PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Cystatin C is not a good candidate biomarker for HNF1A-MODY 
Acta Diabetologica  2012;50(5):815-820.
Cystatin C is a marker of glomerular filtration rate (GFR). Its level is influenced, among the others, by CRP whose concentration is decreased in HNF1A-MODY. We hypothesized that cystatin C level might be altered in HNF1A-MODY. We aimed to evaluate cystatin C in HNF1A-MODY both as a diagnostic marker and as a method of assessing GFR. We initially examined 51 HNF1A-MODY patients, 56 subjects with type 1 diabetes (T1DM), 39 with type 2 diabetes (T2DM) and 43 non-diabetic individuals (ND) from Poland. Subjects from two UK centres were used as replication panels: including 215 HNF1A-MODY, 203 T2DM, 39 HNF4A-MODY, 170 GCK-MODY, 17 HNF1B-MODY and 58 T1DM patients. The data were analysed with additive models, adjusting for gender, age, BMI and estimated GFR (creatinine). In the Polish subjects, adjusted cystatin C level in HNF1A-MODY was lower compared with T1DM, T2DM and ND (p < 0.05). Additionally, cystatin C-based GFR was higher than that calculated from creatinine level (p < 0.0001) in HNF1A-MODY, while the two GFR estimates were similar or cystatin C-based lower in the other groups. In the UK subjects, there were no differences in cystatin C between HNF1A-MODY and the other diabetic subgroups, except HNF1B-MODY. In UK HNF1A-MODY, cystatin C-based GFR estimate was higher than the creatinine-based one (p < 0.0001). Concluding, we could not confirm our hypothesis (supported by the Polish results) that cystatin C level is altered by HNF1A mutations; thus, it cannot be used as a biomarker for HNF1A-MODY. In HNF1A-MODY, the cystatin C-based GFR estimate is higher than the creatinine-based one.
doi:10.1007/s00592-012-0378-1
PMCID: PMC3898131  PMID: 22350134
Monogenic diabetes; MODY; Cystatin C; HNF1A
2.  Assessment of High-Sensitivity C-Reactive Protein Levels as Diagnostic Discriminator of Maturity-Onset Diabetes of the Young Due to HNF1A Mutations 
Diabetes Care  2010;33(9):1919-1924.
OBJECTIVE
Despite the clinical importance of an accurate diagnosis in individuals with monogenic forms of diabetes, restricted access to genetic testing leaves many patients with undiagnosed diabetes. Recently, common variation near the HNF1 homeobox A (HNF1A) gene was shown to influence C-reactive protein levels in healthy adults. We hypothesized that serum levels of high-sensitivity C-reactive protein (hs-CRP) could represent a clinically useful biomarker for the identification of HNF1A mutations causing maturity-onset diabetes of the young (MODY).
RESEARCH DESIGN AND METHODS
Serum hs-CRP was measured in subjects with HNF1A-MODY (n = 31), autoimmune diabetes (n = 316), type 2 diabetes (n = 240), and glucokinase (GCK) MODY (n = 24) and in nondiabetic individuals (n = 198). The discriminative accuracy of hs-CRP was evaluated through receiver operating characteristic (ROC) curve analysis, and performance was compared with standard diagnostic criteria. Our primary analyses excluded ∼11% of subjects in whom the single available hs-CRP measurement was >10 mg/l.
RESULTS
Geometric mean (SD range) hs-CRP levels were significantly lower (P ≤ 0.009) for HNF1A-MODY individuals, 0.20 (0.03–1.14) mg/l, than for any other group: autoimmune diabetes 0.58 (0.10–2.75) mg/l, type 2 diabetes 1.33 (0.28–6.14) mg/l, GCK-MODY 1.01 (0.19–5.33) mg/l, and nondiabetic 0.48 (0.10–2.42) mg/l. The ROC-derived C-statistic for discriminating HNF1A-MODY and type 2 diabetes was 0.8. Measurement of hs-CRP, either alone or in combination with current diagnostic criteria, was superior to current diagnostic criteria alone. Sensitivity and specificity for the combined criteria approached 80%.
CONCLUSIONS
Serum hs-CRP levels are markedly lower in HNF1A-MODY than in other forms of diabetes. hs-CRP has potential as a widely available, cost-effective screening test to support more precise targeting of MODY diagnostic testing.
doi:10.2337/dc10-0288
PMCID: PMC2928334  PMID: 20724646

Results 1-2 (2)