PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Mosaic Overgrowth with Fibroadipose Hyperplasia is Caused by Somatic Activating Mutations in PIK3CA 
Nature genetics  2012;44(8):928-933.
The phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway is critical for cellular growth and metabolism. Correspondingly, loss of function of PTEN, a negative regulator of PI3K, or activating mutations in AKT1, AKT2, or AKT3 have been found in distinct disorders featuring overgrowth or hypoglycemia. We performed exome sequencing of DNA from unaffected and affected cells of a patient with an unclassified syndrome of congenital, progressive segmental overgrowth of fibrous and adipose tissue and bone and identified the cancer-associated p.His1047Leu mutation in PIK3CA, which encodes the p110α catalytic subunit of PI3K, only in affected cells. Sequencing of PIK3CA in 10 further patients with overlapping syndromes identified either p.His1047Leu or a second cancer-associated mutation, p.His1047Arg, in 9 cases. Affected dermal fibroblasts showed enhanced basal and EGF-stimulated phosphatidylinositol-3,4,5-trisphosphate (PIP3) generation and concomitant activation of downstream signaling. Our findings characterize a distinct overgrowth syndrome, biochemically demonstrate activation of PI3K signaling and thereby identify a rational therapeutic target.
doi:10.1038/ng.2332
PMCID: PMC3461408  PMID: 22729222
2.  Detailed Investigation of the Role of Common and Low-Frequency WFS1 Variants in Type 2 Diabetes Risk 
Diabetes  2009;59(3):741-746.
OBJECTIVE
Wolfram syndrome 1 (WFS1) single nucleotide polymorphisms (SNPs) are associated with risk of type 2 diabetes. In this study we aimed to refine this association and investigate the role of low-frequency WFS1 variants in type 2 diabetes risk.
RESEARCH DESIGN AND METHODS
For fine-mapping, we sequenced WFS1 exons, splice junctions, and conserved noncoding sequences in samples from 24 type 2 diabetic case and 68 control subjects, selected tagging SNPs, and genotyped these in 959 U.K. type 2 diabetic case and 1,386 control subjects. The same genomic regions were sequenced in samples from 1,235 type 2 diabetic case and 1,668 control subjects to compare the frequency of rarer variants between case and control subjects.
RESULTS
Of 31 tagging SNPs, the strongest associated was the previously untested 3′ untranslated region rs1046320 (P = 0.008); odds ratio 0.84 and P = 6.59 × 10−7 on further replication in 3,753 case and 4,198 control subjects. High correlation between rs1046320 and the original strongest SNP (rs10010131) (r2 = 0.92) meant that we could not differentiate between their effects in our samples. There was no difference in the cumulative frequency of 82 rare (minor allele frequency [MAF] <0.01) nonsynonymous variants between type 2 diabetic case and control subjects (P = 0.79). Two intermediate frequency (MAF 0.01–0.05) nonsynonymous changes also showed no statistical association with type 2 diabetes.
CONCLUSIONS
We identified six highly correlated SNPs that show strong and comparable associations with risk of type 2 diabetes, but further refinement of these associations will require large sample sizes (>100,000) or studies in ethnically diverse populations. Low frequency variants in WFS1 are unlikely to have a large impact on type 2 diabetes risk in white U.K. populations, highlighting the complexities of undertaking association studies with low-frequency variants identified by resequencing.
doi:10.2337/db09-0920
PMCID: PMC2828659  PMID: 20028947
3.  Detailed investigation of the role of common and low frequency WFS1 variants in type 2 diabetes risk 
Diabetes  2009;59(3):741-746.
OBJECTIVE
WFS1 (Wolfram Syndrome 1) SNPs are associated with risk of type 2 diabetes (T2D). Here, we aimed to refine this association and investigate the role of low frequency WFS1 variants in T2D risk.
RESEARCH DESIGN AND METHODS
For fine-mapping, we sequenced WFS1 exons, splice junctions and conserved non-coding sequences in 24 T2D cases and 68 controls, selected tagging SNPs, and genotyped these in 959 UK T2D cases and 1386 controls. The same genomic regions were sequenced in 1235 T2D cases and 1668 controls to compare the frequency of rarer variants between cases and controls.
RESULTS
Of 31 tagging SNPs, the strongest associated was the previously untested 3′ UTR rs1046320 (P=0.008); OR=0.84, P=6.59 × 10−7 on further replication in 3753 cases and 4198 controls. High correlation between rs1046320 and the original strongest SNP (rs10010131) (r2=0.92) meant that we could not differentiate between their effects in our samples. There was no difference in the cumulative frequency of 82 rare (MAF<0.01) non-synonymous variants between T2D cases and controls (P=0.79). Two intermediate frequency (MAF 0.01-0.05) non-synonymous changes also showed no statistical association with T2D.
CONCLUSION
We identified six highly correlated SNPs that show strong and comparable associations with risk of T2D association but further refinement of these associations will require large sample sizes (>100,000), or studies in ethnically diverse populations. Low frequency variants in WFS1 are unlikely to have a large impact on T2D risk in white UK populations, highlighting the complexities of undertaking association studies with low frequency variants identified by re-sequencing.
doi:10.2337/db09-0920
PMCID: PMC2828659  PMID: 20028947
4.  Early Diagnosis of Werner's Syndrome Using Exome-Wide Sequencing in a Single, Atypical Patient 
Genetic diagnosis of inherited metabolic disease is conventionally achieved through syndrome recognition and targeted gene sequencing, but many patients receive no specific diagnosis. Next-generation sequencing allied to capture of expressed sequences from genomic DNA now offers a powerful new diagnostic approach. Barriers to routine diagnostic use include cost, and the complexity of interpreting results arising from simultaneous identification of large numbers of variants. We applied exome-wide sequencing to an individual, 16-year-old daughter of consanguineous parents with a novel syndrome of short stature, severe insulin resistance, ptosis, and microcephaly. Pulldown of expressed sequences from genomic DNA followed by massively parallel sequencing was undertaken. Single nucleotide variants were called using SAMtools prior to filtering based on sequence quality and existence in control genomes and exomes. Of 485 genetic variants predicted to alter protein sequence and absent from control data, 24 were homozygous in the patient. One mutation – the p.Arg732X mutation in the WRN gene – has previously been reported in Werner's syndrome (WS). On re-evaluation of the patient several early features of WS were detected including loss of fat from the extremities and frontal hair thinning. Lymphoblastoid cells from the proband exhibited a defective decatenation checkpoint, consistent with loss of WRN activity. We have thus diagnosed WS some 15 years earlier than average, permitting aggressive prophylactic therapy and screening for WS complications, illustrating the potential of exome-wide sequencing to achieve early diagnosis and change management of rare autosomal recessive disease, even in individual patients of consanguineous parentage with apparently novel syndromes.
doi:10.3389/fendo.2011.00008
PMCID: PMC3356119  PMID: 22654791
Werner's syndrome; whole exome sequencing; insulin resistance; diabetes; WRN
5.  Evaluating the Role of LPIN1 Variation in Insulin Resistance, Body Weight, and Human Lipodystrophy in U.K. Populations 
Diabetes  2008;57(9):2527-2533.
OBJECTIVE— Loss of lipin 1 activity causes lipodystrophy and insulin resistance in the fld mouse, and LPIN1 expression and common genetic variation were recently suggested to influence adiposity and insulin sensitivity in humans. We aimed to conduct a comprehensive association study to clarify the influence of common LPIN1 variation on adiposity and insulin sensitivity in U.K. populations and to examine the role of LPIN1 mutations in insulin resistance syndromes.
RESEARCH DESIGN AND METHOD— Twenty-two single nucleotide polymorphisms tagging common LPIN1 variation were genotyped in Medical Research Council (MRC) Ely (n = 1,709) and Hertfordshire (n = 2,901) population-based cohorts. LPIN1 exons, exon/intron boundaries, and 3′ untranslated region were sequenced in 158 patients with idiopathic severe insulin resistance (including 23 lipodystrophic patients) and 48 control subjects.
RESULTS— We found no association between LPIN1 single nucleotide polymorphisms and fasting insulin but report a nominal association between rs13412852 and BMI (P = 0.042) in a meta-analysis of 8,504 samples from in-house and publicly available studies. Three rare nonsynonymous variants (A353T, R552K, and G582R) were detected in severely insulin-resistant patients. However, these did not cosegregate with disease in affected families, and Lipin1 protein expression and phosphorylation in patients with variants were indistinguishable from those in control subjects.
CONCLUSIONS— Our data do not support a major effect of common LPIN1 variation on metabolic traits and suggest that mutations in LPIN1 are not a common cause of lipodystrophy in humans. The nominal associations with BMI and other metabolic traits in U.K. cohorts require replication in larger cohorts.
doi:10.2337/db08-0422
PMCID: PMC2518506  PMID: 18591397
6.  Evaluating the role of LPIN1 variation on insulin resistance, body weight and human lipodystrophy in UK populations 
Diabetes  2008;57(9):2527-2533.
OBJECTIVE:
Loss of Lpin1 activity causes lipodystrophy and insulin resistance in the fld mouse, and LPIN1 expression and common genetic variation were recently suggested to influence adiposity and insulin sensitivity in humans. We aimed to conduct a comprehensive association study to clarify the influence of LPIN1 common variation on adiposity and insulin sensitivity in UK populations, and to examine the role of LPIN1 mutations in insulin resistance syndromes.
RESEARCH DESIGN AND METHOD:
Twenty-two SNPs tagging LPIN1 common variation were genotyped in MRC Ely (N = 1709) and Hertfordshire (N = 2901) population-based cohorts. LPIN1 exons, exon/intron boundaries and 3′UTR were sequenced in 158 patients with idiopathic severe insulin resistance (including 23 lipodystrophic patients), and 48 controls.
RESULTS:
We found no association between LPIN1 SNPs and fasting insulin, but report a nominal association between rs13412852 and BMI (P = 0.042) in a meta-analysis of 8504 samples from in-house and publicly available studies. Three rare nonsynonymous variants (A353T, R552K and G582R) were detected in severely insulin resistant patients. However, these did not co-segregate with disease in affected families and Lipin1 protein expression and phosphorylation in patients with variants was indistinguishable from controls.
CONCLUSIONS:
Our data do not support a major effect of LPIN1 common variation on metabolic traits and suggest that mutations in LPIN1 are not a common cause of lipodystrophy in humans. The nominal associations with BMI and other metabolic traits in UK cohorts require replication in larger cohorts.
doi:10.2337/db08-0422
PMCID: PMC2518506  PMID: 18591397
7.  Variation of the Oxytocin/Neurophysin I (OXT) gene in four human populations 
Journal of human genetics  2008;53(7):637-643.
Oxytocin is a short peptide with multiple functions in human biology and has been implicated in the disorder autism. We set out to determine the normal pattern of variation around the oxytocin gene and have resequenced it and its flanking regions in 91 individuals from four HapMap populations and one chimpanzee. We identified 14 SNPs, all non-coding, including eight that were novel. Population-genetic analyses were largely consistent with a neutral evolutionary history, but an HKA test revealed more variation within the human population than expected from the level of chimpanzee-human divergence.
doi:10.1007/s10038-008-0292-0
PMCID: PMC2680061  PMID: 18566739
Oxytocin; OXT; human genetic variation; HapMap populations; HKA test
8.  Common variants in WFS1 confer risk of type 2 diabetes 
Nature genetics  2007;39(8):951-953.
We studied genes involved in pancreatic β cell function and survival, identifying associations between SNPs in WFS1 and diabetes risk in UK populations that we replicated in an Ashkenazi population and in additional UK studies. In a pooled analysis comprising 9,533 cases and 11,389 controls, SNPs in WFS1 were strongly associated with diabetes risk. Rare mutations in WFS1 cause Wolfram syndrome; using a gene-centric approach, we show that variation in WFS1 also predisposes to common type 2 diabetes.
doi:10.1038/ng2067
PMCID: PMC2672152  PMID: 17603484

Results 1-8 (8)