PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Human metabolic individuality in biomedical and pharmaceutical research 
Nature  2011;477(7362):10.1038/nature10354.
SUMMARY
Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 exhibit effect sizes that are unusually high for GWAS and account for 10-60% of metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism, and Crohn’s disease. Taken together our study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.
doi:10.1038/nature10354
PMCID: PMC3832838  PMID: 21886157
2.  Plasma Metabolomics Reveal Alterations of Sphingo- and Glycerophospholipid Levels in Non-Diabetic Carriers of the Transcription Factor 7-Like 2 Polymorphism rs7903146 
PLoS ONE  2013;8(10):e78430.
Aims/Hypothesis
Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene have been shown to display a powerful association with type 2 diabetes. The aim of the present study was to evaluate metabolic alterations in carriers of a common TCF7L2 risk variant.
Methods
Seventeen non-diabetic subjects carrying the T risk allele at the rs7903146 TCF7L2 locus and 24 subjects carrying no risk allele were submitted to intravenous glucose tolerance test and euglycemic-hyperinsulinemic clamp. Plasma samples were analysed for concentrations of 163 metabolites through targeted mass spectrometry.
Results
TCF7L2 risk allele carriers had a reduced first-phase insulin response and normal insulin sensitivity. Under fasting conditions, carriers of TCF7L2 rs7903146 exhibited a non-significant increase of plasma sphingomyelins (SMs), phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs) species. A significant genotype effect was detected in response to challenge tests in 6 SMs (C16:0, C16:1, C18:0, C18:1, C24:0, C24:1), 5 hydroxy-SMs (C14:1, C16:1, C22:1, C22:2, C24:1), 4 lysoPCs (C14:0, C16:0, C16:1, C17:0), 3 diacyl-PCs (C28:1, C36:6, C40:4) and 4 long-chain acyl-alkyl-PCs (C40:2, C40:5, C44:5, C44:6).
Discussion
Plasma metabolomic profiling identified alterations of phospholipid metabolism in response to challenge tests in subjects with TCF7L2 rs7903146 genotype. This may reflect a genotype-mediated link to early metabolic abnormalities prior to the development of disturbed glucose tolerance.
doi:10.1371/journal.pone.0078430
PMCID: PMC3813438  PMID: 24205231
3.  HoPaCI-DB: host-Pseudomonas and Coxiella interaction database 
Nucleic Acids Research  2013;42(D1):D671-D676.
Bacterial infectious diseases are the result of multifactorial processes affected by the interplay between virulence factors and host targets. The host-Pseudomonas and Coxiella interaction database (HoPaCI-DB) is a publicly available manually curated integrative database (http://mips.helmholtz-muenchen.de/HoPaCI/) of host–pathogen interaction data from Pseudomonas aeruginosa and Coxiella burnetii. The resource provides structured information on 3585 experimentally validated interactions between molecules, bioprocesses and cellular structures extracted from the scientific literature. Systematic annotation and interactive graphical representation of disease networks make HoPaCI-DB a versatile knowledge base for biologists and network biology approaches.
doi:10.1093/nar/gkt925
PMCID: PMC3965080  PMID: 24137008
4.  A genomewide perspective of genetic variation in human metabolism 
Nature genetics  2009;42(2):137-141.
Serum metabolite concentrations provide a direct readout of biological processes in the human body, and are associated with disorders such as cardiovascular and metabolic diseases. Here we present a genome-wide association study with 163 metabolic traits using 1809 participants from the KORA population, followed up in the TwinsUK cohort with 422 participants. In eight out of nine replicated loci (FADS1, ELOVL2, ACADS, ACADM, ACADL, SPTLC3, ETFDH, SLC16A9) the genetic variant is located in or near enzyme or solute carrier coding genes, where the associating metabolic traits match the proteins’ function. Many of these loci are located in rate limiting steps of important enzymatic reactions. Use of metabolite concentration ratios as proxies for enzymatic reaction rates reduces the variance and yields robust statistical associations with p-values between 3×10−24 and 6.5×10−179. These loci explained 5.6% to 36.3% of the observed variance. For several loci, associations with clinically relevant parameters have previously been reported.
doi:10.1038/ng.507
PMCID: PMC3773904  PMID: 20037589
5.  Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits 
Human Molecular Genetics  2013;23(2):534-545.
Previously, we reported strong influences of genetic variants on metabolic phenotypes, some of them with clinical relevance. Here, we hypothesize that DNA methylation may have an important and potentially independent effect on human metabolism. To test this hypothesis, we conducted what is to the best of our knowledge the first epigenome-wide association study (EWAS) between DNA methylation and metabolic traits (metabotypes) in human blood. We assess 649 blood metabolic traits from 1814 participants of the Kooperative Gesundheitsforschung in der Region Augsburg (KORA) population study for association with methylation of 457 004 CpG sites, determined on the Infinium HumanMethylation450 BeadChip platform. Using the EWAS approach, we identified two types of methylome–metabotype associations. One type is driven by an underlying genetic effect; the other type is independent of genetic variation and potentially driven by common environmental and life-style-dependent factors. We report eight CpG loci at genome-wide significance that have a genetic variant as confounder (P = 3.9 × 10−20 to 2.0 × 10−108, r2 = 0.036 to 0.221). Seven loci display CpG site-specific associations to metabotypes, but do not exhibit any underlying genetic signals (P = 9.2 × 10−14 to 2.7 × 10−27, r2 = 0.008 to 0.107). We further identify several groups of CpG loci that associate with a same metabotype, such as 4-vinylphenol sulfate and 4-androsten-3-beta,17-beta-diol disulfate. In these cases, the association between CpG-methylation and metabotype is likely the result of a common external environmental factor, including smoking. Our study shows that analysis of EWAS with large numbers of metabolic traits in large population cohorts are, in principle, feasible. Taken together, our data suggest that DNA methylation plays an important role in regulating human metabolism.
doi:10.1093/hmg/ddt430
PMCID: PMC3869358  PMID: 24014485
6.  HSC-Explorer: A Curated Database for Hematopoietic Stem Cells 
PLoS ONE  2013;8(7):e70348.
HSC-Explorer (http://mips.helmholtz-muenchen.de/HSC/) is a publicly available, integrative database containing detailed information about the early steps of hematopoiesis. The resource aims at providing fast and easy access to relevant information, in particular to the complex network of interacting cell types and molecules, from the wealth of publications in the field through visualization interfaces. It provides structured information on more than 7000 experimentally validated interactions between molecules, bioprocesses and environmental factors. Information is manually derived by critical reading of the scientific literature from expert annotators. Hematopoiesis-relevant interactions are accompanied with context information such as model organisms and experimental methods for enabling assessment of reliability and relevance of experimental results. Usage of established vocabularies facilitates downstream bioinformatics applications and to convert the results into complex networks. Several predefined datasets (Selected topics) offer insights into stem cell behavior, the stem cell niche and signaling processes supporting hematopoietic stem cell maintenance. HSC-Explorer provides a versatile web-based resource for scientists entering the field of hematopoiesis enabling users to inspect the associated biological processes through interactive graphical presentation.
doi:10.1371/journal.pone.0070348
PMCID: PMC3728102  PMID: 23936191
7.  Metabolite profiling reveals new insights into the regulation of serum urate in humans 
Metabolomics  2013;10:141-151.
Serum urate, the final breakdown product of purine metabolism, is causally involved in the pathogenesis of gout, and implicated in cardiovascular disease and type 2 diabetes. Serum urate levels highly differ between men and women; however the underlying biological processes in its regulation are still not completely understood and are assumed to result from a complex interplay between genetic, environmental and lifestyle factors. In order to describe the metabolic vicinity of serum urate, we analyzed 355 metabolites in 1,764 individuals of the population-based KORA F4 study and constructed a metabolite network around serum urate using Gaussian Graphical Modeling in a hypothesis-free approach. We subsequently investigated the effect of sex and urate lowering medication on all 38 metabolites assigned to the network. Within the resulting network three main clusters could be detected around urate, including the well-known pathway of purine metabolism, as well as several dipeptides, a group of essential amino acids, and a group of steroids. Of the 38 assigned metabolites, 25 showed strong differences between sexes. Association with uricostatic medication intake was not only confined to purine metabolism but seen for seven metabolites within the network. Our findings highlight pathways that are important in the regulation of serum urate and suggest that dipeptides, amino acids, and steroid hormones are playing a role in its regulation. The findings might have an impact on the development of specific targets in the treatment and prevention of hyperuricemia.
Electronic supplementary material
The online version of this article (doi:10.1007/s11306-013-0565-2) contains supplementary material, which is available to authorized users.
doi:10.1007/s11306-013-0565-2
PMCID: PMC3890072  PMID: 24482632
Gaussian Graphical Modeling; Metabolite network; Pathway reconstruction; Allopurinol; Uric acid; Purine metabolism
8.  Identification and MS-assisted interpretation of genetically influenced NMR signals in human plasma 
Genome Medicine  2013;5(2):13.
Nuclear magnetic resonance spectroscopy (NMR) provides robust readouts of many metabolic parameters in one experiment. However, identification of clinically relevant markers in 1H NMR spectra is a major challenge. Association of NMR-derived quantities with genetic variants can uncover biologically relevant metabolic traits. Using NMR data of plasma samples from 1,757 individuals from the KORA study together with 655,658 genetic variants, we show that ratios between NMR intensities at two chemical shift positions can provide informative and robust biomarkers. We report seven loci of genetic association with NMR-derived traits (APOA1, CETP, CPS1, GCKR, FADS1, LIPC, PYROXD2) and characterize these traits biochemically using mass spectrometry. These ratios may now be used in clinical studies.
doi:10.1186/gm417
PMCID: PMC3706909  PMID: 23414815
9.  Mining the Unknown: A Systems Approach to Metabolite Identification Combining Genetic and Metabolic Information 
PLoS Genetics  2012;8(10):e1003005.
Recent genome-wide association studies (GWAS) with metabolomics data linked genetic variation in the human genome to differences in individual metabolite levels. A strong relevance of this metabolic individuality for biomedical and pharmaceutical research has been reported. However, a considerable amount of the molecules currently quantified by modern metabolomics techniques are chemically unidentified. The identification of these “unknown metabolites” is still a demanding and intricate task, limiting their usability as functional markers of metabolic processes. As a consequence, previous GWAS largely ignored unknown metabolites as metabolic traits for the analysis. Here we present a systems-level approach that combines genome-wide association analysis and Gaussian graphical modeling with metabolomics to predict the identity of the unknown metabolites. We apply our method to original data of 517 metabolic traits, of which 225 are unknowns, and genotyping information on 655,658 genetic variants, measured in 1,768 human blood samples. We report previously undescribed genotype–metabotype associations for six distinct gene loci (SLC22A2, COMT, CYP3A5, CYP2C18, GBA3, UGT3A1) and one locus not related to any known gene (rs12413935). Overlaying the inferred genetic associations, metabolic networks, and knowledge-based pathway information, we derive testable hypotheses on the biochemical identities of 106 unknown metabolites. As a proof of principle, we experimentally confirm nine concrete predictions. We demonstrate the benefit of our method for the functional interpretation of previous metabolomics biomarker studies on liver detoxification, hypertension, and insulin resistance. Our approach is generic in nature and can be directly transferred to metabolomics data from different experimental platforms.
Author Summary
Genome-wide association studies on metabolomics data have demonstrated that genetic variation in metabolic enzymes and transporters leads to concentration changes in the respective metabolite levels. The conventional goal of these studies is the detection of novel interactions between the genome and the metabolic system, providing valuable insights for both basic research as well as clinical applications. In this study, we borrow the metabolomics GWAS concept for a novel, entirely different purpose. Metabolite measurements frequently produce signals where a certain substance can be reliably detected in the sample, but it has not yet been elucidated which specific metabolite this signal actually represents. The concept is comparable to a fingerprint: each one is uniquely identifiable, but as long as it is not registered in a database one cannot tell to whom this fingerprint belongs. Obviously, this issue tremendously reduces the usability of a metabolomics analyses. The genetic associations of such an “unknown,” however, give us concrete evidence of the metabolic pathway this substance is most probably involved in. Moreover, we complement the approach with a specific measure of correlation between metabolites, providing further evidence of the metabolic processes of the unknown. For a number of cases, this even allows for a concrete identity prediction, which we then experimentally validate in the lab.
doi:10.1371/journal.pgen.1003005
PMCID: PMC3475673  PMID: 23093944
10.  CIDeR: multifactorial interaction networks in human diseases 
Genome Biology  2012;13(7):R62.
The pathobiology of common diseases is influenced by heterogeneous factors interacting in complex networks. CIDeR http://mips.helmholtz-muenchen.de/cider/ is a publicly available, manually curated, integrative database of metabolic and neurological disorders. The resource provides structured information on 18,813 experimentally validated interactions between molecules, bioprocesses and environmental factors extracted from the scientific literature. Systematic annotation and interactive graphical representation of disease networks make CIDeR a versatile knowledge base for biologists, analysis of large-scale data and systems biology approaches.
doi:10.1186/gb-2012-13-7-r62
PMCID: PMC3491383  PMID: 22809392
11.  Body Fat Free Mass Is Associated with the Serum Metabolite Profile in a Population-Based Study 
PLoS ONE  2012;7(6):e40009.
Objective
To characterise the influence of the fat free mass on the metabolite profile in serum samples from participants of the population-based KORA (Cooperative Health Research in the Region of Augsburg) S4 study.
Subjects and Methods
Analyses were based on metabolite profile from 965 participants of the S4 and 890 weight-stable subjects of its seven-year follow-up study (KORA F4). 190 different serum metabolites were quantified in a targeted approach including amino acids, acylcarnitines, phosphatidylcholines (PCs), sphingomyelins and hexose. Associations between metabolite concentrations and the fat free mass index (FFMI) were analysed using adjusted linear regression models. To draw conclusions on enzymatic reactions, intra-metabolite class ratios were explored. Pairwise relationships among metabolites were investigated and illustrated by means of Gaussian graphical models (GGMs).
Results
We found 339 significant associations between FFMI and various metabolites in KORA S4. Among the most prominent associations (p-values 4.75×10−16–8.95×10−06) with higher FFMI were increasing concentrations of the branched chained amino acids (BCAAs), ratios of BCAAs to glucogenic amino acids, and carnitine concentrations. For various PCs, a decrease in chain length or in saturation of the fatty acid moieties could be observed with increasing FFMI, as well as an overall shift from acyl-alkyl PCs to diacyl PCs. These findings were reproduced in KORA F4. The established GGMs supported the regression results and provided a comprehensive picture of the relationships between metabolites. In a sub-analysis, most of the discovered associations did not exist in obese subjects in contrast to non-obese subjects, possibly indicating derangements in skeletal muscle metabolism.
Conclusion
A set of serum metabolites strongly associated with FFMI was identified and a network explaining the relationships among metabolites was established. These results offer a novel and more complete picture of the FFMI effects on serum metabolites in a data-driven network.
doi:10.1371/journal.pone.0040009
PMCID: PMC3384624  PMID: 22761945
12.  Differences between Human Plasma and Serum Metabolite Profiles 
PLoS ONE  2011;6(7):e21230.
Background
Human plasma and serum are widely used matrices in clinical and biological studies. However, different collecting procedures and the coagulation cascade influence concentrations of both proteins and metabolites in these matrices. The effects on metabolite concentration profiles have not been fully characterized.
Methodology/Principal Findings
We analyzed the concentrations of 163 metabolites in plasma and serum samples collected simultaneously from 377 fasting individuals. To ensure data quality, 41 metabolites with low measurement stability were excluded from further analysis. In addition, plasma and corresponding serum samples from 83 individuals were re-measured in the same plates and mean correlation coefficients (r) of all metabolites between the duplicates were 0.83 and 0.80 in plasma and serum, respectively, indicating significantly better stability of plasma compared to serum (p = 0.01). Metabolite profiles from plasma and serum were clearly distinct with 104 metabolites showing significantly higher concentrations in serum. In particular, 9 metabolites showed relative concentration differences larger than 20%. Despite differences in absolute concentration between the two matrices, for most metabolites the overall correlation was high (mean r = 0.81±0.10), which reflects a proportional change in concentration. Furthermore, when two groups of individuals with different phenotypes were compared with each other using both matrices, more metabolites with significantly different concentrations could be identified in serum than in plasma. For example, when 51 type 2 diabetes (T2D) patients were compared with 326 non-T2D individuals, 15 more significantly different metabolites were found in serum, in addition to the 25 common to both matrices.
Conclusions/Significance
Our study shows that reproducibility was good in both plasma and serum, and better in plasma. Furthermore, as long as the same blood preparation procedure is used, either matrix should generate similar results in clinical and biological studies. The higher metabolite concentrations in serum, however, make it possible to provide more sensitive results in biomarker detection.
doi:10.1371/journal.pone.0021230
PMCID: PMC3132215  PMID: 21760889
13.  metaP-Server: A Web-Based Metabolomics Data Analysis Tool 
Metabolomics is an emerging field that is based on the quantitative measurement of as many small organic molecules occurring in a biological sample as possible. Due to recent technical advances, metabolomics can now be used widely as an analytical high-throughput technology in drug testing and epidemiological metabolome and genome wide association studies. Analogous to chip-based gene expression analyses, the enormous amount of data produced by modern kit-based metabolomics experiments poses new challenges regarding their biological interpretation in the context of various sample phenotypes. We developed metaP-server to facilitate data interpretation. metaP-server provides automated and standardized data analysis for quantitative metabolomics data, covering the following steps from data acquisition to biological interpretation: (i) data quality checks, (ii) estimation of reproducibility and batch effects, (iii) hypothesis tests for multiple categorical phenotypes, (iv) correlation tests for metric phenotypes, (v) optionally including all possible pairs of metabolite concentration ratios, (vi) principal component analysis (PCA), and (vii) mapping of metabolites onto colored KEGG pathway maps. Graphical output is clickable and cross-linked to sample and metabolite identifiers. Interactive coloring of PCA and bar plots by phenotype facilitates on-line data exploration. For users of commercial metabolomics kits, cross-references to the HMDB, LipidMaps, KEGG, PubChem, and CAS databases are provided. metaP-server is freely accessible at http://metabolomics.helmholtz-muenchen.de/metap2/.
doi:10.1155/2011/839862
PMCID: PMC2946609  PMID: 20936179
14.  Uncovering metabolic pathways relevant to phenotypic traits of microbial genomes 
Genome Biology  2009;10(3):R28.
A new machine learning-based method is presented here for the identification of metabolic pathways related to specific phenotypes in multiple microbial genomes.
Identifying the biochemical basis of microbial phenotypes is a main objective of comparative genomics. Here we present a novel method using multivariate machine learning techniques for comparing automatically derived metabolic reconstructions of sequenced genomes on a large scale. Applying our method to 266 genomes directly led to testable hypotheses such as the link between the potential of microorganisms to cause periodontal disease and their ability to degrade histidine, a link also supported by clinical studies.
doi:10.1186/gb-2009-10-3-r28
PMCID: PMC2690999  PMID: 19284550
15.  PEDANT covers all complete RefSeq genomes 
Nucleic Acids Research  2008;37(Database issue):D408-D411.
The PEDANT genome database provides exhaustive annotation of nearly 3000 publicly available eukaryotic, eubacterial, archaeal and viral genomes with more than 4.5 million proteins by a broad set of bioinformatics algorithms. In particular, all completely sequenced genomes from the NCBI's Reference Sequence collection (RefSeq) are covered. The PEDANT processing pipeline has been sped up by an order of magnitude through the utilization of precalculated similarity information stored in the similarity matrix of proteins (SIMAP) database, making it possible to process newly sequenced genomes immediately as they become available. PEDANT is freely accessible to academic users at http://pedant.gsf.de. For programmatic access Web Services are available at http://pedant.gsf.de/webservices.jsp.
doi:10.1093/nar/gkn749
PMCID: PMC2686588  PMID: 18940859
16.  The PEDANT genome database 
Nucleic Acids Research  2003;31(1):207-211.
The PEDANT genome database (http://pedant.gsf.de) provides exhaustive automatic analysis of genomic sequences by a large variety of established bioinformatics tools through a comprehensive Web-based user interface. One hundred and seventy seven completely sequenced and unfinished genomes have been processed so far, including large eukaryotic genomes (mouse, human) published recently. In this contribution, we describe the current status of the PEDANT database and novel analytical features added to the PEDANT server in 2002. Those include: (i) integration with the BioRS™ data retrieval system which allows fast text queries, (ii) pre-computed sequence clusters in each complete genome, (iii) a comprehensive set of tools for genome comparison, including genome comparison tables and protein function prediction based on genomic context, and (iv) computation and visualization of protein–protein interaction (PPI) networks based on experimental data. The availability of functional and structural predictions for 650 000 genomic proteins in well organized form makes PEDANT a useful resource for both functional and structural genomics.
PMCID: PMC165452  PMID: 12519983

Results 1-16 (16)