Search tips
Search criteria

Results 1-25 (32)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Dysregulation of Complement System and CD4+ T Cell Activation Pathways Implicated in Allergic Response 
PLoS ONE  2013;8(10):e74821.
Allergy is a complex disease that is likely to involve dysregulated CD4+ T cell activation. Here we propose a novel methodology to gain insight into how coordinated behaviour emerges between disease-dysregulated pathways in response to pathophysiological stimuli. Using peripheral blood mononuclear cells of allergic rhinitis patients and controls cultured with and without pollen allergens, we integrate CD4+ T cell gene expression from microarray data and genetic markers of allergic sensitisation from GWAS data at the pathway level using enrichment analysis; implicating the complement system in both cellular and systemic response to pollen allergens. We delineate a novel disease network linking T cell activation to the complement system that is significantly enriched for genes exhibiting correlated gene expression and protein-protein interactions, suggesting a tight biological coordination that is dysregulated in the disease state in response to pollen allergen but not to diluent. This novel disease network has high predictive power for the gene and protein expression of the Th2 cytokine profile (IL-4, IL-5, IL-10, IL-13) and of the Th2 master regulator (GATA3), suggesting its involvement in the early stages of CD4+ T cell differentiation. Dissection of the complement system gene expression identifies 7 genes specifically associated with atopic response to pollen, including C1QR1, CFD, CFP, ITGB2, ITGAX and confirms the role of C3AR1 and C5AR1. Two of these genes (ITGB2 and C3AR1) are also implicated in the network linking complement system to T cell activation, which comprises 6 differentially expressed genes. C3AR1 is also significantly associated with allergic sensitisation in GWAS data.
PMCID: PMC3792967  PMID: 24116013
2.  Maternal cholestasis during pregnancy programs metabolic disease in offspring 
The Journal of Clinical Investigation  2013;123(7):3172-3181.
The intrauterine environment is a major contributor to increased rates of metabolic disease in adults. Intrahepatic cholestasis of pregnancy (ICP) is a liver disease of pregnancy that affects 0.5%–2% of pregnant women and is characterized by increased bile acid levels in the maternal serum. The influence of ICP on the metabolic health of offspring is unknown. We analyzed the Northern Finland birth cohort 1985–1986 database and found that 16-year-old children of mothers with ICP had altered lipid profiles. Males had increased BMI, and females exhibited increased waist and hip girth compared with the offspring of uncomplicated pregnancies. We further investigated the effect of maternal cholestasis on the metabolism of adult offspring in the mouse. Females from cholestatic mothers developed a severe obese, diabetic phenotype with hepatosteatosis following a Western diet, whereas matched mice not exposed to cholestasis in utero did not. Female littermates were susceptible to metabolic disease before dietary challenge. Human and mouse studies showed an accumulation of lipids in the fetoplacental unit and increased transplacental cholesterol transport in cholestatic pregnancy. We believe this is the first report showing that cholestatic pregnancy in the absence of altered maternal BMI or diabetes can program metabolic disease in the offspring.
PMCID: PMC3696570  PMID: 23934127
3.  Heterozygous Mutations Causing Partial Prohormone Convertase 1 Deficiency Contribute to Human Obesity 
Diabetes  2012;61(2):383-390.
Null mutations in the PCSK1 gene, encoding the proprotein convertase 1/3 (PC1/3), cause recessive monogenic early onset obesity. Frequent coding variants that modestly impair PC1/3 function mildly increase the risk for common obesity. The aim of this study was to determine the contribution of rare functional PCSK1 mutations to obesity. PCSK1 exons were sequenced in 845 nonconsanguineous extremely obese Europeans. Eight novel nonsynonymous PCSK1 mutations were identified, all heterozygous. Seven mutations had a deleterious effect on either the maturation or the enzymatic activity of PC1/3 in cell lines. Of interest, five of these novel mutations, one of the previously described frequent variants (N221D), and the mutation found in an obese mouse model (N222D), affect residues at or near the structural calcium binding site Ca-1. The prevalence of the newly identified mutations was assessed in 6,233 obese and 6,274 lean European adults and children, which showed that carriers of any of these mutations causing partial PCSK1 deficiency had an 8.7-fold higher risk to be obese than wild-type carriers. These results provide the first evidence of an increased risk of obesity in heterozygous carriers of mutations in the PCSK1 gene. Furthermore, mutations causing partial PCSK1 deficiency are present in 0.83% of extreme obesity phenotypes.
PMCID: PMC3266396  PMID: 22210313
4.  Glucocorticoid receptor (NR3C1) gene polymorphisms and onset of alcohol abuse in adolescents 
Addiction biology  2010;16(3):510-513.
Onset of alcohol use at an early age increases the risk for later alcohol dependence. We investigated the role of the glucocorticoid receptor (GR) gene (NR3C1) in onset of alcohol use and abuse in 14-year-old adolescents (n = 4534). Several NR3C1 polymorphisms were associated with onset of alcohol drinking or drunkenness at this age. Strongest associations were observed in females, with one marker (rs244465) remaining significant after correction for multiple testing (Padj = 0.0067; odds ratio = 1.7, for drunkenness). Our data provide the first evidence that GR modulates initiation of alcohol abuse and reveal a polymorphism that might contribute to susceptibility to addiction.
PMCID: PMC3428936  PMID: 20731635
Addiction; adolescent; alcohol; glucocorticoid receptor; NR3C1; polymorphism
5.  Phenotype mining in CNV carriers from a population cohort† 
Human Molecular Genetics  2011;20(13):2686-2695.
Phenotype mining is a novel approach for elucidating the genetic basis of complex phenotypic variation. It involves a search of rich phenotype databases for measures correlated with genetic variation, as identified in genome-wide genotyping or sequencing studies. An initial implementation of phenotype mining in a prospective unselected population cohort, the Northern Finland 1966 Birth Cohort (NFBC1966), identifies neurodevelopment-related traits—intellectual deficits, poor school performance and hearing abnormalities—which are more frequent among individuals with large (>500 kb) deletions than among other cohort members. Observation of extensive shared single nucleotide polymorphism haplotypes around deletions suggests an opportunity to expand phenotype mining from cohort samples to the populations from which they derive.
PMCID: PMC3110003  PMID: 21505072
6.  Genetic architecture of circulating lipid levels 
Serum concentrations of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs) and total cholesterol (TC) are important heritable risk factors for cardiovascular disease. Although genome-wide association studies (GWASs) of circulating lipid levels have identified numerous loci, a substantial portion of the heritability of these traits remains unexplained. Evidence of unexplained genetic variance can be detected by combining multiple independent markers into additive genetic risk scores. Such polygenic scores, constructed using results from the ENGAGE Consortium GWAS on serum lipids, were applied to predict lipid levels in an independent population-based study, the Rotterdam Study-II (RS-II). We additionally tested for evidence of a shared genetic basis for different lipid phenotypes. Finally, the polygenic score approach was used to identify an alternative genome-wide significance threshold before pathway analysis and those results were compared with those based on the classical genome-wide significance threshold. Our study provides evidence suggesting that many loci influencing circulating lipid levels remain undiscovered. Cross-prediction models suggested a small overlap between the polygenic backgrounds involved in determining LDL-C, HDL-C and TG levels. Pathway analysis utilizing the best polygenic score for TC uncovered extra information compared with using only genome-wide significant loci. These results suggest that the genetic architecture of circulating lipids involves a number of undiscovered variants with very small effects, and that increasing GWAS sample sizes will enable the identification of novel variants that regulate lipid levels.
PMCID: PMC3137496  PMID: 21448234
serum lipids; polygenic; genome-wide association; polygenic score; pathway analysis
7.  Highly interconnected genes in disease-specific networks are enriched for disease-associated polymorphisms 
Genome Biology  2012;13(6):R46.
Complex diseases are associated with altered interactions between thousands of genes. We developed a novel method to identify and prioritize disease genes, which was generally applicable to complex diseases.
We identified modules of highly interconnected genes in disease-specific networks derived from integrating gene-expression and protein interaction data. We examined if those modules were enriched for disease-associated SNPs, and could be used to find novel genes for functional studies. First, we analyzed publicly available gene expression microarray and genome-wide association study (GWAS) data from 13, highly diverse, complex diseases. In each disease, highly interconnected genes formed modules, which were significantly enriched for genes harboring disease-associated SNPs. To test if such modules could be used to find novel genes for functional studies, we repeated the analyses using our own gene expression microarray and GWAS data from seasonal allergic rhinitis. We identified a novel gene, FGF2, whose relevance was supported by functional studies using combined small interfering RNA-mediated knock-down and gene expression microarrays. The modules in the 13 complex diseases analyzed here tended to overlap and were enriched for pathways related to oncological, metabolic and inflammatory diseases. This suggested that this union of the modules would be associated with a general increase in susceptibility for complex diseases. Indeed, we found that this union was enriched with GWAS genes for 145 other complex diseases.
Modules of highly interconnected complex disease genes were enriched for disease-associated SNPs, and could be used to find novel genes for functional studies.
PMCID: PMC3446318  PMID: 22703998
8.  Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels 
Nature genetics  2009;41(11):1170-1172.
We carried out a genome-wide association study of hemoglobin levels in 16,001 individuals of European and Indian Asian ancestry. The most closely associated SNP (rs855791) results in nonsynonymous (V736A) change in the serine protease domain of TMPRSS6 and a blood hemoglobin concentration 0.13 (95% CI 0.09–0.17) g/dl lower per copy of allele A (P = 1.6 × 10−13). Our findings suggest that TMPRSS6, a regulator of hepcidin synthesis and iron handling, is crucial in hemoglobin level maintenance.
PMCID: PMC3178047  PMID: 19820698
9.  Common Genetic Variation Near Melatonin Receptor MTNR1B Contributes to Raised Plasma Glucose and Increased Risk of Type 2 Diabetes Among Indian Asians and European Caucasians 
Diabetes  2009;58(11):2703-2708.
Fasting plasma glucose and risk of type 2 diabetes are higher among Indian Asians than among European and North American Caucasians. Few studies have investigated genetic factors influencing glucose metabolism among Indian Asians.
We carried out genome-wide association studies for fasting glucose in 5,089 nondiabetic Indian Asians genotyped with the Illumina Hap610 BeadChip and 2,385 Indian Asians (698 with type 2 diabetes) genotyped with the Illumina 300 BeadChip. Results were compared with findings in 4,462 European Caucasians.
We identified three single nucleotide polymorphisms (SNPs) associated with glucose among Indian Asians at P < 5 × 10−8, all near melatonin receptor MTNR1B. The most closely associated was rs2166706 (combined P = 2.1 × 10−9), which is in moderate linkage disequilibrium with rs1387153 (r2 = 0.60) and rs10830963 (r2 = 0.45), both previously associated with glucose in European Caucasians. Risk allele frequency and effect sizes for rs2166706 were similar among Indian Asians and European Caucasians: frequency 46.2 versus 45.0%, respectively (P = 0.44); effect 0.05 (95% CI 0.01–0.08) versus 0.05 (0.03–0.07 mmol/l), respectively, higher glucose per allele copy (P = 0.84). SNP rs2166706 was associated with type 2 diabetes in Indian Asians (odds ratio 1.21 [95% CI 1.06–1.38] per copy of risk allele; P = 0.006). SNPs at the GCK, GCKR, and G6PC2 loci were also associated with glucose among Indian Asians. Risk allele frequencies of rs1260326 (GCKR) and rs560887 (G6PC2) were higher among Indian Asians compared with European Caucasians.
Common genetic variation near MTNR1B influences blood glucose and risk of type 2 diabetes in Indian Asians. Genetic variation at the MTNR1B, GCK, GCKR, and G6PC2 loci may contribute to abnormal glucose metabolism and related metabolic disturbances among Indian Asians.
PMCID: PMC2768158  PMID: 19651812
10.  G-allele of Intronic rs10830963 in MTNR1B Confers Increased Risk of Impaired Fasting Glycemia and Type 2 Diabetes Through an Impaired Glucose-Stimulated Insulin Release 
Diabetes  2009;58(6):1450-1456.
Genome-wide association studies have identified several variants within the MTNR1B locus that are associated with fasting plasma glucose (FPG) and type 2 diabetes. We refined the association signal by direct genotyping and examined for associations of the variant displaying the most independent effect on FPG with isolated impaired fasting glycemia (i-IFG), isolated impaired glucose tolerance (i-IGT), type 2 diabetes, and measures of insulin release and peripheral and hepatic insulin sensitivity.
We examined European-descent participants in the Inter99 study (n = 5,553), in a sample of young healthy Danes (n = 372), in Danish twins (n = 77 elderly and n = 97 young), in additional Danish type 2 diabetic patients (n = 1,626) and control subjects (n = 505), in the Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) study (n = 4,656), in the North Finland Birth Cohort 86 (n = 5,258), and in the Haguenau study (n = 1,461).
The MTNR1B intronic variant, rs10830963, carried most of the effect on FPG and showed the strongest association with FPG (combined P = 5.3 × 10−31) and type 2 diabetes. The rs10830963 G-allele increased the risk of i-IFG (odds ratio [OR] 1.64, P = 5.5 × 10−11) but not i-IGT. The G-allele was associated with a decreased insulin release after oral and intravenous glucose challenges (P < 0.01) but not after injection of tolbutamide. In elderly twins, the G-allele associated with hepatic insulin resistance (P = 0.017).
The G-allele of MTNR1B rs10830963 increases risk of type 2 diabetes through a state of i-IFG and not through i-IGT. The same allele associates with estimates of β-cell dysfunction and hepatic insulin resistance.
PMCID: PMC2682679  PMID: 19324940
11.  Infant Motor Development Predicts Sports Participation at Age 14 Years: Northern Finland Birth Cohort of 1966 
PLoS ONE  2009;4(8):e6837.
Motor proficiency is positively associated with physical activity levels. The aim of this study is to investigate associations between the timing of infant motor development and subsequent sports participation during adolescence.
Prospective observational study. The study population consisted of 9,009 individuals from the Northern Finland Birth Cohort 1966. Motor development was assessed by parental report at age 1 year, using age at walking with support and age at standing unaided. At follow up aged 14 years, data were collected on the school grade awarded for physical education (PE). Self report was used to collect information on the frequency of sports participation and number of different sports reported.
Principal Findings
Earlier infant motor development was associated with improved school PE grade, for age at walking supported (p<0.001) and standing unaided (p = <0.001). Earlier infant motor development, in terms of age at walking supported, was positively associated with the number of different sports reported (p = 0.003) and with a greater frequency of sports participation (p = 0.043). These associations were independent of gestational age and birth weight, as well as father's social class and body mass index at age 14 years.
Earlier infant motor development may predict higher levels of physical activity as indicated by higher school PE grade, participation in a greater number of different types of sports and increased frequency of sports participation. Identification of young children with slower motor development may allow early targeted interventions to improve motor skills and thereby increase physical activity in later life.
PMCID: PMC2729394  PMID: 19718258
12.  Re-sequencing Expands Our Understanding of the Phenotypic Impact of Variants at GWAS Loci 
PLoS Genetics  2014;10(1):e1004147.
Genome-wide association studies (GWAS) have identified >500 common variants associated with quantitative metabolic traits, but in aggregate such variants explain at most 20–30% of the heritable component of population variation in these traits. To further investigate the impact of genotypic variation on metabolic traits, we conducted re-sequencing studies in >6,000 members of a Finnish population cohort (The Northern Finland Birth Cohort of 1966 [NFBC]) and a type 2 diabetes case-control sample (The Finland-United States Investigation of NIDDM Genetics [FUSION] study). By sequencing the coding sequence and 5′ and 3′ untranslated regions of 78 genes at 17 GWAS loci associated with one or more of six metabolic traits (serum levels of fasting HDL-C, LDL-C, total cholesterol, triglycerides, plasma glucose, and insulin), and conducting both single-variant and gene-level association tests, we obtained a more complete understanding of phenotype-genotype associations at eight of these loci. At all eight of these loci, the identification of new associations provides significant evidence for multiple genetic signals to one or more phenotypes, and at two loci, in the genes ABCA1 and CETP, we found significant gene-level evidence of association to non-synonymous variants with MAF<1%. Additionally, two potentially deleterious variants that demonstrated significant associations (rs138726309, a missense variant in G6PC2, and rs28933094, a missense variant in LIPC) were considerably more common in these Finnish samples than in European reference populations, supporting our prior hypothesis that deleterious variants could attain high frequencies in this isolated population, likely due to the effects of population bottlenecks. Our results highlight the value of large, well-phenotyped samples for rare-variant association analysis, and the challenge of evaluating the phenotypic impact of such variants.
Author Summary
Abnormal serum levels of various metabolites, including measures relevant to cholesterol, other fats, and sugars, are known to be risk factors for cardiovascular disease and type 2 diabetes. Identification of the genes that play a role in generating such abnormalities could advance the development of new treatment and prevention strategies for these disorders. Investigations of common genetic variants carried out in large sets of research subjects have successfully pinpointed such genes within many regions of the human genome. However, these studies often have not led to the identification of the specific genetic variations affecting metabolic traits. To attempt to detect such causal variations, we sequenced genes in 17 genomic regions implicated in metabolic traits in >6,000 people from Finland. By conducting statistical analyses relating specific variations (individually and grouped by gene) to the measures for these metabolic traits observed in the study subjects, we added to our understanding of how genotypes affect these traits. Our findings support a long-held hypothesis that the unique history of the Finnish population provides important advantages for analyzing the relationship between genetic variations and biomedically important traits.
PMCID: PMC3907339  PMID: 24497850
13.  Causal and Synthetic Associations of Variants in the SERPINA Gene Cluster with Alpha1-antitrypsin Serum Levels 
PLoS Genetics  2013;9(8):e1003585.
Several infrequent genetic polymorphisms in the SERPINA1 gene are known to substantially reduce concentration of alpha1-antitrypsin (AAT) in the blood. Since low AAT serum levels fail to protect pulmonary tissue from enzymatic degradation, these polymorphisms also increase the risk for early onset chronic obstructive pulmonary disease (COPD). The role of more common SERPINA1 single nucleotide polymorphisms (SNPs) in respiratory health remains poorly understood.
We present here an agnostic investigation of genetic determinants of circulating AAT levels in a general population sample by performing a genome-wide association study (GWAS) in 1392 individuals of the SAPALDIA cohort.
Five common SNPs, defined by showing minor allele frequencies (MAFs) >5%, reached genome-wide significance, all located in the SERPINA gene cluster at 14q32.13. The top-ranking genotyped SNP rs4905179 was associated with an estimated effect of β = −0.068 g/L per minor allele (P = 1.20*10−12). But denser SERPINA1 locus genotyping in 5569 participants with subsequent stepwise conditional analysis, as well as exon-sequencing in a subsample (N = 410), suggested that AAT serum level is causally determined at this locus by rare (MAF<1%) and low-frequent (MAF 1–5%) variants only, in particular by the well-documented protein inhibitor S and Z (PI S, PI Z) variants. Replication of the association of rs4905179 with AAT serum levels in the Copenhagen City Heart Study (N = 8273) was successful (P<0.0001), as was the replication of its synthetic nature (the effect disappeared after adjusting for PI S and Z, P = 0.57). Extending the analysis to lung function revealed a more complex situation. Only in individuals with severely compromised pulmonary health (N = 397), associations of common SNPs at this locus with lung function were driven by rarer PI S or Z variants. Overall, our meta-analysis of lung function in ever-smokers does not support a functional role of common SNPs in the SERPINA gene cluster in the general population.
Author Summary
Low levels of alpha1-antitrypsin (AAT) in the blood are a well-established risk factor for accelerated loss in lung function and chronic obstructive pulmonary disease. While a few infrequent genetic polymorphisms are known to influence the serum levels of this enzyme, the role of common genetic variants has not been examined so far. The present genome-wide scan for associated variants in approximately 1400 Swiss inhabitants revealed a chromosomal locus containing the functionally established variants of AAT deficiency and variants previously associated with lung function and emphysema. We used dense genotyping of this genetic region in more than 5500 individuals and subsequent conditional analyses to unravel which of these associated variants contribute independently to the phenotype's variability. All associations of common variants could be attributed to the rarer functionally established variants, a result which was then replicated in an independent population-based Danish cohort. Hence, this locus represents a textbook example of how a large part of a trait's heritability can be hidden in infrequent genetic polymorphisms. The attempt to transfer these results to lung function furthermore suggests that effects of common variants in this genetic region in ever-smokers may also be explained by rarer variants, but only in individuals with hampered pulmonary health.
PMCID: PMC3749935  PMID: 23990791
14.  Genome-wide association study of primary tooth eruption identifies pleiotropic loci associated with height and craniofacial distances 
Human Molecular Genetics  2013;22(18):3807-3817.
Twin and family studies indicate that the timing of primary tooth eruption is highly heritable, with estimates typically exceeding 80%. To identify variants involved in primary tooth eruption, we performed a population-based genome-wide association study of ‘age at first tooth’ and ‘number of teeth’ using 5998 and 6609 individuals, respectively, from the Avon Longitudinal Study of Parents and Children (ALSPAC) and 5403 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966). We tested 2 446 724 SNPs imputed in both studies. Analyses were controlled for the effect of gestational age, sex and age of measurement. Results from the two studies were combined using fixed effects inverse variance meta-analysis. We identified a total of 15 independent loci, with 10 loci reaching genome-wide significance (P < 5 × 10−8) for ‘age at first tooth’ and 11 loci for ‘number of teeth’. Together, these associations explain 6.06% of the variation in ‘age of first tooth’ and 4.76% of the variation in ‘number of teeth’. The identified loci included eight previously unidentified loci, some containing genes known to play a role in tooth and other developmental pathways, including an SNP in the protein-coding region of BMP4 (rs17563, P = 9.080 × 10−17). Three of these loci, containing the genes HMGA2, AJUBA and ADK, also showed evidence of association with craniofacial distances, particularly those indexing facial width. Our results suggest that the genome-wide association approach is a powerful strategy for detecting variants involved in tooth eruption, and potentially craniofacial growth and more generally organ development.
PMCID: PMC3749866  PMID: 23704328
15.  Common variants at 6q22 and 17q21 are associated with intracranial volume 
Nature genetics  2012;44(5):539-544.
During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide association study in 8,175 community-dwelling elderly did not reveal any genome-wide significant associations (p<5*10−8) for brain volume. In contrast, intracranial volume was significantly associated with two loci: rs4273712 (p=3.4*10−11), a known height locus on chromosome 6q22, and rs9915547, tagging the inversion on chromosome 17q21 (p=1.5*10−12). We replicated the associations of these loci with intracranial volume in a separate sample of 1,752 older persons (p=1.1*10−3 for 6q22 and p=1.2*10−3 for 17q21). Furthermore, we also found suggestive associations of the 17q21 locus with head circumference in 10,768 children (mean age 14.5 months). Our data identify two loci associated with head size, with the inversion on 17q21 also likely involved in attaining maximal brain size.
PMCID: PMC3618290  PMID: 22504418
16.  Identification of IL6R and chromosome 11q13.5 as risk loci for asthma 
Lancet  2011;378(9795):1006-1014.
We aimed to identify novel genetic variants affecting asthma risk, since these might provide novel insights into molecular mechanisms underlying asthma.
We performed a genome-wide association study (GWAS) in 2,669 physician-diagnosed asthmatics and 4,528 controls from Australia. Seven loci were prioritised for replication after combining our results with those from the GABRIEL consortium (n=26,475), and these were tested in an additional 25,358 independent samples from four in-silico cohorts. Quantitative multi-SNP scores of genetic load were constructed on the basis of results from the GABRIEL study and tested for association with asthma in our Australian GWAS dataset.
Two loci were confirmed to associate with asthma risk in the replication cohorts and reached genome-wide significance in the combined analysis of all available studies (n=57,800): rs4129267 (OR=1.09, combined P=2.4×10−8) in the interleukin-6 receptor gene (IL6R) and rs7130588 (OR=1.09, P=1.8×10−8) on chromosome 11q13.5 near the leucine-rich repeat containing 32 gene (LRRC32, also known as GARP). The 11q13.5 locus was significantly associated with atopic status among asthmatics (OR = 1.33, P = 7×10−4), suggesting that it is a risk factor for allergic but not non-allergic asthma. Multi-SNP association results are consistent with a highly polygenic contribution to asthma risk, including loci with weak effects that may be shared with other immune-related diseases, such as NDFIP1, HLA-B, LPP and BACH2.
The IL6R association further supports the hypothesis that cytokine signalling dysregulation affects asthma risk, and raises the possibility that an IL6R antagonist (tocilizumab) may be effective to treat the disease, perhaps in a genotype-dependent manner. Results for the 11q13.5 locus suggest that it directly increases the risk of allergic sensitisation which, in turn, increases the risk of subsequent development of asthma. Larger or more functionally focused studies are needed to characterise the many loci with modest effects that remain to be identified for asthma.
A full list of funding sources appears at the end of the paper.
PMCID: PMC3517659  PMID: 21907864
17.  MultiPhen: Joint Model of Multiple Phenotypes Can Increase Discovery in GWAS 
PLoS ONE  2012;7(5):e34861.
The genome-wide association study (GWAS) approach has discovered hundreds of genetic variants associated with diseases and quantitative traits. However, despite clinical overlap and statistical correlation between many phenotypes, GWAS are generally performed one-phenotype-at-a-time. Here we compare the performance of modelling multiple phenotypes jointly with that of the standard univariate approach. We introduce a new method and software, MultiPhen, that models multiple phenotypes simultaneously in a fast and interpretable way. By performing ordinal regression, MultiPhen tests the linear combination of phenotypes most associated with the genotypes at each SNP, and thus potentially captures effects hidden to single phenotype GWAS. We demonstrate via simulation that this approach provides a dramatic increase in power in many scenarios. There is a boost in power for variants that affect multiple phenotypes and for those that affect only one phenotype. While other multivariate methods have similar power gains, we describe several benefits of MultiPhen over these. In particular, we demonstrate that other multivariate methods that assume the genotypes are normally distributed, such as canonical correlation analysis (CCA) and MANOVA, can have highly inflated type-1 error rates when testing case-control or non-normal continuous phenotypes, while MultiPhen produces no such inflation. To test the performance of MultiPhen on real data we applied it to lipid traits in the Northern Finland Birth Cohort 1966 (NFBC1966). In these data MultiPhen discovers 21% more independent SNPs with known associations than the standard univariate GWAS approach, while applying MultiPhen in addition to the standard approach provides 37% increased discovery. The most associated linear combinations of the lipids estimated by MultiPhen at the leading SNPs accurately reflect the Friedewald Formula, suggesting that MultiPhen could be used to refine the definition of existing phenotypes or uncover novel heritable phenotypes.
PMCID: PMC3342314  PMID: 22567092
18.  A Bivariate Genome-Wide Approach to Metabolic Syndrome 
Diabetes  2011;60(4):1329-1339.
The metabolic syndrome (MetS) is defined as concomitant disorders of lipid and glucose metabolism, central obesity, and high blood pressure, with an increased risk of type 2 diabetes and cardiovascular disease. This study tests whether common genetic variants with pleiotropic effects account for some of the correlated architecture among five metabolic phenotypes that define MetS.
Seven studies of the STAMPEED consortium, comprising 22,161 participants of European ancestry, underwent genome-wide association analyses of metabolic traits using a panel of ∼2.5 million imputed single nucleotide polymorphisms (SNPs). Phenotypes were defined by the National Cholesterol Education Program (NCEP) criteria for MetS in pairwise combinations. Individuals exceeding the NCEP thresholds for both traits of a pair were considered affected.
Twenty-nine common variants were associated with MetS or a pair of traits. Variants in the genes LPL, CETP, APOA5 (and its cluster), GCKR (and its cluster), LIPC, TRIB1, LOC100128354/MTNR1B, ABCB11, and LOC100129150 were further tested for their association with individual qualitative and quantitative traits. None of the 16 top SNPs (one per gene) associated simultaneously with more than two individual traits. Of them 11 variants showed nominal associations with MetS per se. The effects of 16 top SNPs on the quantitative traits were relatively small, together explaining from ∼9% of the variance in triglycerides, 5.8% of high-density lipoprotein cholesterol, 3.6% of fasting glucose, and 1.4% of systolic blood pressure.
Qualitative and quantitative pleiotropic tests on pairs of traits indicate that a small portion of the covariation in these traits can be explained by the reported common genetic variants.
PMCID: PMC3064107  PMID: 21386085
19.  Genetic and Functional Assessment of the Role of the rs13431652-A and rs573225-A Alleles in the G6PC2 Promoter That Are Strongly Associated With Elevated Fasting Glucose Levels 
Diabetes  2010;59(10):2662-2671.
Genome-wide association studies have identified a single nucleotide polymorphism (SNP), rs560887, located in a G6PC2 intron that is highly correlated with variations in fasting plasma glucose (FPG). G6PC2 encodes an islet-specific glucose-6-phosphatase catalytic subunit. This study examines the contribution of two G6PC2 promoter SNPs, rs13431652 and rs573225, to the association signal.
We genotyped 9,532 normal FPG participants (FPG <6.1 mmol/l) for three G6PC2 SNPs, rs13431652 (distal promoter), rs573225 (proximal promoter), rs560887 (3rd intron). We used regression analyses adjusted for age, sex, and BMI to assess the association with FPG and haplotype analyses to assess comparative SNP contributions. Fusion gene and gel retardation analyses characterized the effect of rs13431652 and rs573225 on G6PC2 promoter activity and transcription factor binding.
Genetic analyses provide evidence for a strong contribution of the promoter SNPs to FPG variability at the G6PC2 locus (rs13431652: β = 0.075, P = 3.6 × 10−35; rs573225 β = 0.073 P = 3.6 × 10−34), in addition to rs560887 (β = 0.071, P = 1.2 × 10−31). The rs13431652-A and rs573225-A alleles promote increased NF-Y and Foxa2 binding, respectively. The rs13431652-A allele is associated with increased FPG and elevated promoter activity, consistent with the function of G6PC2 in pancreatic islets. In contrast, the rs573225-A allele is associated with elevated FPG but reduced promoter activity.
Genetic and in situ functional data support a potential role for rs13431652, but not rs573225, as a causative SNP linking G6PC2 to variations in FPG, though a causative role for rs573225 in vivo cannot be ruled out.
PMCID: PMC3279535  PMID: 20622168
20.  Genetic Variants of TSLP and Asthma in an Admixed Urban Population 
PLoS ONE  2011;6(9):e25099.
Thymic stromal lymphopoietin (TSLP), an IL7-like cytokine produced by bronchial epithelial cells is upregulated in asthma and induces dendritic cell maturation supporting a Th2 response. Environmental pollutants, including tobacco smoke and diesel exhaust particles upregulate TSLP suggesting that TSLP may be an interface between environmental pollution and immune responses in asthma. Since asthma is prevalent in urban communities, variants in the TSLP gene may be important in asthma susceptibility in these populations.
To determine whether genetic variants in TSLP are associated with asthma in an urban admixed population.
Methodology and Main Results
Ten tag-SNPs in the TSLP gene were analyzed for association with asthma using 387 clinically diagnosed asthmatic cases and 212 healthy controls from an urban admixed population. One SNP (rs1898671) showed nominally significant association with asthma (odds ratio (OR) = 1.50; 95% confidence interval (95% CI): 1.09–2.05, p = 0.01) after adjusting for age, BMI, income, education and population stratification. Association results were consistent using two different approaches to adjust for population stratification. When stratified by smoking status, the same SNP showed a significantly increased risk associated with asthma in ex-smokers (OR = 2.00, 95% CI: 1.04–3.83, p = 0.04) but not significant in never-smokers (OR = 1.34; 95% CI: 0.93–1.94, p = 0.11). Haplotype-specific score test indicated that an elevated risk for asthma was associated with a specific haplotype of TSLP involving SNP rs1898671 (OR = 1.58, 95% CI: 1.10–2.27, p = 0.01). Association of this SNP with asthma was confirmed in an independent large population-based cohort consortium study (OR = 1.15, 95% CI: 1.07–1.23, p = 0.0003) and the results stratified by smoking status were also validated (ex-smokers: OR = 1.21, 95% CI: 1.08–1.34, p = 0.003; never-smokers: OR = 1.06, 95% CI: 0.94–1.17, p = 0.33).
Genetic variants in TSLP may contribute to asthma susceptibility in admixed urban populations with a gene and environment interaction.
PMCID: PMC3178593  PMID: 21966427
21.  Common Variation in the FTO Gene Alters Diabetes-Related Metabolic Traits to the Extent Expected Given Its Effect on BMI 
Diabetes  2008;57(5):1419-1426.
Common variation in the FTO gene is associated with BMI and type 2 diabetes. Increased BMI is associated with diabetes risk factors, including raised insulin, glucose, and triglycerides. We aimed to test whether FTO genotype is associated with variation in these metabolic traits.
We tested the association between FTO genotype and 10 metabolic traits using data from 17,037 white European individuals. We compared the observed effect of FTO genotype on each trait to that expected given the FTO-BMI and BMI-trait associations.
Each copy of the FTO rs9939609 A allele was associated with higher fasting insulin (0.039 SD [95% CI 0.013–0.064]; P = 0.003), glucose (0.024 [0.001– 0.048]; P = 0.044), and triglycerides (0.028 [0.003– 0.052]; P = 0.025) and lower HDL cholesterol (0.032 [0.008 – 0.057]; P = 0.009). There was no evidence of these associations when adjusting for BMI. Associations with fasting alanine aminotransferase, γ-glutamyl-transferase, LDL cholesterol, A1C, and systolic and diastolic blood pressure were in the expected direction but did not reach P < 0.05. For all metabolic traits, effect sizes were consistent with those expected for the per allele change in BMI. FTO genotype was associated with a higher odds of metabolic syndrome (odds ratio 1.17 [95% CI 1.10 –1.25]; P = 3 × 10−6).
FTO genotype is associated with metabolic traits to an extent entirely consistent with its effect on BMI. Sample sizes of >12,000 individuals were needed to detect associations at P < 0.05. Our findings highlight the importance of using appropriately powered studies to assess the effects of a known diabetes or obesity variant on secondary traits correlated with these conditions.
PMCID: PMC3073395  PMID: 18346983
22.  Genetic Variant in HK1 Is Associated With a Proanemic State and A1C but Not Other Glycemic Control–Related Traits 
Diabetes  2009;58(11):2687-2697.
A1C is widely considered the gold standard for monitoring effective blood glucose levels. Recently, a genome-wide association study reported an association between A1C and rs7072268 within HK1 (encoding hexokinase 1), which catalyzes the first step of glycolysis. HK1 deficiency in erythrocytes (red blood cells [RBCs]) causes severe nonspherocytic hemolytic anemia in both humans and mice.
The contribution of rs7072268 to A1C and the RBC-related traits was assessed in 6,953 nondiabetic European participants. We additionally analyzed the association with hematologic traits in 5,229 nondiabetic European individuals (in whom A1C was not measured) and 1,924 diabetic patients. Glucose control–related markers other than A1C were analyzed in 18,694 nondiabetic European individuals. A type 2 diabetes case-control study included 7,447 French diabetic patients.
Our study confirms a strong association between the rs7072268–T allele and increased A1C (β = 0.029%; P = 2.22 × 10−7). Surprisingly, despite adequate study power, rs7072268 showed no association with any other markers of glucose control (fasting- and 2-h post-OGTT–related parameters, n = 18,694). In contrast, rs7072268–T allele decreases hemoglobin levels (n = 13,416; β = −0.054 g/dl; P = 3.74 × 10−6) and hematocrit (n = 11,492; β = −0.13%; P = 2.26 × 10−4), suggesting a proanemic effect. The T allele also increases risk for anemia (836 cases; odds ratio 1.13; P = 0.018).
HK1 variation, although strongly associated with A1C, does not seem to be involved in blood glucose control. Since HK1 rs7072268 is associated with reduced hemoglobin levels and favors anemia, we propose that HK1 may influence A1C levels through its anemic effect or its effect on glucose metabolism in RBCs. These findings may have implications for type 2 diabetes diagnosis and clinical management because anemia is a frequent complication of the diabetes state.
PMCID: PMC2768183  PMID: 19651813
23.  Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups 
PLoS Genetics  2010;6(4):e1000916.
Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85×10−8 in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84×10−7), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at ∼1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults.
Author Summary
Genome-wide association studies (GWAS) have successfully contributed to the detection of genetic variants involved in body-weight regulation. We jointly analysed two GWAS for early-onset extreme obesity in 2,258 individuals of European origin and followed-up the findings in 3,141 individuals. Evidence for association of markers in two new genetic loci was shown (SDCCAG8 on chromosome 1q43–q44 and between TNKS/MSRA on chromosome 8p23.1). We also re-identified variants in or near FTO, MC4R, and TMEM18 to be associated with extreme obesity. In addition, we assessed the effect of the markers in 31,182 obese, lean, normal weight, and unselected individuals from population-based samples and showed that the variants near FTO, MC4R, TMEM18, and SDCCAG8 were consistently associated with obesity. For variants of TNKS/MSRA, the obesity association was limited to children and adolescents. In summary, we detected two new obesity loci and confirmed that the currently known major common variants related to obesity overlap to a substantial degree between children and adults.
PMCID: PMC2858696  PMID: 20421936
25.  Genome-Wide Association Study Reveals Multiple Loci Associated with Primary Tooth Development during Infancy 
PLoS Genetics  2010;6(2):e1000856.
Tooth development is a highly heritable process which relates to other growth and developmental processes, and which interacts with the development of the entire craniofacial complex. Abnormalities of tooth development are common, with tooth agenesis being the most common developmental anomaly in humans. We performed a genome-wide association study of time to first tooth eruption and number of teeth at one year in 4,564 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966) and 1,518 individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC). We identified 5 loci at P<5×10−8, and 5 with suggestive association (P<5×10−6). The loci included several genes with links to tooth and other organ development (KCNJ2, EDA, HOXB2, RAD51L1, IGF2BP1, HMGA2, MSRB3). Genes at four of the identified loci are implicated in the development of cancer. A variant within the HOXB gene cluster associated with occlusion defects requiring orthodontic treatment by age 31 years.
Author Summary
Genome-wide association studies have been used to identify genetic variants conferring susceptibility to diseases, intermediate phenotypes, and physiological traits such as height, hair color, and age at menarche. Here we analyze the NFBC1966 and ALSPAC birth cohorts to investigate the genetic determinants of a key developmental process: primary tooth development. The prospective nature of our studies allows us to exploit accurate measurements of age at first tooth eruption and number of teeth at one year, and also provides the opportunity to assess whether genetic variants affecting these traits are associated with dental problems later in the life course. Of the genes that we find to be associated with primary tooth development, several have established roles in tooth development and growth, and almost half have proposed links with the development of cancer. We find that one of the variants is also associated with occlusion defects requiring orthodontic treatment later in life. Our findings should provide a strong foundation for the study of the genetic architecture of tooth development, which as well as its relevance to medicine and dentistry, may have implications in evolutionary biology since teeth represent important markers of evolution.
PMCID: PMC2829062  PMID: 20195514

Results 1-25 (32)