 
Genome Medicine  2013;5(1):7.
Recommendations and guidance on how to handle the return of genetic results to patients have offered limited insight into how to approach incidental genetic findings in the context of clinical trials. This paper provides the Genomics and Randomized Trials Network (GARNET) recommendations on incidental genetic findings in the context of clinical trials, and discusses the ethical and practical issues considered in formulating our recommendations. There are arguments in support of as well as against returning incidental genetic findings in clinical trials. For instance, reporting incidental findings in clinical trials may improve the investigator-participant relationship and the satisfaction of participation, but it may also blur the line between clinical care and research. The issues of whether and how to return incidental genetic findings, including the costs of doing so, should be considered when developing clinical trial protocols. Once decided, plans related to sharing individual results from the aim(s) of the trial, as well as incidental findings, should be discussed explicitly in the consent form. Institutional Review Boards (IRBs) and other study-specific governing bodies should be part of the decision as to if, when, and how to return incidental findings, including when plans in this regard are being reconsidered.
doi:10.1186/gm411
PMCID: PMC3706830  PMID: 23363732
15.  Genetic Loci Implicated in Erythroid Differentiation and Cell Cycle Regulation Are Associated With Red Blood Cell Traits 
Mayo Clinic Proceedings  2012;87(5):461-474.
Objective
To identify common genetic variants influencing red blood cell (RBC) traits.
Patients and Methods
We performed a genomewide association study from June 2008 through July 2011 of hemoglobin, hematocrit, RBC count, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration in 12,486 patients of European ancestry from the electronic MEdical Records and Genomics (eMERGE) network. We developed an electronic medical record–based algorithm that included individuals who had RBC measurements obtained for clinical care and excluded values measured in the setting of hematopoietic disorders, comorbid conditions, or medications known to affect RBC production or a recent history of blood loss.
Results
We identified 4 new genetic loci and replicated 11 loci previously reported to be associated with one or more RBC traits in individuals of European ancestry. Notably, genes present in 3 of the 4 newly identified loci (THRB, PTPLAD1, CDT1) and in 6 of the 11 replicated loci (KLF1, ALDH8A1, CCND3, SPTA1, FBXO7, TFR2/EPO) are implicated in erythroid differentiation and regulation of cell cycle in hematopoietic stem cells.
Conclusion
Genes in the erythroid differentiation and cell cycle regulation pathways influence interindividual variation in RBC indices. Our results provide insights into the molecular basis underlying variation in RBC traits.
doi:10.1016/j.mayocp.2012.01.016
PMCID: PMC3538470  PMID: 22560525
eMERGE, electronic MEdical Records and GEnomics; EMMAX, mixed-model association-expedited; EMR, electronic medical record; eQTL, expression quantitative trait locus; GHC, Group Health Cooperative--University of Washington; GWAS, genomewide association study; HCT, hematocrit; HGB, hemoglobin; IBS, identity-by-state; LD, linkage disequilibrium; MC, Marshfield Clinic; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; MIM, Mendelian Inheritance of Man; NU, Northwestern University; RBC, red blood cell; SNP, single-nucleotide polymorphism; VUMC, Vanderbilt University Medical Center
16.  Progression of MRI-defined brain vascular disease predicts vascular events in elderly: the Cardiovascular Health Study 
Background and Purpose
Does progression of MRI-defined vascular disease predict subsequent vascular events in the elderly?
Methods
The Cardiovascular Health Study, a longitudinal cohort study of vascular disease in the elderly, allows the question to be answered because its participants had two MRI scans about five years apart and have been followed for about 9 years since the follow-up scan for incident vascular events.
Results
Both MRI-defined incident infarcts and worsened white matter grade (WMG) were significantly associated with heart failure (HF), stroke and death but not transient ischemic attacks, angina, or myocardial infarction. Strongest associations occurred when both incident infarcts and worsened WMG were present: for HF, hazard ratio 1.79 (95% confidence interval 1.18–2.73); for stroke, 2.58 (1.53–4.36); for death, 1.69 (1.28–2.24); and for cardiovascular death 1.97 (1.24–3.14).
Conclusions
Progression of MRI-defined vascular disease identifies elderly people at increased risk of subsequent HF, stroke, and death. Whether aggressive risk factor management would reduce risk is unknown.
doi:10.1161/STROKEAHA.111.622977
PMCID: PMC3183167  PMID: 21817135
MRI; brain infarction; leukoaraiosis; stroke; death
17.  Gene-Environment Interplay in Common Complex Diseases: Forging an Integrative Model—Recommendations From an NIH Workshop 
Genetic epidemiology  2011;10.1002/gepi.20571.
Although it is recognized that many common complex diseases are a result of multiple genetic and environmental risk factors, studies of gene-environment interaction remain a challenge and have had limited success to date. Given the current state-of-the-science, NIH sought input on ways to accelerate investigations of gene-environment interplay in health and disease by inviting experts from a variety of disciplines to give advice about the future direction of gene-environment interaction studies. Participants of the NIH Gene-Environment Interplay Workshop agreed that there is a need for continued emphasis on studies of the interplay between genetic and environmental factors in disease and that studies need to be designed around a multifaceted approach to reflect differences in diseases, exposure attributes, and pertinent stages of human development. The participants indicated that both targeted and agnostic approaches have strengths and weaknesses for evaluating main effects of genetic and environmental factors and their interactions. The unique perspectives represented at the workshop allowed the exploration of diverse study designs and analytical strategies, and conveyed the need for an interdisciplinary approach including data sharing, and data harmonization to fully explore gene-environment interactions. Further, participants also emphasized the continued need for high-quality measures of environmental exposures and new genomic technologies in ongoing and new studies.
doi:10.1002/gepi.20571
PMCID: PMC3228883  PMID: 21308768
gene-environment interaction; epidemiology; study design; genetics; environment
18.  Genetic architecture of cancer and other complex diseases: lessons learned and future directions 
Carcinogenesis  2011;32(7):945-954.
Genome-wide association studies have broadened our understanding of the genetic architecture of cancer to include common variants, in addition to the rare variants previously identified by linkage analysis. We review current knowledge on the genetic architecture of four cancers—breast, lung, prostate and colorectal—for which the balance of common and rare alleles identified ranges from fewer common alleles (lung cancer) to more common alleles (prostate cancer). Although most variants are cancer specific, pleiotropy has been observed for several variants, for example, variants at the 8q24 locus and breast, ovarian and prostate cancers or variants in KITLG in relation to hair color and testicular cancer. Although few studies have been adequately powered to investigate heterogeneity among ancestry groups, effect sizes associated with common variants have been reported to be fairly homogenous among ethnic groups. Some associations appear to be ancestry specific, such as HNF1B, which is associated with prostate cancer in European Americans and Latinos but not in African-Americans. Studies of cancer and other complex diseases suggest that a simple dichotomy between rare and common allelic architectures may be too simplistic and that future research is needed to characterize a fuller spectrum of allele frequency (common (>5%), uncommon (1–5%) and rare (<<1%) alleles) and effect size. In addition, a broadening of the concept of genetic architecture to encompass both population architecture, which reflects differences in exposures, genetic factors and population level risk among diverse groups of people, and genomic architecture, which includes structural, epigenomic and somatic variation, is envisioned.
doi:10.1093/carcin/bgr056
PMCID: PMC3140138  PMID: 21459759
19.  Assessing and Managing Risk when Sharing Aggregate Genetic Variant Data 
Nature Reviews. Genetics  2011;12(10):730-736.
Preface
Access to genetic data across studies is an important aspect of identifying new genetic associations through genome-wide association studies (GWAS). Meta-analysis across multiple GWAS with combined cohort sizes of tens of thousands of individuals often uncovers many more genome-wide associated loci than the original individual studies, which emphasizes the importance of tools and mechanisms for data sharing. However, even sharing summary-level data, such as allele frequencies, inherently carries some degree of privacy risk to study participants. Here we discuss mechanisms and resources for sharing data from GWAS, particularly focusing on approaches for assessing and quantifying privacy risks to participants from sharing of summary-level data.
doi:10.1038/nrg3067
PMCID: PMC3349221  PMID: 21921928
20.  Evaluation of the Metabochip Genotyping Array in African Americans and Implications for Fine Mapping of GWAS-Identified Loci: The PAGE Study 
PLoS ONE  2012;7(4):e35651.
The Metabochip is a custom genotyping array designed for replication and fine mapping of metabolic, cardiovascular, and anthropometric trait loci and includes low frequency variation content identified from the 1000 Genomes Project. It has 196,725 SNPs concentrated in 257 genomic regions. We evaluated the Metabochip in 5,863 African Americans; 89% of all SNPs passed rigorous quality control with a call rate of 99.9%. Two examples illustrate the value of fine mapping with the Metabochip in African-ancestry populations. At CELSR2/PSRC1/SORT1, we found the strongest associated SNP for LDL-C to be rs12740374 (p = 3.5×10−11), a SNP indistinguishable from multiple SNPs in European ancestry samples due to high correlation. Its distinct signal supports functional studies elsewhere suggesting a causal role in LDL-C. At CETP we found rs17231520, with risk allele frequency 0.07 in African Americans, to be associated with HDL-C (p = 7.2×10−36). This variant is very rare in Europeans and not tagged in common GWAS arrays, but was identified as associated with HDL-C in African Americans in a single-gene study. Our results, one narrowing the risk interval and the other revealing an associated variant not found in Europeans, demonstrate the advantages of high-density genotyping of common and rare variation for fine mapping of trait loci in African American samples.
doi:10.1371/journal.pone.0035651
PMCID: PMC3335090  PMID: 22539988
21.  Pharmacogenomics of HIV Therapy: Summary of a Workshop Sponsored by the National Institute of Allergy and Infectious Diseases 
HIV Clinical Trials  2011;12(5):277-285.
Approximately 1 million people in the United States and over 30 million worldwide are living with human immunodeficiency virus type 1 (HIV-1). While mortality from untreated infection approaches 100%, survival improves markedly with use of contemporary antiretroviral therapies (ART). In the United States, 25 drugs are approved for treating HIV-1, and increasing numbers are available in resource-limited countries. Safe and effective ART is a cornerstone in the global struggle against the acquired immunodeficiency syndrome. Variable responses to ART are due at least in part to human genetic variants that affect drug metabolism, drug disposition, and off-site drug targets. Defining effects of human genetic variants on HIV treatment toxicity, efficacy, and pharmacokinetics has far-reaching implications. In 2010, the National Institute of Allergy and Infectious Diseases sponsored a workshop entitled, Pharmacogenomics – A Path Towards Personalized HIV Care. This article summarizes workshop objectives, presentations, discussions, and recommendations derived from this meeting.
doi:10.1310/hct1205-277
PMCID: PMC3322423  PMID: 22180526
HIV therapy; pharmacogenetics; pharmacogenomics; workshop
22.  New Models for Large Prospective Studies: Is There a Better Way? 
American Journal of Epidemiology  2012;175(9):859-866.
Large prospective cohort studies are critical for identifying etiologic factors for disease, but they require substantial long-term research investment. Such studies can be conducted as multisite consortia of academic medical centers, combinations of smaller ongoing studies, or a single large site such as a dominant regional health-care provider. Still another strategy relies upon centralized conduct of most or all aspects, recruiting through multiple temporary assessment centers. This is the approach used by a large-scale national resource in the United Kingdom known as the “UK Biobank,” which completed recruitment/examination of 503,000 participants between 2007 and 2010 within budget and ahead of schedule. A key lesson from UK Biobank and similar studies is that large studies are not simply small studies made large but, rather, require fundamentally different approaches in which “process” expertise is as important as scientific rigor. Embedding recruitment in a structure that facilitates outcome determination, utilizing comprehensive and flexible information technology, automating biospecimen processing, ensuring broad consent, and establishing essentially autonomous leadership with appropriate oversight are all critical to success. Whether and how these approaches may be transportable to the United States remain to be explored, but their success in studies such as UK Biobank makes a compelling case for such explorations to begin.
doi:10.1093/aje/kwr453
PMCID: PMC3339313  PMID: 22411865
cohort studies; epidemiology; prospective studies
23.  Quality Control Procedures for Genome Wide Association Studies 
Genome-wide association studies (GWAS) are being conducted at an unprecedented rate in population-based cohorts and have increased our understanding of the pathophysiology of complex disease. The recent application of GWAS to clinic-based cohorts has also yielded genetic predictors of clinical outcomes. Regardless of context, the practical utility of this information will ultimately depend upon the quality of the original data. Quality control (QC) procedures for GWAS are computationally intensive, operationally challenging, and constantly evolving. With each new dataset, new realities are discovered about GWAS data and best practices continue to be developed. The Genomics Workgroup of the National Human Genome Research Institute (NHGRI) funded electronic Medical Records and Genomics (eMERGE) network has invested considerable effort in developing strategies for QC of these data. The lessons learned by this group will be valuable for other investigators dealing with large scale genomic datasets. Here we enumerate some of the challenges in QC of GWAS data and describe the approaches that the eMERGE network is using for quality assurance in GWAS data, thereby minimizing potential bias and error in GWAS results. In this protocol we discuss common issues associated with QC of GWAS data, including data file formats, software packages for data manipulation and analysis, sex chromosome anomalies, sample identity, sample relatedness, population substructure, batch effects, and marker quality. We propose best practices and discuss areas of ongoing and future research.
doi:10.1002/0471142905.hg0119s68
PMCID: PMC3066182  PMID: 21234875
24.  Genome-Wide Association Analysis of Ischemic Stroke in Young Adults 
G3: Genes|Genomes|Genetics  2011;1(6):505-514.
Ischemic stroke (IS) is among the leading causes of death in Western countries. There is a significant genetic component to IS susceptibility, especially among young adults. To date, research to identify genetic loci predisposing to stroke has met only with limited success. We performed a genome-wide association (GWA) analysis of early-onset IS to identify potential stroke susceptibility loci. The GWA analysis was conducted by genotyping 1 million SNPs in a biracial population of 889 IS cases and 927 controls, ages 15–49 years. Genotypes were imputed using the HapMap3 reference panel to provide 1.4 million SNPs for analysis. Logistic regression models adjusting for age, recruitment stages, and population structure were used to determine the association of IS with individual SNPs. Although no single SNP reached genome-wide significance (P < 5 × 10−8), we identified two SNPs in chromosome 2q23.3, rs2304556 (in FMNL2; P = 1.2 × 10−7) and rs1986743 (in ARL6IP6; P = 2.7 × 10−7), strongly associated with early-onset stroke. These data suggest that a novel locus on human chromosome 2q23.3 may be associated with IS susceptibility among young adults.
doi:10.1534/g3.111.001164
PMCID: PMC3276159  PMID: 22384361
epidemiology; genetics; brain infarction; FMNL2
25.  Quality control and quality assurance in genotypic data for genome-wide association studies 
Genetic epidemiology  2010;34(6):591-602.
Genome-wide scans of nucleotide variation in human subjects are providing an increasing number of replicated associations with complex disease traits. Most of the variants detected have small effects and, collectively, they account for a small fraction of the total genetic variance. Very large sample sizes are required to identify and validate findings. In this situation, even small sources of systematic or random error can cause spurious results or obscure real effects. The need for careful attention to data quality has been appreciated for some time in this field, and a number of strategies for quality control and quality assurance (QC/QA) have been developed. Here we extend these methods and describe a system of QC/QA for genotypic data in genome-wide association studies. This system includes some new approaches that (1) combine analysis of allelic probe intensities and called genotypes to distinguish gender misidentification from sex chromosome aberrations, (2) detect autosomal chromosome aberrations that may affect genotype calling accuracy, (3) infer DNA sample quality from relatedness and allelic intensities, (4) use duplicate concordance to infer SNP quality, (5) detect genotyping artifacts from dependence of Hardy-Weinberg equilibrium (HWE) test p-values on allelic frequency, and (6) demonstrate sensitivity of principal components analysis (PCA) to SNP selection. The methods are illustrated with examples from the ‘Gene Environment Association Studies’ (GENEVA) program. The results suggest several recommendations for QC/QA in the design and execution of genome-wide association studies.
doi:10.1002/gepi.20516
PMCID: PMC3061487  PMID: 20718045
GWAS; DNA sample quality; genotyping artifact; Hardy-Weinberg equilibrium; chromosome aberration

Results 1-25 (45)